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Abstract

In this paper, we deal with the problem of designing a new observer for bioreactor models. The main idea is to construct a
nonlinear observer with linear errors, which has an adjustable and robust convergence. Simulation results are pesented using
a model of chemostat and a model of an anaerobic digestion process for the treatment of wastewater.
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1 Introduction

The AM2 model was developed under the European
project AMOCO. It is a two-step model (correspond-
ing to two biological cascade reactions, hence its name),
which is represented by the following mathematical sys-
tem:
ṡ1 = D(t)(s1in − s1)− k1µ1(s1)x1

ẋ1 = [µ1(s1)−D(t)]x1

ṡ2 = D(t)(s2in − s2) + k2µ1(s1)x1 − k3µ2(s2)x2

ẋ2 = [µ2(s2)−D(t)]x2

(1)

In this work we will take as an output

y =

(
s1

s2

)

This model was originally proposed in [4] and it is
based on two main reactions, where the substrate s1 is
degraded in the substrate s2 by the biomass x1 then
the substrate s2 is degraded by the biomass x2, where
(s1, s2) ∈ R?+ × R?+ and (x1, x2) ∈ R?+ × R?+, D(t) > 0
is the dilution rate, k is the growth yield, s1in and s2in
are the input substrate concentration of s1 and s2 and
µ1 (s1) and µ2 (s2) are the specific growth rates.
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We will assume that a generic specific growth rate func-
tion µ(s) satisfies:

• µ(s) = 0⇔ s = 0,
• 0 ≤ µ(.) ≤ µmax = cst,
• µ(.) continue.

In bioprocesses field, the design of nonlinear observers
is very challenging, and is an area of intensive research.
Several observers have been proposed for anaerobic di-
gestion model, starting with Extended Kalman Filter
and the Extended Luenberger observer which have been
proposed and studied by Bastin and Dochain [3]. These
approaches are well understood and only require lin-
earization of the model which results in local conver-
gence.
Bastin and Dochain proposed an asymptotic observer
that allows (under conditions) to observe the state of
the system without any knowledge of the kinetic model.
This approach is particularly interesting. Nevertheless,
the speed of convergence of this observer, contrary to the
Luenberger one, cannot be tunned and depends on the
dilution rate. Originally, these observers were designed
for relatively simple systems, then they were extended by
Chen [6], to include more complex ones. In this context,
we note that they are characterizied by the simplicity of
their design, and preserve some nonlinear aspect of the
system, ensuring stability and convergence if the inputs
are persistent and bounded. The change of coordinates
depends on the stochiometric coefficients making these
observers not robust. To overcome these disadvantages,
Gouzé et al. [9], [11] generalized them and they made
the asymptotic observers robust with a speed of conver-
gence partially adjustable.



The interval observers should give a good solutions for
systems with large uncertainties (see [1] and [10]). They
are the combination of two observers, one observes the
lower bound and the other observes the upper bound of
the state, under a strong property called cooperativity,
and it is necessary to know the bounds of uncertainties
in the model.

Another observer was proposed [5] called hybrid extended
Luenberger-asymptotic observer which evaluates a level
of confidence in the process model, this parameter can
vary between two values, 1 and 0, corresponding rig-
orously to the extended Luenberger observer and the
asymptotic observer. The stability of this observer is an-
alyzed but has not been completed so far. In a more gen-
eral setting, several authors proposed a Luenberger-like
observer for nonlinear systems [7] and [8]. The literature
in the area of Luenberger Observers for AM2 model is
not plentiful.

Thanks to the specific form of the output we were leaded
to propose a nonlinear Luenberger observer in its general
form with the injection of the outputs in the nonlinear
function µ(s). We get in turn, a linear system for the
errors.

This paper is organized as follows: Section 2 is dedicated
to get more insight of the behaviour of our observer by
applying it on a chemostat model and we will make the
hypothesis that µ is completely known to show the con-
vergence. Indeed the chemostat model is a subsystem
of the AM2 model and the ideas developed here will be
used later. Section 3 is devoted to the application of the
proposed observer on the AM2 model as a main result
with some simulations to show the effectiveness of the
proposed method. In practice, as µ is not completely
known, we will show at the end that our observer is ro-
bust against the uncertainties.

