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We consider N strings connected to one another and forming a particular network which is a chain of strings. We study a stabilization problem and precisley we prove that the energy of the solutions of the dissipative system decay exponentially to zero when the time tends to infinity, independently of the densities of the strings. Our technique is based on a frequency domain method and a special analysis for the resolvent. Moreover, by same appraoch, we study the transfert function associated to the chain of strings and the stability of the Schrödinger system.

Introduction

We consider the evolution problem (P ) described by the following system of N equations:

(P )                    (∂ 2 t u j -ρ j ∂ 2
x u j )(t, x) = 0, x ∈ (j, j + 1), t ∈ (0, ∞), j = 0, ..., N -1, ρ 0 ∂ x u 0 (t, 0) = ∂ t u 0 (t, 0), u N -1 (t, N ) = 0, t ∈ (0, ∞), u j-1 (t, j) = u j (t, j), t ∈ (0, ∞), j = 1, ..., N -1, -ρ j-1 ∂ x u j-1 (t, j) + ρ j ∂ x u j (t, j) = 0, t ∈ (0, ∞), j = 1, ..., N -1, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), x ∈ (j, j + 1), j = 0, ..., N -1, where ρ j > 0, ∀ j = 0, ..., N -1.

We can rewrite the system (P) as a first order hyperbolic system, by putting

V j =   ∂ t u j ρ j ∂ x u j   , and V 0 j =   u 1 j ρ j ∂ x u 0 j   , 0 ≤ j ≤ N -1, (P ′ )              (∂ t V j -B j ∂ x V j )(t,
x) = 0, x ∈ (j, j + 1), t ∈ (0, ∞), j = 0, ..., N -1,

C 0 V 0 (t, 0) = 0, C N -1 V N -1 (t, N ) = 0, t ∈ (0, ∞),
V j-1 (t, j) = V j (t, j), t ∈ (0, ∞), j = 1, ..., N -1,

V j (0, x) = V 0 j (x), x ∈ (j, j + 1), j = 0, ..., N -1, where

B j =   0 1 ρ j 0   , C 0 =   1 -1 0 0   , C N -1 =   1 0 0 0   , 0 ≤ j ≤ N -1. (1.1)
Models of the transient behavior of some or all of the state variables describing the motion of flexible structures have been of great interest in recent years, for details about physical motivation for the models, see [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and the references therein.

Mathematical analysis of transmission partial differential equations is detailed in [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF].

Let us first introduce some notation and definitions which will be used throughout the rest of the paper, in particular some which are linked to the notion of C ν -networks, ν ∈ N (as introduced in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF]).

Let Γ be a connected topological graph embedded in R, with N edges (N ∈ N * ). Let K = {k j : 0 ≤ j ≤ N -1} be the set of the edges of Γ. Each edge k j is a Jordan curve in R and is assumed to be parametrized by its arc length x j such that the parametrization π j : [j, j + 1] → k j : x j → π j (x j ) is ν-times differentiable, i.e. π j ∈ C ν ([j, j + 1], R) for all 0 ≤ j ≤ N -1. The density of the edge k j is ρ j > 0. The C ν -network R associated with Γ is then defined as the union

R = N -1 j=0 k j .
We study a feedback stabilization problem for a wave and a Schr dinger equations in networks, see [START_REF] Ammari | Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string[END_REF]- [START_REF] Ammari | Stabilization of generic trees of strings[END_REF], [START_REF] Lagnese | Modeling, Analysis of dynamic elastic multi-link structures[END_REF] and Figure 1.
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More precisely, we study a linear system modelling the vibrations of a chain of strings.

For each edge k j , the scalar function u j (t, x) for x ∈ R and t > 0 contains the information on the vertical displacement of the string, 0 ≤ j ≤ N -1.

Our aim is to study the behaviour of the resolvent of the spatial operator which is defined in Section 3 and to obtain stability result for (P ).

We define the natural energy E(t) of a solution u = (u 0 , ..., u N -1 ) of (P ) and the natural energy of a solution V of (P ′ ), respectively, by

E(t) = 1 2 N -1 j=0 j+1 j |∂ t u j (t, x)| 2 + ρ j |∂ x u j (t, x)| 2 dx , (1.2) 
e(t) = 1 2 N -1 j=0 V j 2 L 2 ρ j (j,+,j+1)×L 2 (j,j+1) , 0 ≤ j ≤ N -1, (1.3) 
where L 2 ρ j (j, j + 1) = L 2 ρ j ((j, j + 1), dx) = L 2 ((j, +j + 1), ρ j dx).

We note that E(t) ≍ e(t), ∀ t ≥ 0.

We can easily check that every sufficiently smooth solution of (P ) satisfies the following dissipation law

E ′ (t) = -∂ t u 0 (t, 0) 2 ≤ 0, e ′ (t) = -C 0 V 0 (t, 0) 2 ≤ 0, (1.4) 
and therefore, the energy is a nonincreasing function of the time variable t.

The result concerns the well-posedness of the solutions of (P ) and the exponential decay of the energy E(t) of the solutions of (P ).

