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Abstract—X-ray Computerized Tomography (CT) reconstruc-
tions can be severely impaired by the patient’s respiratory motion
and cardiac beating. Motion must thus be recovered in addition to
the 3D reconstruction problem. The approach generally followed
to reconstruct dynamic volumes consists of largely increasing the
number of projections so that independent reconstructions be
possible using only subsets of projections from the same phase
of the cyclic movement. Apart from this major trend, motion
compensation (MC) aims at recovering the object of interest and
its motion by accurately modeling its deformation over time,
allowing to use the whole dataset for 4D reconstruction in a
coherent way.

We consider a different approach for dynamic reconstruction
based on inverse problems, without any additional measurements,
nor explicit knowledge of the motion. The dynamic sequence is
reconstructed out of a single data set, only assuming the motion’s
continuity and periodicity. This inverse problem is solved by
the minimization of the sum of a data-fidelity term, consistent
with the dynamic nature of the data, and a regularization term
which implements an efficient spatio-temporal version of the total
variation (TV). We demonstrate the potential of this approach
and its practical feasibility on 2D and 3D+t reconstructions of
a mechanical phantom and patient data.

Index Terms—Dynamic tomography, Reconstruction, Inverse
Problems, Regularization, Signal processing.

I. INTRODUCTION

IN X-ray CT imaging, the motion induced by the breathing
and the heart beating of the patient implies that the acquired

projections, i.e. the data, are not related to the same “static

This work was supported by the MiTiV project (Méthodes Inverses pour
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Saint-Genis Laval, F-69230, France; CNRS, UMR 5574, Centre de Recherche
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object”. Reconstructing the patient’s anatomy ignoring motion
causes noticeable artifacts [2], [39], [10]. In other words,
the inverse problem of reconstruction has to be addressed
in 4D; more specifically in 3D+t, where the motion and
deformation of anatomical structures as a function of time
are recovered. In image guided radiotherapy (IGRT), this is a
critical matter because a X-ray treatment protocol requires a
precise localization of the lung tumor, in order to prevent at
best healthy tissues from irradiation. As a result, the “object”
to be reconstructed is modelized as a spatio-temporal signal
f(x, t), defined for spatial coordinates x ∈ R3 and time t ∈ R.

The so-called 4D-CT reconstruction problem has benefited
from active research for the past twenty years. Some investi-
gations were made on the scanning protocol itself [17], [31],
[46], [47]. Ritchie et al. [31] established early that artifacts
were still present even with ultrafast scanning. Such an ob-
servation still holds twenty years later. A standard solution
is based on a correlation between the 3D-CT data and a 1D
temporal record of the patient’s pseudo-periodical movements.
The acquired projections are then sorted, according to the
phase of the cycle to which they are related. Data subsets
are extracted, and independent static reconstructions are then
performed using each of these subsets. Such a method, called
gated 4D-CT or phase-correlated 4D-CT [37], [24], [16], [43],
[22], [3], [40], [28], requires a sufficient number of projections
for each reconstructed phase to avoid motion artifacts; as a
consequence it increases the amount of X-ray dose delivered
to the patient for the reconstruction of the whole sequence.

Another widely investigated class of methods aims at re-
covering the motion itself, i.e. models the deformation of the
object as a function of time, and uses it to reproduce the
motion. The motion is generally estimated in the form of a
deformation vector field Γt(x) that maps the volume at any
time t back to its state at a reference time t0:

f(x, t) = f (Γt(x), t0) . (1)

Such a motion model can be incorporated into the tomographic
projector in order to use all the available projections to recon-
struct the patient’s anatomy at this reference state. This class
of methods is called motion compensation (MC). Research
in this area has been active in the last decade, yielding very
efficient algorithms. Such approaches rely on the quality of
the estimation of the motion, a challenging inverse problem,
especially because of the complex modeling of deformations
such as breathing or cardiac beating. They generally require a
separate high resolution 3D+t dataset for motion estimation.

In the IGRT context, 4D Cone-Beam CT (4D-CBCT) con-
stitutes a particular modality because phase correlation is made



difficult due to the poor number of remaining projections
for the reconstruction of a single phase. One must turn to
more robust approaches such as motion compensation. In 4D-
CBCT, motion estimation is often done on an additional 4D-
CT reconstruction [6], [5], [23], [29], [30]. IGRT makes this
prior information naturally available thanks to the necessary
4D planning CT prior to treatment. This so-called planning CT
dataset is reconstructed by a phase-correlated method using
a sufficient, i.e. enhanced, number of projections. Hence the
total amount of data required for MC methods in this context
is very high, meaning higher X-ray doses delivered to the
patient. However, recent works have established that a very
efficient MC reconstruction can be obtained from a single
dataset, by a direct estimation of the motion model directly
on the current measurements. In [7], [8], the authors estimate
the motion from a phase-correlated 4D-CT reconstruction on
CBCT data, correcting the motion artifacts to recover accu-
rately the deformation. Then they use the motion model to get
the 4D MC reconstruction in a second step. In [45], [49], the
two inverse problems (motion estimation and reconstruction)
are solved in a single algorithm using alternating schemes.