2 The chemostat model

The chemostat is a laboratory prototype of bioreactors
used in waste water treatment, which was introduced
by Novick and Szilard [13] and used by Monod [12].
The chemostat is a kind of bioreactor which allows the
growth of a population of microorganisms (bacteria,
yeast, phytoplankton, zooplankton,...) on some sub-
strates, with suitable environmental conditions (tem-
perature, light, pH and aeration). This device works in
continum mode, i.e, the volume of the bioreactor is kept
constant.
The nonlinear model of the chemostat obtained by mass
balance is given by:{
ṡ = D(t)(sin − s)− kµ(s)x

ẋ = [µ(s)−D(t)]x
(2)

We will take as an output y = s, where s ∈ R?+ and
x ∈ R?+ represent the substrate concentration and the
biomass concentration respectively, D(t) > 0 is the di-
lution rate, k is the growth yield, sin is the input sub-
strate concentration and µ (s) is the specific growth rate
per unit of biomass. To avoid the washout we impose the
condition D(t) ≤ µmax.

We put the following hypothesis:
(H1): s(t) ≥ smin > 0, ∀t ≥ 0

The criterium of observability is

rank
∂

∂x
(h(x), Lfh(x)) = rank

(
1 0

D(t) −kµ(s)

)
= 2

In order to be observable the chemostat must verify
µ(s) 6= 0, ∀s which is equivalent to s 6= 0, (ensured by
(H)). This condition can be fulfilled if the dilution rate
is sufficiently exciting, which in turn can be expressed by

+∞∫
0

D(τ)dτ = +∞

The immediate consequence of (H1) is

µ(s) ≥ µmin > 0,∀s (3)

Theorem 1 For the system (2), the following system:{
˙̂s = D(t)(sin − ŝ)− kµ(s)x̂+ a1(s− ŝ)
˙̂x = [µ(s)−D(t)]x̂+ a2(s− ŝ)

(4)

is a globally uniformly asymptotically stable observer,
where a1 and a2 are two tuning parameters.
Under the condition αa1 +2a2 = 0 with a1 > 0 and large
enough and α > 2

k .

PROOF. By putting e1 = s − ŝ and e2 = x − x̂, the
error dynamics are given by:(
ė1

ė2

)
=

(
−D(t)− a1 −kµ(s)

−a2 µ(s)−D(t)

)(
e1

e2

)
(5)

Let us hide D(t) from (5) by putting p(t) = e

∫ t
0
D(τ)dτ

and let us multiply p(t) by the two equations of the
system (5) then, the later can be written as follows:{
p(t)ė1 +D(t)p(t)e1 = −a1p(t)e1 − kµ(s)p(t)e2

p(t)ė2 +D(t)p(t)e2 = −a2p(t)e1 + µ(s)p(t)e2
(6)
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i.e.{
d
dt (p(t)e1) = −a1p(t)e1 − kµ(s)p(t)e2
d
dt (p(t)e2) = −a2p(t)e1 + µ(s)p(t)e2

(7)

Let u(t) = p(t)e1(t) and v(t) = p(t)e2(t), convergence
of (u, v) to (0, 0) implies the convergence of (e1, e2) to
(0, 0). Then (7) becomes{
u̇(t) = −a1u(t)− kµ(s)v(t)

v̇(t) = −a2u(t) + µ(s)v(t)
(8)

To prove the convergence of the observer we will take
the following Lyapunov function candidate:

Vα(u, v) =

∥∥∥∥∥
(
αu+ v

v

)∥∥∥∥∥
2

= (αu+ v)2 + v2 (9)

where α 6= 0.
Note that this function is also a norm and then is radially
unbounded. We have

V̇α(u, v) = 2(αu+ v)(αu̇+ v̇) + 2vv̇

By substituting u̇ and v̇ in V̇α(u, v), we obtain

V̇α(u, v) = −2α(a1α+ a2)u2 + 2µ(s)(2− kα)v2

+2 [α(1− kα)µ(s)− (a1α+ 2a2)]uv

By putting, a2 = −α2 a1, we have

V̇α(u, v) = −α2a1u
2+2µ(s)(2−kα)v2+2α(1−kα)µ(s)uv

This function can be written as follows

V̇α(u, v) =
(
u v

)
−α2a1 α(1− kα)µ(s)

α(1− kα)µ(s) 2µ(s)(2− kα)


︸ ︷︷ ︸

A(t)

(
u

v

)

Now, let us prove that the matrixA(t) is negative definite
i.e. let us prove that tr(A(t)) < 0 and det(A(t)) > 0.

tr(A(t)) = −α2a1 + 2µ(s)(2− kα)

and

det(A(t)) = −2α2(2− kα)µa1 − (1− kα)2µ2(s)α2

Here tr(A(t)) will be negative for a1 > 0 and large
enough and det(A(t)) will be positive with the same con-
dition and α > 2

k .