The main result of this paper then concerns the precise asymptotic behaviour of the solutions of (P ). Our technique is based on a frequency domain method and a special analysis for the resolvent.

This paper is organized as follows: In Section 2, we give the proper functional setting for system (P ) and prove that the system is well-posed. In Section 3, we then show that the energie of system (P ) tends to zero. We study, in Section 3, the stabilization result for (P ) by the frequency domain technique and give the explicit decay rate of the energy of the solutions of (P ). Finally, in the last sections, we study the transfert function associated to a string network and the exponential stability of the Schrödinger system.

2 Well-posedness of the system

In order to study system (P ) we need a proper functional setting. We define the following spaces

H = N -1 j=0 (L 2 ρ j (j, j + 1) × L 2 (j, j + 1))
and

V = u = (u 0 , ..., u N -1 ) ∈ N -1 j=0 H 1 (j, j+1), u N -1 (N ) = 0, u j-1 (j) = u j (j), j = 1, . . . , N -1 ,
equipped with the inner products

< V, Ṽ > H = N -1 j=0 j+1 j ρ j u j (x) ũj (x) + v j (x) ṽj (x)dx , V =   u v   , Ṽ =   ũ ṽ   , (2.5) 
< u, ũ > V = N -1 j=0 j+1 j ρ j ∂ x u j (x)∂ x ũj (x)dx . (2.6)
It is well-known that system (P ) may be rewritten as the first order evolution equation

   U ′ = AU, U (0) = (u 0 , u 1 ) = U 0 , (2.7) 
where U is the vector U = (u, ∂ t u) t and the operator A :

D(A) → H = V × N -1 j=0 L 2 (j, j + 1) is defined by A(u, v) t := (v, (ρ j ∂ 2 x u j ) 0≤j≤N -1 ) t , with D(A) :=    (u, v) ∈ N -1 j=0 H 2 (j, j + 1) × V : satisfies (2.8) to (2.9) hereafter    , ρ 0 ∂ x u 0 (0) = v 0 (0) (2.8) -ρ j ∂ x u j (j) + ρ j-1 ∂ x u j-1 (j) = 0, j = 1, ..., N -1. (2.9)
It is clear that H is a Hilbert space, equipped with the usual inner product

  u v   ,   ũ ṽ   H = N -1 j=0 j+1 j v j (x)ṽ j (x) + ρ j ∂ x u j (x)∂ x ũj (x) dx.
By the same way we define the operator A as following:

A : D(A) ⊂ H → H, AV = B ∂ x V, ∀ V ∈ D(A),
where

D(A) = V = (V j ) 0≤j≤N -1 ∈ H, V j ∈ (H 1 (j, j + 1)) 2 , V j-1 (j) = V j (j), 1 ≤ j ≤ N -1, C 0 V 0 (0) = 0, C N -1 V N -1 (N ) = 0 and B = (B j ) 0≤j≤N -1 .
Now we can prove the well-posedness of system (P ) and that the solution of (P ) satisfies the dissipation law (1.4).

Proposition 2.1. (i) For an initial datum U 0 ∈ H, there exists a unique solution

U ∈ C([0, +∞), H) to problem (2.7). Moreover, if U 0 ∈ D(A), then U ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).
(ii) The solution u of (P ) with initial datum in D(A) satisfies (1.4). Therefore the energy is decreasing.

Proof. (i) By Lumer-Phillips' theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF][START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]), it suffices to show that A is dissipative and maximal.

We first prove that A is dissipative. Take U = (u, v) t ∈ D(A). Then

AU, U H = N -1 j=0 j+1 j ρ j ∂ 2 x u j (x)v j (x) + ρ j ∂ x v j (x)∂ x u j (x) dx .
By integration by partsand by using the transmission and boundary conditions, we have

ℜ ( AU, U H ) = -|v 0 (0)| 2 ≤ 0. (2.10)
This shows the dissipativeness of A.

Let us now prove that A is maximal, i.e. that λI -A is surjective for some λ > 0.

Let (f , g) t ∈ H. We look for

U = (u, v) t ∈ D(A) solution of (λI -A)   u v   =   f g   , (2.11) 
or equivalently    λu jv j = f j ∀j ∈ {0, ..., N -1}, λv jρ j ∂ 2 x u j = g j ∀j ∈ {0, ..., N -1}.

(2.12)

Suppose that we have found u with the appropriate regularity. Then for all j ∈ {0, ..., N -1}, we have

v j := λu j -f j ∈ V. (2.13) 
It remains to find u. By (2.12) and (2.13), u j must satisfy, for all j = 0, ..., N -1,

λ 2 u j -ρ j ∂ 2 x u j = g j + λf j .
Multiplying these identities by a test function φ, integrating in space and using integration by parts, we obtain

N -1 j=0 j+1 j λ 2 u j φ j + ρ j ∂ x u j ∂ x φ j dx - N -1 j=0 ρ j ∂ x u j φ j j+1 j = N -1 j=0 j+1 j (g j + λf j ) φ j dx.
Since (u, v) ∈ D(A) and (u, v) satisfies (2.13), we then have