In parallel with the development of MC methods, phase-
correlated reconstruction approaches have also benefited from
very interesting improvements. Following the emergence of
the theory of compressive sensing, robust reconstruction al-
gorithms were proposed, based on sparsity constraints, e.g.
piecewise continuity, to allow efficient motion artifacts-free
3D reconstructions of each phase from a limited number
of projections [11]. However such methods still reconstruct
each phase independently from each other. Only the most
recent approaches propose to take into account the temporal
correlation between the cyclic phases of the object under
motion, extending the spatial prior knowledge to the temporal
dimension. Their basic asumption is the continuity — or
piecewise continuity — in both spatial and temporal dimen-
sions, of the 4D image to be reconstructed. In particular, the
approach proposed in [42] regularizes a 4D-CT reconstruction
by temporal correlation of the different phases thanks to the
minimization of nonlocal means between patches taken over
the temporal dimension. Other methods [48], [32] use the
Rudin et al. [33] total variation prior in 4D, applying it on
numerical 2D XCAT phantom CBCT-like data [48] and in
vivo cardiac micro-CT mouse data [32].

Our approach follows the same principles as these spatio-
temporally regularized 4D phase-correlated reconstruction
methods: we use only the current dataset for the reconstruction
of the 3D+t object, suppressing in this way any need for
additional projections. No explicit knowledge of the motion
is required and the whole 3D+t sequence is directly recon-
structed, globally addressing the inverse problem of recon-
struction from dynamic projections as the joint minimization
of a data-fidelity term and a regularization term, as detailed
in (2). The method is therefore very general and can readily
be applied to many types of 4D-CT modalities. One of the
novel contribution in our work is that we developed a global
4D tomographic projection model, based on classical static
projection approach coupled with a temporal interpolation
of the 4D object, allowing to calculate a projection at any

given date t. Thus we overcome the classical phase correlation
approach which only sorts the projections phase by phase with
a given temporal gap. In addition, the specific continuity of the
spatio-temporal object is enhanced by a 3D+t edge-preserving
smoothness regularization module based on relaxed Rudin et
al. [33] total variation (TV).

In this introduction, we have presented the state-of-the-art of
4D-CT reconstruction, from the phase-correlated approaches
to motion compensation, and presented the method we de-
scribe in this paper (cf. Section III). As explained in Section II,
the demonstration of our method is made in the context of
4D-CBCT. In Section IV, we demonstrate its efficiency on
2D+t reconstructions from numerically simulated 2D+t data.
Then we apply our method to real data, performing 3D+t
reconstructions of a mechanical phantom and patient data, for
which we confront our results to a standard MC reconstruction
presented in [29]. Applying our spatio-temporally regularized
4D phase-correlated reconstruction method to real human data
acquired in the context of IGRT scanning protocol, is the
other major contribution of our work, proposing to explore the
feasibility of such an approach, in contrast to MC methods.

II. CONE-BEAM CT: DEMONSTRATION FRAMEWORK

A. Motion is critical in 4D-CBCT

4D-CBCT is an especially interesting modality for the study
of 4D respiratory motion CT. Indeed, CBCT scanners have
been implanted on linear accelerators for radiotherapy in the
early 2000’s [18], [19], [20]. The CT scan acquired during
the treatment is for example used to control a posteriori the
delivered therapeutic X-ray dose.

This type of system has 2 specificities: the slow period of
rotation of its gantry (from 1 to 2 minutes), and the fact that
all the projections (about 600-700) are acquired on a single
rotation of its flat detector. On the one hand, this slow rotation
speed allows several respiratory cycles to be completed during
the acquisition, giving a satisfactory angular coverage for
each reconstructed phase. But, on the other hand, the lack
of projections makes 4D-CT reconstructions difficult.

