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Abstract

In this paper, we deal with the problem of designing a new class of observers for uncertain bioreactor models. The main idea
is to construct a nonlinear observer with linear errors, which has an adjustable and robust convergence. Simulation results are
pesented using a model of chemostat and a model of an anaerobic digestion process for the treatment of wastewater.
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1 Introduction

The AM2 model was developed under the European
project AMOCO. It is a two-step model (correspond-
ing to two biological cascade reactions hence its name),
which is represented by the following mathematical sys-
tem:







ṡ1 = D(t)(s1in − s1)− k1µ1(s1)x1

ẋ1 = [µ1(s1)−D(t)]x1

ṡ2 = D(t)(s2in − s2) + k2µ1(s1)x1 − k3µ2(s2)x2

ẋ2 = [µ2(s2)−D(t)]x2

(1)

In this work we will take as an output

y =

(

s1

s2

)

This model was originally proposed in [4] and it is
based on two main reactions, where the substrate s1 is
degraded in the substrate s2 by the biomass x1 then
the substrate s2 is degraded by the biomass x2, where
(s1, s2) ∈ R⋆

+ × R⋆
+ and (x1, x2) ∈ R⋆

+ × R⋆
+, D(t) > 0

is the dilution rate, k is the growth yield, s1in and s2in
are the input substrate concentration of s1 and s2 and
µ1 (s1) and µ2 (s2) are the specific growth rates.
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We will assume that a generic specific growth rate func-
tion µ(s) satisfies:

• µ(s) = 0 ⇔ s = 0,
• 0 ≤ µ(.) ≤ µmax = cst,
• µ(.) continue.

In bioprocesses field, the design of nonlinear observers
is very challenging, and is an area of intensive research.
Till now important papers dealing with the observer of
AM2 model are proposed in [12]. The observers are used
as software sensors and were applied for the first time in
this context by Bastin and Dochain [3].

Several observers have been proposed for anaerobic di-
gestion model, starting with asymptotic observers and
interval observers.
Bastin and Dochain proposed an asymptotic observer
that allows (under conditions) to observe the state of
the system without any knowledge of the kinetic model.
This approach is particularly interesting. Nevertheless,
the speed of convergence of this observer, contrary to the
Luenberger one, cannot be tunned and depends only of
dilution rate. Originally, these observers were designed
for relatively simple systems, then they were extended
by Chen [5], to include more complex ones. In this con-
text, we note that they are characterizied by the simplic-
ity of their design, and preserve some nonlinear aspect of
the system, ensuring stability and convergence if the in-
puts are persistent and bounded. The change of coordi-
nates depends on the stochiometric coefficients making
so these observers not robust, then, to overcome these
disadvantages, Gouzé et al. [7], [9] generalized them and
they made the asymptotic observers robust with a speed



of convergence partially adjustable.

The interval observers should give a good solutions for
systems with large uncertainties see ([1] and [8]). They
are the combination of two observers, one observes the
lower bound and the other observes the upper bound of
the state, under a strong property called cooperativity,
and it is necessary to know the bounds of uncertainties
in the model.

Thanks to the specific form of the output we were leaded
to propose a nonlinear Luenberger observer in its general
form with the injection of the outputs in the nonlinear
function µ(s), we get in turn, a linear system for the
errors.

This paper is organized as follows: Section 2 is dedicated
to get more insight of the bihaviour of our observer by
applying it on a chemostat model. Indeed the chemostat
model is a subsystem of the AM2 model and the ideas
developed here will be used later. Section 3 is devoted
to the application of the proposed observer on the AM2
model as a main results with some simulations to show
the effectiveness of the proposed method. Finally, in sec-
tion 4 we present the robustness of the observer and we
make a comparison with the asymptotic observer.