N -1 j=0 j+1 j λ 2 u j φ j + ρ j ∂ x u j ∂ x φ j dx+ (λu 0 (0) -f 0 (0)) φ 0 (0) = N -1 j=0 j+1 j (g j + λf j ) φ j dx. (2.14)
This problem has a unique solution u ∈ V by Lax-Milgram's lemma, because the left-

hand side of (2.14) is coercive on V . If we consider φ ∈ N -1 j=0 D(j, j + 1) ⊂ V , then u satisfies λ 2 u j -ρ j ∂ 2 x u j = g j + λf j in D ′ (j, j + 1), j = 0, • • • , N -1.
This directly implies that u ∈

N -1 j=0 H 2 (j, j + 1) and then u ∈ V ∩ N -1 j=0 H 2 (j, j + 1).
Coming back to (2.14) and by integrating by parts, we find

- N -1 j=0 ρ j ∂ x u j (j)φ j (j) -ρ j ∂ x u j (j + 1)φ j (j + 1) + (λu 0 (0) -f 0 (0)) φ 0 (0) = 0.
Consequently, by taking particular test functions φ, we obtain

ρ 0 ∂ x u 0 (0) = v 0 (0) and ρ j ∂ x u j (j) -ρ j-1 ∂ x u j-1 (j) = 0, j = 1, • • • , N -1.
In summary we have found (u, v) t ∈ D(A) satisfying (2.11), which finishes the proof of (i).

(ii) To prove (ii), it suffices to derivate the energy (1.2) for regular solutions and to use system (P ). The calculations are analogous to those of the proof of the dissipativeness of A in (i), and then, are left to the reader.

Remark 2.2. By the same we can prove that the operator A is a m-dissipatif operator of H and generates a C 0 -semigroup of contractions of H.

Exponential stability

We prove a decay result of the energy of system (P ), independently of N and of the densities, for all initial data in the energy space. Our technique is based on a frequency domain method and a special analysis for the resolvent.

Theorem 3.1. There exists a constant C, ω > 0 such that, for all (u 0 , u 1 ) ∈ H, the solution of system (P ) satisfies the following estimate

E(t) ≤ C e -ω t (u 0 , u 1 ) 2 H , ∀ t > 0. (3.15)
Proof. By classical result (see Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert space[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]) it suffices to show that A satisfies the following two conditions:) of a C 0 semigroup of contractions on a Hilbert space:

ρ(A) ⊃ iβ β ∈ R ≡ iR, (3.16) 
and lim sup

|β|→∞ (iβ -A) -1 L(H) < ∞, (3.17) 
where ρ(A) denotes the resolvent set of the operator A.

Then the proof of Theorem 3.1 is based on the following two lemmas.

Lemma 3.2. The spectrum of A contains no point on the imaginary axis.

Proof. Since A has compact resolvent, its spectrum σ(A) only consists of eigenvalues of A. We will show that the equation

AZ = iβ Z (3.18) with Z =   y v   ∈ D(A)
and β = 0 has only the trivial solution.

By taking the inner product of (3.18) with Z ∈ H and using

ℜ < AZ, Z > H = -|v 0 (0)| 2 , (3.19) 
we obtain that v 0 (0) = 0. Next, we eliminate v in (3.18) to get a second order ordinary differential system:

       ρ j d 2 y j
dx 2 + β 2 y j = 0, (j, j + 1), j = 0, ..., N -1, y 0 (0) = dy 0 dx (0) = 0, y N -1 (N ) = 0, y j-1 (j) = y j (j), j = 1, ..., N -1.

(3.20)

The above system has only trivial solution.

Lemma 3.3. The resolvent operator of A satisfies condition (3.17).

Proof. In order to prove (3.17) or by equivalence the following lim sup

|β|→∞ (iβ -A) -1 L(H) < ∞, (3.21) 
we will compute and estimate the resolvent of the operator A associated to the problem

(P ′ ). More precisely, let λ = iβ, β ∈ R, G = (G 0 , ..., G N -1 ) ∈ H, we look for W = (W 0 , ..., W N -1 ) ∈ D(A) solution of (iβ -B∂ x )W = G, (3.22) 
where B = (B 0 , ..., B N -1 ) and

B j =   0 1 ρ j 0   , j = 0, ...N -1.
We want to prove that there exists a constant C independent of β such that

W H ≤ C G H (3.23)
First step : Computation of the resolvent From (3.22) we have

∂ x W j = iβB -1 j W i -B -1 j G j , j = 0, ..., N -1 therefore W 0 (x) = e iβ(x-1)B -1 0 F 0 - x 1 e iβ(x-s)B -1 0 B -1 0 G 0 (s) ds, ∀x ∈ [0, 1], (3.24) 
and

W j (x) = e iβ(x-j)B -1 j F j - x j e iβ(x-s)B -1 j B -1 j G j (s) ds, ∀x ∈ [j, j + 1], j = 1, 2, ..., N -1, (3.25) 
where F 0 = W 0 (1) and F j = W j (j), j = 0, ..., N -1. For simplification we set Gj (x) =

x j e iβ(x-s)B -1 j B -1 j G j (s) ds, j = 0, ..., N -1.