Many MC reconstruction methods have been proposed
specifically for this type of data [23], [50], [29], [30]. Li et
al. [23] have incorporated the deformation field in the analytic
reconstruction algorithm FDK [15]. Rit et al. [29], [30] have
compared the Li et al.’s approach with an iterative recon-
struction method based on the SART algorithm [1], inserting
the deformation field into the tomographic projection model.
These approaches assume that motion is unchanged between
the acquisition on which motion is estimated and the CBCT
acquisition for which motion is compensated. Zeng et al. [50]
have proposed to avoid a preliminary 4D-CT reconstruction
step by a direct estimation of the deformation model on the
CBCT projections, using the complementary information given
by an a priori 3D static reconstruction of the patient. The
3D anatomical model still has to be obtained from a previ-
ous reconstruction step, generally from breath-hold acquired
data, a constraining step that generates additional irradiation.
However, as already mentioned in Section I, very efficient
MC reconstruction methods have been recently developed that
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Fig. 1. Temporal phase at t = 0 of our Shepp-Logan-like 2D dynamic
phantom. It simulates a 2D object with 256 × 256 spatial voxels of size
0,1× 0,1cm2, i.e. an global virtual size of 25,6× 25,6cm2. It is composed
of 15 ellipses Ei identified on the image. The values are shown in Hounsfield
units, with µeau = 0,1928cm−1.

Fig. 2. Segmented 3D views of one motion cycle of our dynamic 2D Shepp-
Logan phantom. The depth corresponds to the temporal dimension, along
which the deformations of some of its ellipses over time are clearly visualized
by oscillations.

perform the motion estimation and the 4D reconstruction by
using only the CBCT dataset [7], [8], [45], [49]. Thus they
overcome the approximations and possible errors induced by
the hypothesis of reproducibility of the motion between two
scans. Moreover they reduce the effective X-ray dose required
for the reconstruction, a common objective with our approach.

B. “2D CBCT” dynamic data simulation

For testing purposes, we developed a simulated dynamic
2D phantom based on the well known Shepp-Logan model
[38], [21]. The components of this phantom are ellipses
whose position and shape may vary following a temporal
sinusoidal signal with a given period. More precisely, these
ellipses undergo changes (translations, rotations, dilations) that
simulate the anatomical variations induced by the respiratory
and cardiac motions at any instant t. Fig. 1 shows the phantom
and the positions of its ellipses at the phase t = 0 of the
motion cycle. The details of the motion features of each
ellipse are summarized in Tab. I. The column Mot indicates
the motion type : T for a translation, R for a rotation and
D for a dilation/contraction. The shape parameters are : the
center of the ellipse (x0, y0) (in cm), the half-axis lengths
a and b (in cm), the tilt from the horizontal axis of the
major half-axis α (in ◦), and the attenuation coefficient µ
given as a factor of the attenuation coefficient of water (in
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Fig. 3. Static reconstruction from the set of dynamic projections generated
by the simulated dynamic Shepp-Logan phantom.

cm−1). The amplitude A of the motion type is attached to
the corresponding shape parameter of the moving ellipse.
Note that some ellipses are kept static (motion type “−”).
The effective motion is given by the variation of the shape
parameter following a temporal periodic sine or cosine signal
(column Sig). The respiratory motion is simulated by giving
to some of the ellipses a movement period of ta = 5 seconds.
The cardiac cycle is simulated by giving ellipse E8 a 1 second
period. Hence the phantom can be calculated at any date t
of a cycle. The attenuation value at a given spatial point is
computed as the sum of all the ellipses levels of gray passing
on it. Fig. 2 illustrates, on 3D views, the anatomical evolution
of one motion cycle of this phantom. The observed waves in
the temporal direction show the anatomical variations of the
ellipses.

Fan beam projections are computed in close form under
the hypothesis of an instantaneous measurement. This yields
CBCT-like dynamic data in 2D. We simulated 600 such
projections for a 360◦ angle coverage corresponding to a total
acquisition time of 120 seconds. As a result, 24 complete mo-
tion cycles are done during the acquisition, with 25 projections
per cycle.

Fig. 3 displays a static reconstruction using the generated
set of dynamic projections. The strong motion artifacts due to
the inappropriate “static hypothesis” highlight the need for a
2D+t sequence reconstruction.

III. METHOD

A. Reconstruction criterion

We solve the inverse problem [41] of 3D+t reconstruction
by minimizing the joint criterion:

f+ = arg min
f

{Jdata(f) + Jprior(f)} , (2)

where Jdata and Jprior are respectively the data-fidelity and
regularization terms (detailed in the following paragraphs)
and f denotes the parameters of the 3D+t sequence to be
reconstructed, i.e. a 4D image of “spatio-temporal” voxels,
corresponding to one period of motion.