2 The chemostat model

The chemostat is a laboratory prototype of bioreactors
used in waste water treatment, which was introduced
by Novick and Szilard [11] and used by Monod [10].
The chemostat is a kind of bioreactor which allows the
growth of a population of microorganisms (bacteria,
yeast, phytoplankton, zooplankton,...) on some sub-
strates, with suitable environmental conditions (tem-
perature, light, pH and aeration). This device works in
continum mode, i.e, the volume of the bioreactor is kept
constant.
The nonlinear model of the chemostat obtained by mass
balance is given by:

{

ṡ = D(t)(sin − s)− kµ(s)x

ẋ = [µ(s)−D(t)]x
(2)

We will take as an output y = s, where s ∈ R⋆
+ and

x ∈ R⋆
+ represent the substrate concentration and the

biomass concentration respectively, D(t) > 0 is the di-
lution rate, k is the growth yield, sin is the input sub-
strate concentration and µ (s) is the specific growth rate
per unit of biomass. To avoid the washout we impose the
condition D(t) ≤ µmax.

Lemma 1 (H1) Suppose that lim
t→+∞





t∫

0

D(τ)dτ



 =

+∞ (persistently exciting condition).

(H2) lim
t→+∞





t∫

0

(D(τ)− µmax)dτ



 = c where c is a

negative constante.
Then there exists a positive constante smin such that s ≥
smin.

PROOF. Let ξ = s+ kx, then

ξ̇ = D(sin − ξ)

and

ξ(t) = (ξ(0)− sin)e
−
∫

t

0

D(τ)dτ
+ sin

It is not hard to see that

min(ξ(0), sin) ≤ ξ(t) ≤ max(ξ(0), sin)

We have

ṡ = D(t)(sin − s)− kµmaxx+ k(µmax − µ(s))x
︸ ︷︷ ︸

≥0

so
ṡ ≥ D(t)(sin − s)− kµmaxx

as kx = ξ − s, we have

ṡ ≥ D(t)sin + (µmax −D)s− µmax max(ξ(0), sin)

then

s(t) ≥ sin + (s(0)− sin)e
−
∫

t

0

(D(τ)−µmax)dτ

Let ϕ(t) = sin+(s(0)−sin)e
−
∫

t

0

(D(τ)−µmax)dτ , we have:

ϕ(0) = s(0)

Under the hypothesis lim
t→+∞





t∫

0

(D(τ)− µmax)dτ



 = c

we have

ϕ(+∞) = sin + (s(0)− sin)e
−c

Now

ϕ̇(t) = (s(0)− sin)(µmax −D(t))e
−
∫

t

0

(D(τ)−µmax)dτ

for s(0) ≤ sin and as D(t) ≤ µmax then ϕ̇(t) < 0 so

ϕ(+∞) ≤ ϕ(t) ≤ ϕ(0)

So
s(t) ≥ smin = sin + (s(0)− sin)e

−c
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It can be easily to prove that

s(t) ≤ sin, ∀t ≥ 0

Corollary 2 For a generic µ(.), we have

µ(s) ≥ µmin > 0

Theorem 3 For the system (2), the folowing system:

{
˙̂s = D(t)(sin − ŝ)− kµ(s)x̂+ a1(s− ŝ)

˙̂x = [µ(s)−D(t)]x̂+ a2(s− ŝ)
(3)

is an observer, where a1 and a2 are two tuning parame-
ters.
By putting e1 = s− ŝ and e2 = x− x̂, the error dynamics
are given by:

(

ė1

ė2

)

=

(

−D(t)− a1 −kµ(s)

−a2 µ(s)−D(t)

)(

e1

e2

)

(4)

Indeed, (0,0) is an equilibrium point of (4) which is glob-
ally uniformly asymptotically stable.

PROOF. Let us hide D(t) from (4) by putting p(t) =

e

∫
t

0

D(τ)dτ
and let us multiply p(t) by the two equations

of the system (4) then, the later can be written as follows:

{

p(t)ė1 +D(t)p(t)e1 = −a1p(t)e1 − kµ(s)p(t)e2

p(t)ė2 +D(t)p(t)e2 = −a2p(t)e1 + µ(s)p(t)e2
(5)

i.e.