Note that µ(s) ≥ µmin > 0, as presented previously, is
of great concern for the positivity of det(A(t)).

2.1 Simulation results

The simulations were carried out using the parameter
values given in [2]. They are recalled in table (1) and the
choosen initial conditions are given in table (2).

Parameter Value and Unit

k 6.6 Kg COD/Kg x

µmax 1.2 day−1

K 4.95 Kg COD/m3

sin 9 Kg/m3

Table 1
Model parameters for simulation runs

s(0) x(0)

(Kg/m3) (Kg/m3)

Model 3 0.5

Observer 3 5

Table 2
Initial conditions for simulation runs

The time simulation is taken to be 50 days with variable
dilution rate as in the figure (1).

Fig. 1. Dilution rate

We can see from these simulations that on the biomass
the convergence is obtained in a half a day with an error
equal to 10−2. For comparison, the asymptotic observer
converges only after 5 days and cannot be improved [2].
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Fig. 2. Biomass Concentration for a1 = 30

Fig. 3. Biomass error estimation

3 Main result on AM2 model

Theorem 2 For the system (1):



˙̂s1 = D(t)(s1in − ŝ1)− k1µ1(s1)x̂1 + a1(s1 − ŝ1)

˙̂x1 = [µ1(s1)−D(t)]x̂1 + a2(s1 − ŝ1)

˙̂s2 = D(t)(s2in − ŝ2) + k2µ1(s1)x̂1 − k3µ2(s2)x̂2

+a3(s2 − ŝ2)

˙̂x2 = [µ2(s2)−D(t)]x̂2 + a4(s2 − ŝ2)

(10)

is a globally uniformly asymptotically stable observer,
where ai, i = 1, 4 are tuning parameters.
Under the condition αa1 + 2a2 = 0 with a1 > 0 large
enough and α > 2

k1
and the condition βa3 +2a4 = 0 with

a3 > 0 large enough and β > 2
k3

PROOF. Let us define e1 = s1 − ŝ1, e2 = x1 − x̂1,
e3 = s2 − ŝ2 and e4 = x2 − x̂2.

The error dynamics are given by:


ė1 = − (D(t) + a1) e1 − k1µ1(s1)e2

ė2 = −a2e1 + [µ1(s1)−D(t)]e2

ė3 = k2µ1(s1)e2 − (D(t) + a3) e3 − k3µ2(s2)e4

ė4 = −a4e3 + [µ2(s2)−D(t)]e4

(11)

Recall that we have injected the measured variables s1
and s2 into µ1(s1) and µ2(s2) to write this observer. Note
that the system (11) is linear and non autonomous.

Let us write the system (11) as:

ė = B(t)e

where e =


e1

e2

e3

e4

 and B(t) =



−D(t)− a1 −k1µ1(s1)
... 0 0

−a2 µ1(s1)−D(t)
... 0 0

· · · · · · · · · · · ·
... · · · · · · · · · · · ·

0 k2µ1(s1)
... −D(t)− a3 −k3µ2(s2)

0 0
... −a4 µ2(s2)−D(t)


We remark that the diagonal blocks are chemostat-like
blocks.

So, let us hide D(t) from the system by putting

p(t) = e

∫ t
0
D(τ)dτ

and u1(t) = p(t)e1(t), u2(t) =
p(t)e2(t), u3(t) = p(t)e3(t) and u4(t) = p(t)e4(t).

Then we get


u̇1 = −a1u1 − k1µ1(s1)u2

u̇2 = −a2u1 + µ1(s1)u2

u̇3 = k2µ1(s1)u2 − a3u3 − k3µ2(s2)u4

u̇4 = −a4u3 + µ2(s2)u4

(12)

To prove the convergence of this observer we will take
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the following Lyapunov function candidate:

Vα,β(u1, u2, u3, u4) =

∥∥∥∥∥∥∥∥∥∥∥


αu1 + u2

u2

βu3 + u4

u4



∥∥∥∥∥∥∥∥∥∥∥

2

where α and β are positive constants to be chosen later.
Vα,β is also a norm and then is radially unbounded. So