(3.26)

Using the transmission conditions at nodes j = 1, ..., N -1 we have

F 1 = F 0 , and F j = W j-1 (j), j = 2, ..., N -1, (3.27) 
which implies that

F j =   k=1 k=j-1 e iβB -1 k   F 0 -   j-1 p=2   k=p k=j-1 e iβB -1 k   Gp-1 (p) + Gj-1 (j)   , j = 2, ..., N -1. 
(3.28)

For all j = 1, ..., N -1 we set

M j (β) =   k=1 k=j-1 e iβB -1 k   and Γ j (β) = j-1 p=2   k=p k=j-1 e iβB -1 k   Gp-1 (p) + Gj-1 (j), (3.29) 
hence (1, 0).e iβB -1 N-1 F N -1 = (1, 0). GN-1 (N ).

F j = M j (β)F 0 -Γ j (β). ( 3 
Inserting (3.30) in the previous equation we get [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings[END_REF]0).e iβB -1

N-1 M N -1 (β)F 0 = (1, 0). GN-1 (N ) + e iβB -1 N-1 Γ N -1 (β) . (3.32)
If we denote by H N -1 the 2 × 2 matrix whose the first line is the vector line is

(1, -1).e -iβB -1 0 and the second line is (1, 0).e iβB -1

N-1 M N -1 (β) i.e H N -1 =   (1, -1).e -iβB -1 0 (1, 0).e iβB -1 N-1   (3.33)
and Y N -1 the 2 × 1 vectors columns by

Y N -1 =   (1, -1). G0 (0) (1, 0). GN-1 (N ) + e iβB -1 N-1 Γ N -1 (β)   (3.34) 
then equation (3.31) and (3.32) are equivalent to the following system:

H N -1 F 0 = Y N -1 . (3.35)
Second step: estimate of F 0

We first start by given an estimation of G = ( G0 , ..., GN-1 ) where Gj are defined in (3.26).

For all j = 0, ..., N -1, the matrix is B j is invertible:

B -1 j =   0 1 ρ j 1 0  
and we easily find after some computation that

e iβxB -1 j =       cos( βx √ ρ j ) i sin( βx √ ρ j ) √ ρ j i √ ρ j sin( βx √ ρ j ) cos( βx √ ρ j )       . (3.36)
Since β ∈ R, from the previous identity, we directly get the following estimates

| Gj (j)| G H , | Gj (j + 1)| G H , j = 0, ..., N -1 (3.37) G H G H . (3.38)
From the definition of Γ j in (3.29) we also get

|Γ j (β)| G H , j = 1, ..., N -1. (3.39)
It follows that

Y N -1 G H . (3.40)
Note that from (3.36) the entries of H N -1 are bounded and so it is for the entries of the matrix (comH N -1 ) T . Assume for the moment that there exists a constant γ N -1 > 0 such that

∀β ∈ R, | det(H N -1 )| ≥ γ N -1 , (3.41) 
then it follows with (3.40) that

F 0 = 1 det H N -1 (comH N -1 ) T Y N -1 G H . (3.42)
It remains to prove (3.41).

The idea of the proof is that (3.41) is well known for N = 1 and that this property spreads by iteration.

First, similarly to (3.33) we define for all N ∈ N * the matrix

HN-1 =   (1, -1).e -iβB -1 0 (0, 1).e iβB -1 N-1   (3.43)
and we set

D N -1 = det(H N -1 ), DN-1 = det( HN-1 ), ∀N ∈ N * .
Particularly, for N = 1 we have

H 0 =         cos( β √ ρ 0 ) + i √ ρ 0 sin( β √ ρ 0 ) -cos( β √ ρ 0 ) -i sin( β √ ρ 0 ) √ ρ 0 cos( β √ ρ 0 ) -i sin( β √ ρ 0 ) √ ρ 0         , and 
H0 =       cos( β √ ρ 0 ) + i √ ρ 0 sin( β √ ρ 0 ) -cos( β √ ρ 0 ) -i sin( β √ ρ 0 ) √ ρ 0 i √ ρ 0 sin( β √ ρ 0 ) cos( β √ ρ 0 )       . Thus D 0 = cos( 2β √ ρ 0 ) + i sin( 2β √ ρ 0 ) √ ρ 0 , D0 = cos( 2β √ ρ 0 ) + i √ ρ 0 sin( 2β √ ρ 0 ),
and

|D 0 | 2 = cos 2 ( 2β √ ρ 0 ) + sin 2 ( 2β √ ρ 0 ) ρ 0 ≥ min(1, 1 ρ 0 ) > 0, | D0 | 2 = cos 2 ( 2β √ ρ 0 ) + ρ 0 sin 2 ( 2β √ ρ 0 ) ≥ min(1, ρ 0 ) > 0.
It is useful for the sequel to remark that

ℜ(D 0 D0 ) = 1.
Using (3.36) we have the following identity

       D N -1 = cos( β √ ρ N -1 )D N -2 + i √ ρ N -1 sin( β √ ρ N -1 ) DN-2 , DN-1 = i √ ρ N -1 sin( β √ ρ N -1 )D N -2 + cos( β √ ρ N -1
) DN-2 .