{
d
dt
(p(t)e1) = −a1p(t)e1 − kµ(s)p(t)e2

d
dt
(p(t)e2) = −a2p(t)e1 + µ(s)p(t)e2

(6)

Let u(t) = p(t)e1(t) and v(t) = p(t)e2(t), then (6) be-
comes

{

u̇(t) = −a1u(t)− kµ(s)v(t)

v̇(t) = −a2u(t) + µ(s)v(t)
(7)

To prove the convergence of the observer we will take
the following Lyapunov function candidate:

Vα(u, v) =

∥
∥
∥
∥
∥

(

αu+ v

v

)∥
∥
∥
∥
∥

2

= (αu+ v)2 + v2

where α 6= 0.
Note that this function is also a norm and then is not

radially bounded. Then

V̇α(u, v) = 2(αu+ v)(αu̇+ v̇) + 2vv̇

by substituting u̇ and v̇ in V̇α(u, v), we obtain

V̇α(u, v) = −2α(a1α+ a2)u
2 + 2µ(s)(2− kα)v2

+2 [α(1− kα)µ(s)− (a1α+ 2a2)]uv

by putting, a2 = −α
2 a1, we have

V̇α(u, v) = −α2a1u
2+2µ(s)(2−kα)v2+2α(1−kα)µ(s)uv

This function can be written as follows

V̇p(u, v) =
(

u v

)







−α2a1 p(1− kα)µ(s)

α(1− kα)µ(s) 2µ(s)(2− kα)







︸ ︷︷ ︸

A

(

u

v

)

Now, let us prove that the matrix A is negative definite
i.e. let us prove that tr(A) < 0 and det(A) > 0.

tr(A) = −α2a1 + 2µ(s)(2− kα)

and

det(A) = −2α2(2− kα)µa1 − (1− kα)2µ2(s)α2

Here tr(A) will be negative for a1 > 0 and large enough
and det(A) will be positif with the same condition and
α > 2

k
.

Note that µ(s) ≥ µmin > 0 as presented in the corollary
which is of great concern for the positivity of det(A).

2.1 Simulation results

The simulations were carried out using the parameter
values given in [2]. They are recalled in table (1) and the
choosen initial conditions are given in table (2).

Parameter Value and Unit

k 6.6 KgCOD/Kg x

µmax 1.2 day−1

K 4.95 KgCOD/m3

sin 9 Kg/m3

Table 1
Model parameters for simulation runs

The time simulation is taken to be 50 days with variable
dilution rate as in the figure (1).
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s(0) x(0)

(Kg/m3) (Kg/m3)

Model 3 0.5

Observer 3 5

Table 2
Initial conditions for simulation runs

Fig. 1. Dilution rate

Fig. 2. Biomass Concentration for α = 10 and a1 = 20

Fig. 3. Biomass error estimation

We can see from these simulations that on the biomass
the convergence is obtained in a half a day with an er-
ror equal to 10−2. For comparison with the asymptotic
observer, it converges only after 5 days and cannot be
decreased.

3 Main results on AM2 model

Theorem 4 For the system (1):







˙̂s1 = D(t)(s1in − ŝ1)− k1µ1(s1)x̂1 + a1(s1 − ŝ1)

+a2(s2 − ŝ2)

˙̂x1 = [µ1(s1)−D(t)]x̂1 + a3(s1 − ŝ1) + a4(s2 − ŝ2)

˙̂s2 = D(t)(s2in − ŝ2) + k2µ1(s1)x̂1 − k3µ2(s2)x̂2

+a5(s1 − ŝ1) + a6(s2 − ŝ2)

˙̂x2 = [µ2(s2)−D(t)]x̂2 + a7(s1 − ŝ1) + a8(s2 − ŝ2)

(8)

is an obsever, where ai, i = 1, 8 are tuning parameters.

Let us define e1 = s1 − ŝ1, e2 = x1 − x̂1, e3 = s2 − ŝ2
and e4 = x2 − x̂2.

The error dynamics are given by:







ė1 = − (D(t) + a1) e1 − k1µ1(s1)e2 − a2e3

ė2 = −a3e1 + [µ1(s1)−D(t)]e2 − a4e3

ė3 = −a5e1 + k2µ1(s1)e2 − (D(t) + a6) e3 − k3µ2(s2)e4

ė4 = −a7e1 − a8e3 + [µ2(s2)−D(t)]e4

(9)

(0,0,0,0) is an equilibrium point of (9) which is globally
uniformly asymptotically stable.