Ei Mot Sig
Position (cm) half-axis (cm) Tilt (◦) Attenuation

x0 Ax0 y0 Ay0 a Aa b Ab α Aα (µwater cm
−1)

E1 - - 0 - 0 - 11.73 - 8.80 - 90 - 2.0

E2 - - 0 - −0.23 - 11.14 - 8.44 - 90 - −0.94

E3 D sin 2.80 - 0 - 3.95 0.51 1.40 0.51 72 - −0.16

E4 D sin −2.80 - 0 - 5.23 0.51 2.04 0.51 108 - −0.16

E5 T
x : cos

−2.80 0.20 0 0.76 0.44 - 0.44 - 72 - 0.1
y : sin

E6 T
x : cos

2.68 −0.10 0 0.38 0.19 - 0.19 - 72 - 0.1
y : sin

E7 T
x : cos

2.93 −0.10 0.38 0.38 0.19 - 0.19 - 72 - 0.15
y : sin

E8 D sin 0 - 4.46 - 3.19 0.1275 2.68 0.1275 90 - −0.01

E9 - - 0 - −7.71 - 0.64 - 0.64 - 0 - 0.94

E10 T&R sin 4.46 0.51 −8.29 0.51 0.76 - 0.25 - 45 15 0.01

E11 T&R sin −4.46 0.51 −8.29 0.51 0.76 - 0.25 - 135 -15 0.01

E12 D sin 3.82 - 7.65 - 1.02 0.25 0.51 0.13 -45 - 0.025

E13 T sin −7.01 0.25 0 0.51 0.76 - 0.25 - 60 - 0.025

E14 T sin −6.37 −0.25 −0.64 −0.51 0.76 - 0.25 - 60 - −0.025

E15 D sin 5.74 - −3.19 - 1.27 −0.25 8.80 −0.13 30 - −0.01
TABLE I

TABLE OF ATTRIBUTES OF THE 15 ELLIPSES OF THE SHEPP-LOGAN-LIKE 2D DYNAMIC PHANTOM OF FIG. 1.

B. Data fidelity and direct model

Assuming independent projections and Gaussian noise, the
data fidelity can be written:

Jdata(f) =
∑
θ∈Θ

∥∥yθ −Rθ·Stθ ·f
∥∥2

Wθ
, (3)

where yθ denotes the measured projections at orientation
θ of the detector and time tθ, Θ is the set of projection
angles. The term Rθ·Stθ ·f is the model of the data, operator
Stθ interpolates its arguments at time tθ while operator Rθ

performs the projection for orientation θ (as further detailed
below). The discrepancy between the data and its model is
measured by the squared Mahalanobis distance:

‖u‖2Wθ
= u> ·Wθ · u

with Wθ a weighting matrix equal to the inverse of the
covariance of the noise.

As already mentioned, we assume that the acquisition of
a projection is instantaneous. This hypothesis motivates the
decomposition of the dynamic projection of the 3D+t object
f in two successive operations:
1) The operator Stθ performs a temporal interpolation of the

3D+t voxels in order to extract the 3D object f(x, tθ) at

20  40  60

5.00

5.05

−310

Fig. 4. RMS errors between simulated data of our dynamic Shepp-Logan
phantom and the output of our dynamic projection model, Rθ·Stθ , as a
function of the temporal sampling rate. Each curve is representative of a
given temporal interpolation method implemented by the operator Stθ .



the projection time tθ. Our choice is justified by the fact
that the temporal variation of the object is a continuous
phenomenon. Hence it is possible to approximate the
anatomical state of the object at any date by interpolating
the frames sampled by the 4D voxels. Of course, the quality
of the interpolation depends on the temporal sampling rate,
as well as on the type of interpolation used. In this way
we go further from classical 4D phase-correlated methods
that simply divide the period of a cycle into equally spaced
intervals and sort the projections.
Fig. 4 shows the evolution of the root mean square (RMS)
error between the data simulated in Section II-B and the
output of our dynamic projection model as a function of the
temporal sampling rate, for different interpolation methods.
As expected, the error decreases when the number of
frames increases. In phase correlated 4D-CT, the selection
of projections can be compared to using a nearest neighbor
interpolation, which generates much more modeling errors
than linear or B-spline-based interpolations as can be seen
on Fig. 4. Oscillations in the RMS error curves (notably
for the nearest neighbor interpolation) correspond to the
sampling rates where some frames are exactly synchronized
with the actual projections. In these particular cases, Stθ is
just the identity operator and the remaining errors are due to
the spatial sampling of f and to the approximations made
by the projector Rθ. In our implementation, we use linear
temporal interpolation as it gives the least approximation
errors (see Fig. 4).
The coefficients of Stθ are determined from a 1D temporal
signal giving the periodic evolution of the motion, similar
to the signals used for 4D-CT reconstructions. It is easy
from this signal to extract the period of a cycle, and
to identify the phase of each temporal frame. Then the
projection dates tθ give the locations of the interpolation
points on the temporal axis, from which the coefficients
of Stθ are deduced. Since the period of the respiratory or
cardiac motion may slightly vary from one cycle to another,
the sequence f has to be normalized to a mean period.
Hence the cycles in the 1D signal are dilated or contracted
in order to coincide with the normalized cycle. This permits
to achieve a finer and more realistic calculation of the
interpolation coefficients. A similar temporal registration
method is used by Blondel et al. [4], [5] for cardiac SPECT.
In our tests, we made the same simplification as Blondel
et al. [4], [5], i.e. we have neglected the variation of the
spatial amplitude of the motion from one cycle to another.
Our results on empirical data discussed in sections IV-B
and IV-C support the use of this simplifying hypothesis.