A simple computation shows that

ℜ(D N -1 DN-1 ) = ℜ(D N -2 DN-2 ) consequently, ∀N ∈ N * , ℜ(D N -1 DN-1 ) = 1. Now, since |D N -1 | 2 = (cos( β √ ρ N -1
), sin(

β √ ρ N -1
))

    |D N -2 | 2 1 √ ρ N -1 ℑ(D N -2 DN-2 ) 1 √ ρ N -1 ℑ(D N -2 DN-2 ) | 1 √ ρ N -1 DN-2 | 2         cos( β √ ρ N -1 ) sin( β √ ρ N -1 )     , it follows that |D N -1 | 2 ≥ µ min,N -2 , (3.44) 
where µ min,N -2 is the smallest eigenvalue of the matrix in the previous identity. The determinant of this matrix is:

1 ρ N -1 ℜ(D N -2 DN-2 ) 2 = 1 ρ N -1 .
Since D N -2 and DN-2 are clearly bounded the trace of this matrix is bounded, i.e

∃C ′ N -1 > 0, |D N -2 | 2 + | 1 √ ρ N -1 DN-2 | 2 ≤ C ′ N -1 .
It follows that

µ min,N -2 ≥ 1 ρ N -1 C ′ N -1 . Setting C N -1 = 1 ρ N -1 C ′ N -1
, then (3.44) implies (3.41). Consequently we have prove the estimate (3.42) for F 0 . Which implies (3.21) and thereafter (3.17), and end the proof of Theorem 3.1.

Comments and related questions

The same strategy can be applied to stabilize the following models and to verify and compute the transfer function.

Transfer function

We can use the same strategy to verify that the operator L 2 (j, j + 1) → H is defined by

H(λ) = λ C * (λ 2 I + A) -1 C ∈ L(U ), λ ∈ C + ,
A(u) := (-ρ j ∂ 2 x u j ) 0≤j≤N -1 , with D(A) :=    u ∈ N -1 j=0
H 2 (j, j + 1) : satisfies (4.46) to (4.47) hereafter

   , ρ 0 ∂ x u 0 (0) = 0 (4.46) -ρ j ∂ x u j (j) + ρ j-1 ∂ x u j-1 (j) = 0, j = 1, ..., N -1. (4.47) C ∈ L(C, V ′ = D(A 1 2 ) ′ ), Ck = √ ρ 0 A -1 N k = k           1 √ ρ 0 δ 0 . . . 0           , ∀ k ∈ C, C * u = 1 √ ρ 0 u 0 (0) 0 ... 0 , ∀ u ∈ V,
where A -1 is the extension of A to (D(A)) ′ (the duality is in the sense of H) and N is the Neumann map,

       ρ j ∂ 2 x (N k) j = 0, (j, j + 1), 0 ≤ j ≤ N -1, ∂ x (N k) 0 (0) = k, (N k) N -1 (N ) = 0, ρ j-1 ∂ x (N k) j-1 (j) = ρ j ∂ x (N k) j (j), 1 ≤ j ≤ N -1.
Lemma 4.1. The transfer function H satisfies the following estimate:

sup ℜλ=γ λ C * (λ 2 I + A) -1 C L(U ) < ∞, (4.48) 
for γ > 0.

Proof. In the same way as the proof of Lemma 3.3, we give an equivalent formulation of the function H. For that purpose, we consider 

W = (W j ) 0≤j≤N -1 ∈ H, W j ∈ (H 1 (j, j + 1)) 2 solution of (λ -B∂ x )W = 0, W j-1 (j) = W j (j), 1 ≤ j ≤ N -1, C0 W 0 (0) =   z 0   , C N -1 W N -1 (N ) = 0
H(λ) : z ∈ C → (1, 0).W 0 (0) ∈ C.
Consequently to prove (4.48) it suffices to check that for a fixed γ > 0, there exists a

constant c γ > 0 such that ∀λ ∈ C, ℜ(λ) = γ, |(1, 0).W 0 (0)| ≤ c γ |z|. (4.50) 
Using (3.24), (3.25), (3.28), we have

W 0 (x) = e λ(x-1)B -1 0 F 0 , W j (x) = e λ(x-j)B -1 j F j , j = 1, ..., N -1, 
where

F 0 = W 0 (1), F 1 = F 0 , and F j =   k=1 k=j-1 e λB -1 k   F 0 , j = 2, ..., N -1. 
Therefore, from the boundary conditions at x = 0 and x = N, we find that F 0 is the solution of

H N -1 F 0 =   z 0   , where H N -1 is the 2 × 2 matrix     (0, 1).e -λB -1 0 (1, 0). k=1 k=N -1 e λB -1 k     ,
with the convention that

k=1 k=N -1 e λB -1 k is the identity matrix if N = 1.