PROOF. Recall that we have injected the measured
variables s1 and s2 into µ1(s1) and µ2(s2) to write this
observer. Note that the system (9) is linear and non
autonomous.

Let us write the system (9) as:

ė = B(t)e

where e =










e1

e2

e3

e4










and B(t) =










−D(t)− a1 −k1µ1(s1) −a2 0

−a3 µ1(s1)−D(t) −a4 0

−a5 k2µ1(s1) −D(t)− a6 −k3µ2(s2)

−a7 0 −a8 µ2(s2)−D(t)










If we take a2 = a4 = a5 = a7 = 0, then the matrix B(t)
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becomes:















−D(t)− a1 −k1µ1(s1)
... 0 0

−a3 µ1(s1)−D(t)
... 0 0

· · · · · · · · · · · ·
... · · · · · · · · · · · ·

0 k2µ1(s1)
... −D(t)− a6 −k3µ2(s2)

0 0
... −a8 µ2(s2)−D(t)















︸ ︷︷ ︸

B̃(t)

We remark that the diagonal blocks are chemostat-like
blocks (4).

So, let us hide D(t) from the system by putting p(t) =

e

∫
t

0

D(τ)dτ
and u1(t) = p(t)e1(t), u2(t) = p(t)e2(t),

u3(t) = p(t)e3(t) and u4(t) = p(t)e4(t).

Then the system ė = B̃(t)e becomes







u̇1 = −a1u1 − k1µ1(s1)u2

u̇2 = −a3u1 + µ1(s1)u2

u̇3 = k2µ1(s1)u2 − a6u3 − k3µ2(s2)u4

u̇4 = −a8u3 + µ2(s2)u4

(10)

To prove the convergence of this observer we will take
the following Lyapunov function candidate:

Vα,β(u1, u2, u3, u4) =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥










αu1 + u2

u2

βu3 + u4

u4










∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

where α and β are positive constantes to be choosen
later, Vα,β is also a norm and then is radially um-
bounded. So

V̇α,β(u1, u2, u3, u4) = 2(αu1 + u2)(αu̇1 + u̇2) + 2u2u̇2

+2(βu3 + u4) + (βu̇3 + u̇4) + 2u4u̇4

by substituting u̇i, i = 1, 4 in V̇α,β(ui), we obtain

V̇α,β = −2α(a1α+ a3)u
2
1 − 2[a1α+ 2a3 + α(αk1 − 1)µ1]u1u2

−2(αk1 − 2)µ1u
2
2 + 2k2β

2µ1u2u3 + 2k2βµ1u2u4

−2β(a6β + a8)u
2
3 − 2[a6β + 2a8 + β(βk3 − 1)µ2]u3u4

−2(βk3 − 2)µ2u
2
4

This function can be written as follows:

V̇α,β = UTC(t)U

where U =










u1

u2

u3

u4










and C(t) =










c11 c12 0 0

c21 c22 c23 c24

0 c32 c33 c34

0 c42 c43 c44










with
c11 = −2α(a1α+ a3),

c12 = c21 = −[a1α+ 2a3 + α(αk1 − 1)µ1],

c22 = −2(αk1 − 2)µ1, c23 = c32 = k2β
2µ1,

c24 = c42 = k2βµ1, c33 = −2β(a6β + a8),

c34 = c43 = −[a6β + 2a8 + β(βk3 − 1)µ2]

and
c44 = −2(βk3 − 2)µ2

Wehave to prove thatC(t) is negative definite, i.e.−C(t)
positive definite, so we have to prove that all the princi-
pal minors of −C(t) are positif.
Let δ1, δ2, δ3 and δ4 be these minors.

δ1 = 2α(a1α+ a3)

δ2 = −(a1α+2a3)
2+2α2µ1(k1α−3)a1−4αµ1a3−α2(k1α−1)2µ2

1

Let us put a1α+2a3 = 0 then a3 = −α
2 a1 so δ2 becomes:

δ2 = 2α2µ1(k1α− 2)a1 − α2(k1α− 1)2µ2
1

For a1 > 0 and large enough and for α > 2
k1

, δ1 and δ2
are both positive.