2) The operator Rθ is the tomographic projector which per-
forms a static projection of the 3D object interpolated at tθ.
Rθ can be any numerical model implemented for iterative
CT reconstruction. As already mentioned, projections must
be separated according to the motion phase in order to
reconstruct the temporal sequence. This implies a drastic
reduction of the number of projections available per recon-
structed temporal frame. In this context of reconstruction
from a few projections, we have shown [25], [26] that
the accuracy of the projector is a critical issue to make

Fig. 5. A spatio-temporal representation of a situation where a same voxel
P is “seen” at different times in 2 different neighbouring tissues, due to the
motion of the interface between tissues A and B, point P is in tissue A at
time t1, and in tissue B at time t2. The attenuation at point P then quickly
changes between t1 and t2 when the boundary reaches P .

the best of available data. In order to cope with such
cases, we have developed an accurate and fast model.
It exploits B-spline basis functions to represent the 3D
object and to approximate their projections. This model
will be designated henceforth under the name spline driven
[26]. When reconstructing objects from a limited number
of projections, we have shown spline driven to be more
accurate than classical projectors such as distance driven
[13], with a satisfactory computional time. In order to use
dynamic data in a better way, we therefore used the spline
driven projector to implement our dynamic reconstruction
approach.

C. Spatio-temporal regularization

The term Jprior in equation (2) is essential to regularize the
otherwise ill-conditioned inverse problem of dynamic recon-
struction. In contrast to phase-correlated CT reconstructions
that are performed independently, the regularization Jprior can
enforce a temporal coherence in the reconstructions. The spa-
tial regularization must be chosen so as to favor smooth areas
while preserving discontinuities at the boundary of anatomical
structures. An edge-preserving smoothness prior such as TV
[33] is typically chosen in this context. Having a look at the 3D
representation of our 2D+t simulated phantom displayed on
Fig. 2, we observe that the variations of shapes are exclusively
noticeable at the interfaces between the different parts of
the object. For such an object, the high amplitude spatial
gradients give the tissues’ boundaries. They are therefore
intrinsically correlated to the temporal gradients from which
moving boundaries can be traced back. Fig. 5 illustrates the
case where a given spatial position “sees” 2 different tissues
at time t1 and time t2. The temporal profile of attenuation
sketched in Fig. 5 corresponds to a large motion where the
change of the intensity value at position P is sharp. On the
contrary, for sub-voxel motions, the sharp boundary will be



more progressive and thus will give a smoother transition.
Cardiac and respiratory movements also cause smooth spatial
and temporal changes because they induce fluctuations of
the absorption, particularly at the interfaces between different
tissues, e.g. the lung walls or the myocardium’s tissues. Con-
sequently, we advocate the use of an `2 − `1 edge preserving
regularization [9], [14], [12], [44] which is known to favor
smoothness for small amplitude changes while preserving
larger discontinuities. Being concerned with spatio-temporal
(dis)continuity, we propose to use the following generalized
form of relaxed TV:

Jprior(f) =
∑

k,`

(
ε2 + µ2

space

∥∥∥∇space
k,` · f

∥∥∥2

+ µ2
time (∂time

k,` · f)2
)1/2

. (4)

Here operators ∇space
k,` et ∂time

k,` are respectively the 3D spatial
gradient and the temporal derivative of the 3D+t object at the
voxel (k, `) with k and ` the spatial index and temporal index
(i.e., the frame) of the voxel. In order to tune the strength of
the regularization (relatively to the data fidelity term) and to
account for the heterogeneity of the physical dimensions of the
spatial gradient and of the temporal derivative, we introduce
two different hyperparameters µspace ≥ 0 and µtime ≥ 0 in
Eq. (4). Note that the ratio of these two hyperparameters is
homogeneous to a velocity. In Eq. (4), the parameter ε > 0 is
not to be mistaken with a relaxation parameter introduced to
avoid a singularity: it has to be appropriately tuned to set the
trade-off between sharp and smooth changes. Note that our
4D regularizer is similar to those used in [48], [32].

Having a convex differentiable criterion (2), we perform the
numerical minimization with the VMLM algorithm [27] which
is a limited memory quasi-Newton optimization method with
BFGS updates.