V̇α,β(u1, u2, u3, u4) = 2(αu1 + u2)(αu̇1 + u̇2) + 2u2u̇2

+2(βu3 + u4) + (βu̇3 + u̇4) + 2u4u̇4

By substituting u̇i, i = 1, 4 in V̇α,β(ui), we obtain

V̇α,β = −2α(a1α+ a2)u21 − 2[a1α+ 2a2 + α(αk1 − 1)µ1]u1u2

−2(αk1 − 2)µ1u
2
2 + 2k2β

2µ1u2u3 + 2k2βµ1u2u4

−2β(a3β + a4)u23 − 2[a3β + 2a4 + β(βk3 − 1)µ2]u3u4

−2(βk3 − 2)µ2u
2
4

This function can be written as follows:

V̇α,β = UTC(t)U

where U =


u1

u2

u3

u4

 and C(t) =


c11 c12 0 0

c21 c22 c23 c24

0 c32 c33 c34

0 c42 c43 c44


with

c11 = −2α(a1α+ a2),

c12 = c21 = −[a1α+ 2a2 + α(αk1 − 1)µ1],

c22 = −2(αk1 − 2)µ1, c23 = c32 = k2β
2µ1,

c24 = c42 = k2βµ1, c33 = −2β(a3β + a4),

c34 = c43 = −[a3β + 2a4 + β(βk3 − 1)µ2]

and
c44 = −2(βk3 − 2)µ2

We have to prove thatC(t) is negative definite, i.e.−C(t)
positive definite, so we have to prove that all the princi-
pal minors of −C(t) are positives.
Let δ1, δ2, δ3 and δ4 be these minors.

δ1 = 2α(a1α+ a2)

δ2 = −(a1α+ 2a2)2 + 2α2µ1(k1α− 3)a1 − 4αµ1a2

−α3k1(k1α+ 2)µ2
1

Let us put a1α+2a2 = 0 then a2 = −α2 a1 so δ2 becomes:

δ2 = 2α2µ1(k1α− 2)a1 − α3k1(k1α+ 2)µ2
1

For a1 > 0 and large enough and for α > 2
k1

, δ1 and δ2
are both positives.

δ3 = 2α2β2µ1[2(αk1 − 2)a1 − µ1(αk1 − 1)2]a3

+2α2βµ1[2(αk1 − 2)a1 − µ1(αk1 − 1)2]a4 − α2β4k22µ
2
1a1

δ4 = α2µ1[µ1(αk1 − 1)2 − 2(αk1 − 2)a1](βa3 + 2a4)2

+2µ1µ2α
2β2(βk3 − 3)

[
2(αk1 − 2)a1 − µ1(αk1 − 1)2

]
a3

−2α2βµ1

[(
β2k22µ1 + 4µ2(αk1 − 2)

)
a1

−2µ1µ2(αk1 − 1)2
]
a4 − 2µ1µ2α

2β2 [µ2(αk1 − 2)

(βk3 − 1)2 − β2k22µ1

]
a1 + µ2

1µ
2
2α

2β2(βk3 − 1)2(αk1 − 1)2

Let us put a3β + 2a4 = 0 then a4 = −β2 a3 so δ3 and δ4
become:

δ3 = α2β2µ1[2(αk1 − 2)a1 − µ1(αk1 − 1)2]a3

−α2β4k22µ
2
1a1

δ4 =
[
µ1α

2β2
(
4(αk1 − 2)(βk3 − 2)µ2 + β2k22µ1

)
a1

−2µ2
1µ2α

2β2(αk1 − 1)2(βk3 − 2)
]
a3 − 2µ1µ2α

2β2 [µ2(αk1 − 2)

(βk3 − 1)2 − β2k22µ1

]
a1 + µ2

1µ
2
2α

2β2(βk3 − 1)2(αk1 − 1)2

For a3 > 0 and large enough and for β > 2
k3

, δ3 and δ4 are
both positives. Note that µ1 > µ1min and µ2 > µ2min

play a crucial role in the positivity of the δi’s.

3.1 Simulation results

The simulations were carried out using the parameter
values recalled in [2]. They are given in table (3) and the
choosen initial conditions are given in table (4). The time
simulation is taken to be 50 days with variable dilution
rate as in the figure (1).

We can see from these simulations that on the first
biomass x1 the convergence is obtained in a two days
with an error equal to 10−2 and on the second biomass
x2 the convergence is obtained in a one day with the
same error.