δ3 = 2α2β2µ1[2(αk1 − 2)a1 − µ1(αk1 − 1)2]a6

+2α2βµ1[2(αk1 − 2)a1 − µ1(αk1 − 1)2]a8 − α2β4k22µ
2
1a1

δ4 = α2µ1[µ1(αk1 − 1)2 − 2(αk1 − 2)a1](βa6 + 2a8)
2

+2µ1µ2α
2β2(βk3 − 3)

[
(αk1 − 2)a1 − µ1(αk1 − 1)2

]
a6

+2α2βµ1

[(
β2k22µ1 + 4µ2(1− 2αk1)

)
a1 + 2µ1µ2(αk1 − 1)2

]
a8

−2µ1µ2α
2β2

[
µ2(αk1 − 2)(βk3 − 1)2 − k22

]
a1

+µ2
1µ

2
2α

2β2(βk3 − 1)2(αk1 − 1)2

Let us put a6β+2a8 = 0 then a8 = −β
2 a6 so δ4 becomes:

δ4 = α2β2µ1 [2µ2 ((βk3 − 3)(αk1 − 2)− 2(1− 2αk1)

−β2k22µ1

)
a1
]
a6 − 2µ1µ2α

2β2
[
µ2(αk1 − 2)(βk3 − 1)2 − k22

]
a1

+µ2
1µ

2
2α

2β2(βk3 − 1)2(αk1 − 1)2

For a6 > 0 and large enough and for β > 3
k3

, δ3 and δ4
are both positive.
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3.1 Simulation results

The simulations were carried out using the parameter
values recalled in [2]. They are given in table (1) and the
choosen initial conditions are given in table (2).

Parameter Value and Unit

k1 6.6 KgCOD/Kg x1

k2 7.8 molV FA/Kg x1

k3 611.2 molV FA/Kg x2

µ1max 1.2 day−1

µ2max 0.69 day−1

K1 4.95 KgCOD/m3

K2 9.28 molV FA/m3

Ki 20 (molV FA/m3)
1

2

s1in 15 Kg/m3

s2in 80 mol/m3

Table 3
Model parameters for simulation runs

s1(0) x1(0) s2(0) x1(0)

(Kg/m3) (Kg/m3) (mol/m3) (Kg/m3)

Model 3 0.5 15 0.12

Observer 3 3 15 1

Table 4
Initial conditions for simulation runs

Fig. 4. The first biomass estimation for α = 2, β = 1, a1 = 5
and a6 = 6

Fig. 5. The second biomass estimation for α = 2, β = 1,
a1 = 5 and a6 = 6

Fig. 6. The biomass errors

We can see from these simulations that on the first
biomass x1 the convergence is obtained in a two days
with an error equal to 10−2 and on the second biomass
x2 the convergence is obtained in a one days with the
same error.

4 Robustness

Firstly, we perturbed the first substrate s1 (see figures
(7, 8)), then we injected the same perturbation in the
second substrate s2 (see figures (9, 10)), and we notice
that our observer is very robust to measurement noises.

Fig. 7. The first biomass x1 and its error estimation with a
perturbation on s1

Fig. 8. The second biomass x2 and its error estimation with
a perturbation on s1
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Fig. 9. The first biomass x1 and its error estimation with a
perturbation on s2

Fig. 10. The second biomass x2 and its error estimation with
a perturbation on s2

5 Conclusion

In this paper, we designed a nonlinear observer for the
AM2 model with linear errors, and we proved that this
observer is robust with a global convergence and ad-
justable speed. For large speed of convergence, we no-
ticed that in a small time interval at the begining, some
variables can take erroneous values (< 0) this is not
harmfull if the observer is used only as a software sensor,
on the other hand, if the observer is used in a control
loop, we have to lower the speed of convergence a little
bit to ensure that the variables remains positive. It can
be noticed, from an application point of view that the
implementation of this observer is very easy.

The quantity of methane produced by the system is given
by the following epression

qM = k6µ2(s2)x2

and it can be estimated from the estimated variable x1

and x2 which qualifies our observer as the software sensor
for the methane.
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