IV. RESULTS

A. Numerical data

To test our approach, we reconstructed our dynamic Shepp-
Logan phantom presented in section II-B, from a simulated
set of 600 projections. We chose to sample the 2D+t sequence
with 25 frames. In this configuration, the frames are exactly
synchronized with the projections which, as explained below,
lets us mimic a phase-correlated reconstruction. Fig. 6 displays
some frames of two different reconstructions from this dataset:
1) The sequence in the second column was reconstructed

while imposing only the spatial regularization for each
frame. This was achieved by setting µtime = 0 in Eq. (4).
Thanks to the perfect synchronisation of the frames with
the projections, the result corresponds to an ideal spa-
tially TV regularized gated-like reconstruction, very close
to the PICCS approach [11]. The spatial hyperparameter
µspace > 0 was tuned to achieve the best visual quality for
the result.

2) The sequence in the third column was reconstructed using
the spatio-temporal regularization in Eq. (4) with µtime > 0
and µspace > 0 both tuned to improve the visual quality of
the result.
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Fig. 6. 2D+t reconstructions (25 frames) of the dynamic Shepp-Logan
phantom (values are given in Hounsfield units). 24 projections are available per
frame of the reconstructed cycle, with which they are synchronized (perfect
spatially TV regularized gated-like case). 5 frames have been selected on a
period-6 base (numbers 1, 7, 13, 19, 25). The first column shows the reference
images. The second column shows the reconstructed images without temporal
regularization (µtime = 0), i.e. the frames are independently reconstructed
with a spatial regularization. The third column shows the reconstruction with
a 3D (2D+t) spatio-temporal regularization (µtime 6= 0).

To accurately compare the quality of the 2 reconstructions,
Fig. 7 zooms into 2 regions of interest (ROI) centered at small
and fine moving structures, which are very close from each
other.

In the first case, each frame has been reconstructed in-
dependently from the others because there was no temporal
correlation imposed between frames in this configuration.
A set of only 24 projections is available per frame, which
explains the rather poor quality of the reconstruction. This is
particularly noticeable on the fine moving structures. Indeed
we can observe on Fig. 7 a strong blurring effect due to the
motion which makes the discrimination between the structures
very difficult all along the cycle.

The second case, µtime 6= 0, shows the noticeable im-
provement brought by the temporal regularization of the 2D+t
sequence in the quality of the reconstruction. The imposed
continuity between frames helps to reduce artifacts due to the
lack of available projections per frame. As a result, structures
are better recovered, as well as their motion, in a non-
ambiguous way. The gain is particularly clear on the ROIs
in Fig. 7 where the fine structures are well resolved and can
be discriminated without ambiguity at each frame. As a result
their respective motion is very well recovered.
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Fig. 7. Zoom into 2 regions of interest (ROI) of the 2D+t reconstructions of
Fig. 6, showing small and fine moving structures of the phantom. Each of the
25 frames are shown for each ROI and compared to the truth with the root
mean square error (RMS) map.

B. Mechanical phantom data

We have reconstructed a mechanical phantom from a dataset
acquired at the Centre Léon Bérard, on a scanner Elekta
Synergy Cone-Beam CT. The flat panel is composed of a
grid of 512 × 512 detector pixels of size 0.08 × 0.08 cm2.
The acquisition process is similar to that described for CBCT
scanners in section II-A.

The phantom has the features of a human thorax. Several
zones of various densities mimic the lungs, the muscles and
the spine. A small sphere of 2 cm in diameter is inserted
in the right lung. It can be mechanically animated with a
periodic circular motion in the transversal plane, and a periodic
translation in the cranio-caudal direction. The two motions can
be combined, reproducing the trajectory of a tumor during the
respiratory cycle.

1) 2D+t reconstructions: A set of 630 projections has been
acquired regularly in time and angle on 360◦ during 116
seconds. The spherical insert was animated with a periodical
motion in the transversal plane. The period of this “respira-
tory” cycle was 4 seconds. Thus, about 29 cycles are done
during the acquisition, corresponding to about 22 projections
per cycle.

The phantom was positioned so that the isocenter of the
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Fig. 8. 2D+t reconstruction of a mechanical phantom. Left: A sinogram
extracted from the CB projections of the mechanical phantom. Right: The
corresponding reconstruction. The disk’s interior corresponds to the part of
the object that is projected, hence “visible”, on all the frames. A remarkable
feature of our inverse approach is its ability to produce a rather satisfactory
reconstruction outside the “visible” part where there are some missing data.

scanner is contained in the same plane as the trajectory
of the spherical insert. Extracting the median detector lines
corresponding to this plane from the CB projections, we
obtained a fan beam sinogram from which we reconstructed
a 2D+t sequence of the corresponding phantom’s slice. A
single temporal frame of this reconstruction is shown in Fig. 8.
The projections are clearly truncated by the detector. With
iterative reconstruction methods, this problem can be partially
addressed by reconstructing a larger volume of interest in order
to encompass the whole object, the regularization helping to
extend the reconstruction to regions with missing data. The
static reconstruction displayed by Fig. 8 shows that, despite the
truncation of the field of view, the object support is correctly
restored even though there are some artifacts and a loss of
details outside the fully seen region. However note that these
defects have no impact on the quality of the reconstruction
inside the fully seen region.