4 Robustness

Here we will study the robustness of the proposed ob-
server for the chemostat model only, because it repre-
sents the generic part of the other models.

5



Parameter Value and Unit

k1 6.6 Kg COD/Kg x1

k2 7.8 mol VFA/Kg x1

k3 611.2 mol VFA/Kg x2

µ1max 1.2 day−1

µ2max 0.69 day−1

K1 4.95 Kg COD/m3

K2 9.28 mol VFA/m3

Ki 20 (mol VFA/m3)
1
2

s1in 15 Kg/m3

s2in 80 mol/m3

Table 3
Model parameters for simulation runs

s1(0) x1(0) s2(0) x1(0)

(Kg/m3) (Kg/m3) (mol/m3) (Kg/m3)

Model 3 0.5 15 0.12

Observer 3 3 15 1

Table 4
Initial conditions for simulation runs

Fig. 4. The first biomass estimation for a1 = 20 and a3 = 35

For the system (2) with y = s as output, the Luenberger-
like observer can be written as follows{

˙̂s = D(t)(sin − ŝ)− kµ̂(s)x̂+ a1(s− ŝ)
˙̂x = [µ̂(s)−D(t)] x̂+ a2(s− ŝ)

(13)

where we have injected the output s only in µ̂ which is
assumed to be known, contrary to µ which is unknown.
The parameters a1 and a2 are tuning parameters. We
make the following hypothesis

(H2)

{
sups≥0 | µ̂(s)− µ(s) |≤ γ
0 < µ̂min ≤ µ̂(s) ≤ µ̂max

Fig. 5. The second biomass estimation for a1 = 20 and
a3 = 35

Fig. 6. The biomass errors

By putting e1 = s− ŝ and e2 = x− x̂ we get{
ė1 = −(a1 +D(t))e1 − kµ̂(s)e2 + k(µ̂(s)− µ(s))x

ė2 = −a2e1 + (µ̂(s)−D(t))e2 − (µ̂(s)− µ(s))x

To simplify more the presentation of this last system, we
put

u1(t) = e

∫ t
0
D(τ)dτ

e1(t) u2(t) = e

∫ t
0
D(τ)dτ

e2(t)

and

χ(t) = e

∫ t
0
D(τ)dτ

x(t)

Then we get

U̇(t) = Ã(t).U(t) + (µ̂(s)− µ(s))χ(t).C

where U(t) =

(
u1(t)

u2(t)

)
, Ã(t) =

(
−a1 −kµ̂(s)

−a2 µ̂(s)

)

and C =

(
k

−1

)
. Let Vα(ξ1, ξ2) = (αξ1 + ξ2)2 + ξ22 with
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α 6= 0, be the Lyapounov candidate fonction used in (9).
Note that, according to the equivalence of norms in R2

we have

θ−(ξ21 + ξ22) ≤ Vα(ξ1, ξ2) ≤ θ+(ξ21 + ξ22)

with

θ− =
α2 + 2−

√
α4 + 4

2
and θ+ =

α2 + 2 +
√
α4 + 4

2

Note also that Vα(ξ1, ξ2) = ξT .Mα.ξ where ξ =

(
ξ1

ξ2

)

and Mα =

(
α2 α

α 2

)
. It is not hard to see that

d

dt
Vα(U(t)) = U(t)T

MαÃ(t) + Ã(t)TMα︸ ︷︷ ︸
B̃(t)

U(t)

+2(µ̂(s)− µ(s))χ(t)U(t)TMαC

A straightforward calculation gives

B̃(t) =



−2α(αa1 + a2) −(αa1 + 2a2)

+α(1− kα)µ̂(s)

−(αa1 + 2a2) 2(2− kα)µ̂(s)

+α(1− kα)µ̂(s)


Now we take αa1 + 2a2 = 0, so B̃(t) becomes

B̃(t) =

(
−α2a1 α(1− kα)µ̂(s)

α(1− kα)µ̂(s) 2(2− kα)µ̂(s)

)

By classical results on quadratic forms we have

U(t)T B̃(t)U(t) ≤ λmax(B̃(t))U(t)TU(t)

≤ λmax(B̃(t))

θ−
Vα(U(t))

where λmax(B̃(t)) is the largest eigenvalue of the sym-

metric matrix B̃(t).
By the Cauchy-Schwarz inequality we have

2(µ̂(s)−µ(s))χ(t)U(t)TMαC ≤
2γνα√
θ−
| χ(t) |

√
Vα(U(t))

where να =‖MαC ‖=
√
α2(kα− 1)2 + (kα− 2)2.