Estimate of F 0

Since for all j e λxB -1

j =   cosh( λx c j ) sinh( λx c j ) c j c j sinh( λx c j ) cosh( λx c j )   , it is clear that there exists a constant c ′ γ > 0 sucht that ∀λ ∈ C, ℜ(λ) = γ, H N -1 ≤ c ′ γ . (4.51) 
We need a similar estimate for H -1 N -1 ; this will be done by giving a lower uniform bound of |D N -1 | on the line ℜ(λ) = γ, where we have set D N -1 = det(H N -1 ). Thus we introduce the matrix

HN-1 =   (0, 1).e -λB -1 0 (0, 1). k=1 k=N -1 e λB -1 k   , N ≥ 1,
and set DN-1 = det( HN-1 ). Now, we prove by iteration that

ℜ(D N -1 DN-1 ) ≥ k N -1 > 0.
For N = 1 we have

H 0 =   -sinh( λ c 0 ) cosh( λ c 0 ) 1 0   , H0 =   -sinh( λ c 0 ) cosh( λ c 0 ) 0 1   , thus ℜ(D 0 D0 ) = 1 2 sinh( 2γ c 0 ) > 0.
Assume that there exists a constant k N -2 > 0 such that

ℜ(D N -2 DN-2 ) ≥ k N -2 > 0. (4.52) 
We have the following easily checked identities

D N -1 = cosh( λ c N -1 )D N -2 + 1 c N -1 sinh( λ c N -1 ) DN-2 DN-1 = c N -1 sinh( λ c N -1 )D N -2 + cosh( λ c N -1
) DN-2 .

A computation leads to

ℜ(D N -1 DN-1 ) = ℜ(cosh( λ c N-1 )sinh( λ c N-1 ))(c N -1 |D N -2 | 2 + 1 c N -1 | DN-2 | 2 ) + (| cosh( λ c N-1 )| 2 + | sinh( λ c N-1 )| 2 )ℜ(D N -2 DN-2 ) = 1 2 sinh( 2γ c N-1 )(c N -1 |D N -2 | 2 + 1 c N -1 | DN-2 | 2 ) + cosh( 2γ c N-1 )ℜ(D N -2 DN-2 ) ≥ cosh( 2γ c N-1 )k N -2 = k N -1 > 0.
We have proved (4.52). It follows

|D N -1 DN-1 | ≥ k N -1 > 0.
But | DN-1 | is obviously upper bounded on the line ℜ(λ) = γ, consequently there exists

a constant k ′ N -1 > 0 such that ∀λ, ℜ(λ) = γ, |D N -1 | ≥ k ′ N -1 > 0.
Finally, with (4.51) we deduce that H -1 N -1 is bounded on the line ℜ(λ) = γ and it follows that there exits c γ > 0 such that ∀z ∈ C, ∀λ :

ℜ(λ) = γ, |F 0 | ≤ c γ z.
Conclusion: (4.50) is a direct consequence of the previous estimate. The proof is complete As application is that the open loop system associated to (P ) is satisfies a regularity property.

Corollary 4.2. Let T > 0. Then, for all v ∈ L 2 (0, T ) the following problem

                   (∂ 2 t ψ j -ρ j ∂ 2 x ψ j )(t, x) = 0, x ∈ (j, j + 1), t ∈ (0, ∞), j = 0, ..., N -1, ρ 0 ∂ x ψ 0 (t, 0) = v(t), ψ N -1 (t, N ) = 0, t ∈ (0, ∞),
ψ j-1 (t, j) = ψ j (t, j), t ∈ (0, ∞), j = 1, ..., N -1, -ρ j-1 ∂ x ψ j-1 (t, j) + ρ j ∂ x ψ j (t, j) = 0, t ∈ (0, ∞), j = 1, ..., N -1, ψ j (0, x) = 0, ∂ t ψ j (0, x) = 0, x ∈ (j, j + 1), j = 0, ..., N -1. admits a unique solution (ψ, ∂ t ψ) ∈ C(0, T ; H) which satisfies the following regularity property (says also open loop admissibility): there exists a constant C > 0 such that

T 0 |∂ t ψ 0 (t, 0)| 2 dt ≤ C v 2 L 2 (0,T ) , ∀ v ∈ L 2 (0, T ).
Moreover, according to [5, Theorem 2.2], we have that:

Corollary 4.3. The system (P ) is exponentially stable in the energy space if and only if there exists T, C > such that

T 0 |∂ t ϕ 0 (t, 0)| 2 dt ≥ C (ϕ 0 , ϕ 1 ) 2 H , ∀ (ϕ 0 , ϕ 1 ) ∈ D(A),
where

D(A) :=    (u, v) ∈ N -1 j=0
H 2 (j, j + 1) × V : satisfies -ρ j ∂ x u j (j) + ρ j-1 ∂ x u j-1 (j) = 0, j = 1, ..., N -1. (4.54)

and ϕ = (ϕ 0 , ..., ϕ N -1 ) satisfies the following problem

                   (∂ 2 t ϕ j -ρ j ∂ 2 x ϕ j )(t, x) = 0, x ∈ (j, j + 1), t ∈ (0, ∞), j = 0, ..., N -1, ρ 0 ∂ x ϕ 0 (t, 0) = 0, ϕ N -1 (t, N ) = 0, t ∈ (0, ∞), ϕ j-1 (t, j) = ϕ j (t, j), t ∈ (0, ∞), j = 1, ..., N -1, -ρ j-1 ∂ x ϕ j-1 (t, j) + ρ j ∂ x ϕ j (t, j) = 0, t ∈ (0, ∞), j = 1, ..., N -1, ϕ j (0, x) = ϕ 0 j (x), ∂ t ϕ j (0, x) = ϕ 1 j (x),
x ∈ (j, j + 1), j = 0, ..., N -1.