Our dynamic 2D+t reconstructions are presented on Fig. 9.
As for the dynamic Shepp-Logan phantom, we have per-
formed two reconstructions: a plain spatially regularized one
(Fig. 9(d)), and a fully spatial and time regularized one
(Fig. 9(e)). We chose to reconstruct a 2D+t sequence of
22 frames. The operator Stθ of our direct model (see Sec-
tion III-A) is implemented by a linear temporal interpolation.
Hence, as the direct model links each object frame to two
projections, about 29×2 projections per frame are available for
the reconstruction. For comparison, Fig. 9 also displays static
reconstructions from a varying number of projections with the
mechanical insert at still (a–c). Thanks to the spatio-temporal
regularization, the reconstructed frames of the dynamic recon-
struction in Fig. 9(e) have almost the same visual quality as the
reconstruction from 630 projections in Fig. 9(a). This visual
quality is in neat improvement over the static reconstruction
from 64 projections shown in Fig. 9(b) or from the gated-
like reconstruction in Fig. 9(d). The motion of the insert is
correctly recovered and the anatomical structures are better
reconstructed, in particular the spine.

2) 3D+t reconstructions: Fig. 10 displays a 3D+t recon-
struction of the phantom from another set of CB projections,



(a) static 630 proj. (b) static 64 proj. (c) static 29 proj.

(d) dynamic / spatial regularization only (∼ spatially TV regularized gated)

1 6 12 17 22

(e) dynamic / spatio-temporal regularization (our approach)
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Fig. 9. 2D+t reconstructions of the median transversal slice of the mechanical phantom. Each restored sequence consists in 22 temporal frames with 500×500
pixels of size 1×1mm2 (the region of interest is zoomed in). (a,b,c): Static reconstructions from respectively 630, 64 and 29 projections of the static phantom
(i.e., the insert was motionless). (d): Only spatially regularized reconstruction. (e): Spatio-temporally regularized reconstruction. The reference position of the
spherical insert is identified on each frame by a small circle.

acquired in the same conditions as previously. This time, the
spherical insert was periodically animated with two kinds of
motion: circular in the transversal plane and translational in
the cranio-caudal direction. Hence the insert had a realistic
3D movement. We reconstructed a sequence of 22 frames
made of 225×225×75 voxels of size 2×2×2 mm3. Outside the
field of view, the reconstruction appears corrupted by motion
and truncation artifacts. However, inside the field of view, the
quality of the reconstruction is comparable to that of our 2D+t
reconstructions, thanks to the spatio-temporal regularization.
To focus on the quality of the restored images, Fig. 10
only shows the non-truncated field of view. Transition from
2D+t to 3D+t involves no additional difficulties, but a bigger
computional burden (many more variables, computations of
4D instead of 3D gradients in the regularization process).

C. Patient data

We have processed the same CBCT dataset of a patient’s
thorax as the one used in the article of Rit et al. [29]. The CB
projections were acquired at the Centre Léon Bérard, (Lyon,
France), on a scanner Elekta Synergy Cone-Beam CT. Thus the
acquisition process is the same as for the mechanical phantom

in section IV-B. In [29], the reconstructions were performed
with a MC method developed by the authors and with a gated
method. These reconstructions have been made available to
us, in order to make a comparison with our method. We
also obtained the recorded 1D temporal signal giving the
periodic linear phase of the respiratory cycles, from which
we have calibrated the temporal interpolator Stθ . The mean
period of a cycle was evaluated to 2.4 s. We only kept the full
cycles, reducing the number of required CB projections to
625. The duration of acquisition was 116 seconds, involving
about 48 cycles, and 13 projections per cycle. We chose to
reconstruct a 3D+t sequence of 13 frames. Using again linear
interpolation for Stθ , about 48×2 projections were available
per reconstructed frame.

Figure 11 displays the full 3D+t reconstruction. Each frame
consists in 275×200×135 voxels of 2×2×2 mm3. Inside the
field of view, the thorax is correctly reconstructed, and one
can identify the different anatomical structures: the right lung
containing a tumor, its bronchi, and also the heart and the
ribs. The respiratory motion is well recovered, particularly that
of the diaphragm and of the tumor, without ambiguities nor
noticeable artifacts.
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Fig. 10. 3D+t reconstruction of the mechanical phantom from the CB projections. A sliced view of each frame in the axial (center), sagittal (right), and
coronal (top) directions is displayed. Only the non-truncated field of view is shown.