We, then get

d
dtVα(U(t)) ≤

λmax(B̃(t))

θ−
Vα(U(t)) +

2γνα√
θ−
| χ(t) |

√
Vα(U(t))

By choosing α > 2
k and a1 positive and large enough,

one can see that λmax(B(t)) ≤ λ∗ < 0 where λ∗ is a
constant, indeed

λ∗ =
2α2µ̂min

[
(kα− 1)2µ̂min − 2a1(kα− 2)

]
α2a1 + 2(kα− 2)µ̂max +

√
∆

with ∆ = (α2a1 + 2(kα− 2)µ̂max)2 + 4α2(kα− 1)2µ̂2
max

One can use a less complicated (approximate) value of
λ∗ done by

lim
a1→+∞

λ∗ = −2(kα− 2)µ̂min

The previous differential inequality becomes

d

dt

√
Vα(U(t)) ≤ λ∗

2θ−

√
Vα(U(t)) +

γνα√
θ−
| χ(t) |

By classical rules we get

√
Vα(U(t)) ≤

√
Vα(U(0))e

λ∗
2θ−

t
+
γνα√
θ−

t∫
0

| χ(τ) | e
λ∗
2θ−

(t−τ)
dτ

Now we return to the error vector e(t) =

(
e1(t)

e2(t)

)
√
Vα(e(t)) ≤

√
Vα(e(0))e

λ∗
2θ−

t−
∫ t
0
D(σ)dσ

+
γνα√
θ−

t∫
0

| x(τ) | e
λ∗
2θ−

(t−τ)
e
−
∫ t
τ
D(σ)dσ

dτ

As D(.) is a positive function, and 0 < x(t) ≤ 2
ksin +

x(0), we have then

√
Vα(e(t)) ≤

√
Vα(e(0))e

λ∗
2θ−

t
+
γνα√
θ−

(
2

k
sin+x(0))

t∫
0

e
λ∗
2θ−

(t−τ)
dτ

and

√
Vα(e(t)) ≤

√
Vα(e(0))e

λ∗
2θ−

t−
2γνα

√
θ−

λ∗
(
2

k
sin+x(0))(1−e

λ∗
2θ−

t
)
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This last inequality provide the boundedness of the er-
ror. The upper bound is less than ρ (14).

ρ =

√
θ+
θ−
‖(e1(0), e2(0))‖2 −

2γνα
λ∗

(
2

k
sin + x(0)

)
(14)

We summarize the previous calculation in the following
theorem.

Theorem 3 Under the hypothesis (H2), the system
(13) is an observer for the system (2). The observation
errors are bounded like: ‖(e1, e2)‖2 ≤ ρ, where ρ is given
by (14).

Remark 4 In the hypothesis (H2), it must be noted that
no specific form for µ(·) and µ̂(·) are assumed.

4.1 Simulations results

The simulations were carried out using the same param-
eter values given in table (1) and the choosen initial con-
ditions given in table (2) and with the same dilution rate
as in the figure (1).

Fig. 7. Biomass Concentration for a1 = 30 for different K

Here we used for µ(·) and µ̂(·), a Monod specific func-
tion with a differents µmax and K. We added an error of
20% for K (see figure (7)) and the same error for µmax
(see figure (8)), then we looked to the behaviour of the
system. We note a very satisfactory response of the ob-
server, which means a good robustness against model
uncertainties.

5 Conclusion

In this paper, we designed a nonlinear observer for the
AM2 model with linear errors, and we proved that this
observer is robust with a global convergence and ad-
justable speed. For large speed of convergence, we no-
ticed that in a small time interval at the beginning, some

Fig. 8. Biomass Concentration for a1 = 30 for different µmax

variables can take erroneous values (< 0). This is not
harmful if the observer is used only as a software sensor,
on the other hand, if the observer is used in a control
loop, we have to lower the speed of convergence a little
bit to ensure that the variables remains positives. It can
be noticed, from an application point of view that the
implementation of this observer is very easy.

The quantity of methane produced by the system is given
by the following expression

qM = k6µ2(s2)x2

It can be estimated from the estimated variable x1 and
x2 which qualifies our observer as a software sensor for
the methane.

Fig. 9. the output qM
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