Schrödinger system

We consider the evolution problem (S) described by the following system of N equations:

(S)

                   (∂ t u j + iρ j ∂ 2 x u j )(t, x) = 0, x ∈ (j, j + 1), t ∈ (0, ∞), j = 0, ..., N -1, ρ 0 ∂ x u 0 (t, 0) = iu 0 (t, 0), u N -1 (t, N ) = 0, t ∈ (0, ∞), u j-1 (t, j) = u j (t, j), t ∈ (0, ∞), j = 1, ..., N -1, -ρ j-1 ∂ x u j-1 (t, j) + ρ j ∂ x u j (t, j) = 0, t ∈ (0, ∞), j = 1, ..., N -1, u j (0, x) = u 0 j (x), j = 0, ..., N -1,
where ρ j > 0, ∀ j = 0, ..., N -1.

We define the natural energy E(t) of a solution u = (u 0 , ..., u N -1 ) of (S) by

E(t) = 1 2 N -1 j=0 j+1 j |u j (t, x)| 2 dx, (5.1) 
We can easily check that every sufficiently smooth solution of (S) satisfies the following dissipation law

E ′ (t) = -u 0 (t, 0) 2 ≤ 0, (5.2) 
and therefore, the energy is a nonincreasing function of the time variable t.

In order to study system (S) we introduce the following Hilbert space

H = u = (u 0 , ..., u N -1 ) ∈ N -1 j=0 L 2 (j, j + 1)) , ∀u ∈ D(A), ℜ ( Au, u H ) = -|u 0 (0)| 2 ≤ 0.
(5.7)

Now, let f ∈ H. We look for u ∈ D(A) solution of -Au = f.

(5.8)

or equivalently

iρ j ∂ 2 x u j = f j , ∀j ∈ {0, ..., N -1}, (5.9) 
and u satisfies the boundary and transmission conditions (5.4)-(5.6).

The general solution of (5.9) is

u j (x) = 1 iρ j x j u j f j (s)ds du + p i (x), j = 0, ..., N -1, x ∈ [j, j + 1],
where each p j is a polynomial of degree 1. It remains to find p j , j = 0, ..., N -1 such that the equations (5.4)-(5.6) are satisfied. It is equivalent to solve a linear system with 2N equations and 2N unknowns. This system admits an unique solution if and only if the corresponding homogeneous system admits only the trivial solution.

So we suppose that p j , j = 0, ..., N -1 are polynomials of degree 1 and satisfy (5.4)-(5.6).

Then by integrations by parts and using (5.4)-(5.6) we get

N -1 j=0 ρ j j+1 j |p ′ j (x)| 2 dx = - N -1 j=0 ρ j j+1 j p ′′ j (x)p j (x)dx = 0.
Consequently, the polynomials p j are constant and finally vanish from the continuity conditions and the right Dirichlet condition. Hence we have proved that (5.8) admits an unique solution. Consequently A is maximal.

(ii) To prove (ii), we use the same argument as in the proof of Theorem 2.1.

Exponential stability of the Schrödinger system

The stability result of system (S) is given by Theorem 5.2. There exist constants C > 0 and ω > 0 such that, for all u 0 ∈ H, the solution of system (S) satisfies the following estimate ρ j (∂ x u j )(j + 1)

E(t) ≤ C e -ω t u 0 2 H , ∀ t > 0. ( 5 
  =        cos( √ β √ ρ j ) sin( √ β √ ρ j ) √ β √ ρ j - √ β √ ρ j sin( √ β √ ρ j ) cos( √ β √ ρ j )        F j +   G j (j + 1) (∂ x G j )(j + 1)   .
For simplification we introduce the matrix M j and the vector W j as Thus we find that

M j =        cos( √ β √ ρ j ) sin( √ β √ ρ j ) √ β √ ρ j - √ β √ ρ j sin( √ β √ ρ j ) cos( √ β √ ρ j )     
c 1 0 = ω N,1 α N,1 + iγ N,1
.

This last identity completely determine the solution u of (5.13).

Second step : Estimate of F 0 for β large.

From one hand, since the order of each matrix M j is

  O(1) O( 1 √ β ) O( √ β) O(1)   (5.22)
then it is easy to see that all the matrices involved in (5.21) have the same order.