For comparison, Fig. 12 shows side by side the MC and
gated reconstructions by Rit et al. in [29] and the result
with our method. The end-exhale phase reconstructed by
the MC method has a size of 262×261×132, i.e. a voxel’s
size of 0.98×0.98×2 mm3. The gated 3D+t sequence was
reconstructed with the same parameters. We compare the
reconstructed frame corresponding to the end-exhale phase.
We have re-interpolated our reconstruction on the grid of finer
voxels used by Rit et al., using a cubic B-spline interpolation
kernel.

Regarding the gated reconstruction, our method has elimi-
nated the motion artifacts and better recovered the anatom-
ical structures. Indeed gated methods have to be applied
on extended datasets (4D-CT) to be efficient, which is not
the case for CBCT and explains the poor quality of the
gated reconstruction. Note that this gated is basic, and that it
could be improved using spatial regularization of each phase.
However it evidences the gain of our approach which achieves
a good quality of reconstruction using only the CBCT dataset.

The MC reconstruction reveals a finer resolution of recov-
ered structures than ours, which looks smoother. Note that
this MC method requires an accurate motion model computed
from a high resolution 4D-CT data set. Our reconstruction has
only needed the current set of CB projections to reconstruct
the patient’s thorax and the respiratory motion, recovering

the motion as well as the static structures without ambiguity
or motion artifact. As a result, a lower effective X-ray dose
is necessary with our method than with this particular MC
method. Indeed the latter method does not show the best
result that could be obtained with the MC approach, since
efficient MC reconstructions can be performed on the single
CBCT dataset [7], [8], [45], [49]. However these results also
demonstrate the potential of the spatio-temporally regularized
4D phase-correlated reconstruction approach, which is able
to recover a motion artifacts-free 3D+t sequence with very
simple and general hypotheses.

V. CONCLUSION

This paper described an approach for phase-correlated 4D-
CT reconstruction with a spatio-temporal regularization. We
address the 4D reconstruction problem with very simple and
general hypothesis. Our motivation was to perform 3D+t
reconstructions from a limited number of projections, such as
provided by a CBCT system, without resorting to additional
4D-CT data. Our results on CBCT data show that satisfying
reconstructions can be obtained from limited data sets using a
simple prior model based on spatial and temporal coherence.

Reconstruction of a 3D+t sequence from limited data is
possible by considering jointly all projections in a global
inverse problem. We carefully designed the model of pro-
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Fig. 11. Our 3D+t reconstruction of the thorax of a patient (Elekta Synergy Cone-Beam CT data from [29], used by courtesy of Centre Léon Bérard). A
sliced view of each frame in the axial (center), sagittal (right), and coronal (top) directions is shown.

(a) Rit et al. gated (from a single scan) (b) Rit et al. MC (from two scans) (c) Our method (from a single scan)

1 1 1

Fig. 12. Comparison of the reconstructions from the patient’s dataset performed by a gated method (a) and the MC method of Rit et al. (b), with the
reconstruction by our spatio-temporally regularized method (c). The end-exhale phase is shown. For better readability, only the fully seen field of view is
displayed.



jections, based on spatial and temporal interpolation. Tem-
poral frames are linearly interpolated to match phases of the
cyclic movement under reconstruction. A joint spatio-temporal
regularization exploits spatial and temporal coherence of the
dynamic volume to provide images with smooth regions and
motion. In order to preserve sharp boundaries and prevent from
blurring motion, we proposed a relaxed 3D+t total-variation
regularization.

Such spatio-temporally regularized phase-correlated 4D-CT
reconstruction method has already been explored in the context
of numerical 2D XCAT phantom CBCT-like data [48] and
in vivo cardiac micro-CT mouse data [32]. We applied our
method to 4D-CBCT reconstruction problems from a mechan-
ical phantom and real patient data. Our results both confirmed
that our method can produce 3D+t reconstructions using only
CBCT data, with a significantly improved quality compared
to pure and even spatially regularized gated reconstructions.
The motion of a lung tumor can be clearly identified in
our reconstruction, which is confirmed by comparison with
a reconstruction obtained using a standard MC method based
on an accurate estimation of motion from high-resolution 4D-
CT images. The reconstruction quality does not match that
achieved using accurate motion models but may be a simple
and general alternative when high-resolution 4D-CT datasets
are not available.

By avoiding the use of additional 4D-CT data in dynamic
CBCT reconstructions, the approach we followed should
reduce the effective X-ray dose required for a given 4D
reconstruction.
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