On the other hand, from (5.16) we have clearly 

  .30) Note that the solution W is completely determined if F 0 is known. Indeed, it suffices to insert the identity (3.30) in(3.25). Thus, we give the equation satisfied by F 0 . The boundary conditions at nodes x = 0 and x = N are respectively C 0 W 0 (0C 0 , C N -1 are the matrices given in (1.1). Since the second lines of C 0 and C N -1 vanish the previous equations may be written as (1, -1).W 0 (0) = 0, and (1, 0).W N -1 (N ) = 0, where "." represents the matrix-product of a vector line by a vector column. These equations are equivalent to (1, -1).e -iβB -1 0 F 0 = (1, -1), G0 (0)(3.31) and

Finally, using

  estimates (3.42), (3.37), (3.38) in (3.27) and (3.28) and the fact that the matrices involved in (3.28) are uniformly bounded we get F j G H , ∀j = 1, ...N -1. Using (3.42) and the previous estimates in (3.24) and (3.25), we get (3.23).

  satisfies the property (4.48) of the following lemma, where here A is the self-adjoint operator corresponding to the conservative problem associated to problem (P), namely we replace in (P) the boundary feedback condition byρ 0 ∂ x u 0 (t, 0) = 0, (4.45) i.e., A : D(A) ⊂ H = N -1 j=0

( 4 . 1

 41 49)where z ∈ C, B is defined as in the proof of Lemma 3.3, C N -1 is the matrix given in (Therefore, for λ ∈ C, ℜ(λ) = γ > 0, the transfer function is

  (4.53) to (4.54) hereafter

c 1 j

 1 , c 2 j , ∈ C. Note that c 1 j = u j (j) and ρ j (∂ x u j )(j) = c 2 j . = 0, ..., N -1, then using the transmission conditions (5

F- 2 Mwe now compute c 1 0 2 M

 212 j+1 = M j F j + W j , j = 0, ..., Nj )W k + W N -1 . (5.19)From the first boundary condition (5.4) we have F 0 = c by using the second boundary condition(5.4). For that we set0 j=N -1 M j =   α N,1 γ N,1 α N,2 γ N,2 j )W k + W N -1 =

  x G j )(j + 1)| g j g , j = 0, ...., N -1.(5.24)Therefore using the order (5.22) and estimate (5.23)-(5.24) for W k in (5.21) we get ω remark that for all j = 0, ..., N -1, det M j = 1, which implies from (5.20) thatα N,1 γ N,2α N,2 γ N,1 = 1. Thus |α N,1 + iγ N,1 ||α N,2 + iγ N,2 | ≥ Re[(α N,1 + iγ N,1 )(α N,2 + iγ N,2 )] = 1,implies with (5.22) and (5.20) that 1 |α N,1 + iγ N,1 | ≤ |α N,2 + iγ N,2 | ≤ O( β).

 

equipped with the inner product < u, ũ > H = N -1 j=0 j+1 j u j (x) ũj (x)dx.

The system (S) is a first order evolution equation which as the form    u ′ = Au, u(0) = u 0 , (5.3) where u 0 = (u 0 0 , u 0 1 , ..., u 0 N -1 ) ∈ H and the operator A : D(A) → H is defined by

H 2 (j, j + 1) : satisfies (5.4) to (5.6) hereafter

u j-1 (j) = u j (j), j = 1, ..., N -1, (

-ρ j-1 ∂ x u j-1 (j) + ρ j ∂ x u j (j) = 0, j = 1, ..., N -1.

(5.6)

Now we can prove the well-posedness of system (S) and that the solution of (S) satisfies the dissipation law (5.2).

Proposition 5.1. (i) For an initial datum u 0 ∈ H, there exists a unique solution

(ii) The solution u of (S) with initial datum in D(A) satisfies (5.2). Therefore the energy is decreasing.

Proof. (i) By Lumer-Phillips' theorem, it suffices to show that A is dissipative and maximal.

A is clearly dissipative. Indeed, by integration by parts and by using the transmission and boundary conditions, we have Proof. As in the proof of Theorem (3.1) the result is based on the following two lemmas.

Lemma 5.3. The spectrum of A contains no point on the imaginary axis.

Proof. Since A has compact resolvent, its spectrum σ(A) only consists of eigenvalues of A. We will show that the equation

with u = (u 0 , ..., u N -1 ) ∈ D(A) and β = 0, β ∈ R has only the trivial solution.

By taking the inner product of (5.11) with u ∈ H and using (5.7) we get that u 0 (0) = 0.

From the left boundary condition we deduce also that ∂ x u 0 (0) = 0. Therefore we get that

Therefore by iteration we easily find u j = 0, j = 1, ..., N -1.

The system (5.11) has only trivial solution.

Lemma 5.4. The resolvent operator of A satisfies

Proof. In order to prove (5.12) we look for u = (u 0 , ..., u N -1 ) ∈ D(A) solution of (iβ -A)u = g, (5.13) where β ∈ R and g = (g 0 , ..., g N -1 ) ∈ H.

We will consider two cases since for each case the method is different.

First case : β > 0.

First step : Computation of the resolvent

The solution of( 5.13) satisfies

An easy calculation shows that

The previous estimate and (5.25) lead to

Last step : Estimate of u.

First, from (5.16) we have G j g j g , j = 0, ..., N -1.

Then, using (5.18), (5.22) and ( 5.26) we get by iteration the components of F j , j = 0, ..., N -1 satisfy :

Consequently, using the two previous estimates in (5.15) we directly obtain that the solution of (5. (5.28)

Finally the result follows from (5.27)-(5.28).