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Regularized reconstruction for dynamic X-ray CT

without motion compensation

Fabien Momey∗, Éric Thiébaut, Catherine Burnier, Loı̈c Denis, Jean-Marie Becker, and Laurent Desbat

Abstract—X-ray Computerized Tomography (CT) reconstruc-
tions can be severely impaired by the patient’s respiratory motion
and cardiac beating. Motion must thus be recovered in addition to
the 3D reconstruction problem. The approach generally followed
to reconstruct dynamic volumes consists of largely increasing
the number of projections so that independent reconstructions
be possible using only subsets of projections from the same
phase of the cyclic movement. Other methods are based on
motion compensation (MC) using a deformation model estimated
beforehand on an other dynamic CT data set.

Our work takes a different path; it uses dynamic recon-
struction, based on inverse problems approach, without any
additional measurements, nor explicit knowledge of the motion.
The dynamic sequence is reconstructed out of a single data
set, only assuming the motion’s continuity and periodicity. This
inverse problem is solved by the minimization of the sum of a
data-fidelity term, consistent with the dynamic nature of the data,
and a regularization term which implements an efficient spatio-
temporal version of the total variation (TV). We demonstrate the
strength of our approach and its practical feasibility on 2D and
3D+t reconstructions of a mechanical phantom and patient data.

Index Terms—Dynamic tomography, Reconstruction, Inverse
Problems, Regularization, Signal processing.

I. INTRODUCTION

IN X-ray dynamic CT, the motion induced by the breath-

ing and the heart beating of the patient implies that the

acquired projections, i.e. the data, are not related to the same

“static object”. Reconstructing the patient’s anatomy as if there
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was no motion causes dramatical artifacts [2], [34], [8]. In

other words, the inverse problem of reconstruction has to be

addressed in 4D. More specifically in 3D+t, where the motion

and deformation of anatomical structures as a function of time

are recovered. In radiotherapy, this is a critical matter because

the planning of treatment by the medical physicist requires a

precise localization of the lung tumor, in order to preserve at

best healthy tissues during their irradiation. As a result, the

“object” to be reconstructed is modelized as a spatio-temporal

signal f(x, t), defined for spatial coordinates x ∈ R
3 and time

t ∈ R.

Dynamic CT reconstruction has benefited from active re-

search for the past twenty years. Some investigations were

made on the scanning protocol itself [14], [27], [39], [40].

Ritchie et al. [27] established early that even ultrafast scanning

was not sufficient to avoid artifacts. Such an observation still

holds twenty years later. A rather frequent ad hoc solution

is based on a correlation between the 3D CT data and a 1D

temporal record of the patient’s pseudo-periodical movements.

The acquired projections are then sorted, according to the

phase of the cycle to which they are related. Data subsets

are extracted, and independent static reconstructions are then

performed using each of these subsets. Such a method, called

gated CT or 4D-CT [32], [21], [13], [37], [19], [3], [35],

[24], requires a sufficient number of projections for each

reconstructed phase, increasing the amount of X-ray dose

delivered to the patient for the reconstruction of the whole

sequence.

Another family of methods recover the motion in a first step,

then use the obtained deformation model in a second step to

compensate for the motion. The motion is generally estimated

in the form of a deformation vector field Γt(x) that maps the

volume at any time t back to its state at a reference time t0:

f(x, t) = f (Γt(x), t0) . (1)

Such a motion model can be incorporated into the tomographic

projector in order to use all the available projections to recon-

struct the patient’s anatomy at this reference state: a process

called motion compensation (MC). These approaches heavily

rely on the quality of the estimation of the motion, a chal-

lenging inverse problem, especially because of the complex

modeling of deformations such as breathing or cardiac beating.

Moreover, in most cases, for example in dynamic Cone-Beam

CT (CBCT), motion estimation is done on an additional 4D-

CT reconstruction [6], [5], [20], [25], [26], requiring more

measurements and therefore higher X-ray doses.

Our approach proposes to use only the current data set for

the reconstruction of the 3D+t object, which suppresses the



need for over-numerous projections. No explicit knowledge of

the motion is required since we directly reconstruct the whole

3D+t sequence, globally addressing the inverse problem of

reconstruction from dynamic projections as the minimization

of a data-fidelity term and a regularization term, as will be

seen later (3). We adapt the classical tomographic projection

model to deal with the fourth temporal dimension and to

calculate the model of the projections at a given time t.

To account for the specific continuity of the spatio-temporal

object, we implemented a 3D+t edge-preserving smoothness

regularization based on Rudin et al. [28] total variation (TV).

In this introduction, we have pointed out the drawbacks

of motion-compensated methods and summarized our new

approach. As explained in Section II, the demonstration of our

method will be based on the cone beam CT (CBCT) modality.

Our approach, fully detailed in Section III, is however very

general and can readily be applied to other modalities. In Sec-

tion IV, we demonstrate its strength on 2D+t reconstructions

from numerically simulated dynamic data and then on 2D+t

and 3D+t reconstructions of a mechanical phantom and real

patient data.

II. CONE-BEAM CT: DEMONSTRATION FRAMEWORK

A. Motion is critical in Cone-Beam CT

CBCT is an especially interesting modality for the study

of dynamic respiration CT. Indeed, CBCT scanners have been

implanted on linear accelerators for radiotherapy in the early

2000’s [15], [16], [17]. The particularities of this type of

system is the slow period of rotation of its gantry (about

2 minutes), and that all the projections (about 600-700) are

acquired on a single rotation of its flat detector. With this

modality, 4D-CT reconstructions are difficult due to the lack

of projections, even if the slow rotation speed allows several

respiratory cycles to be completed during the acquisition,

giving a satisfying angular coverage for each reconstructed

phase.

As a result, many motion-compensated reconstruction meth-

ods have been explored specifically for this type of data

[20], [41], [25], [26]. Li et al. [20] have incorporated the

deformation field in the analytic reconstruction algorithm FDK

[12]. Rit et al. [25], [26] have compared the Li et al.’s

approach with an iterative reconstruction method based on the

SART algorithm [1], inserting the deformation field into the

tomographic projection model. These approaches suppose that

motion is unchanged between the acquisition on which motion

is estimated and the CBCT acquisition for which motion

is compensated. Zeng et al. [41] have proposed to avoid a

preliminary 4D-CT reconstruction step by a direct estimation

of the deformation model on the CBCT projections, using the

complementary information given by an a priori 3D static

reconstruction of the patient. However, the 3D anatomical

model still has to be obtained from a previous reconstruction

step, generally from breath-hold acquired data, a constraining

step that generates additional irradiation.

B. “2D CBCT” dynamic data simulation

For testing purposes, we simulated a dynamic 2D phan-

tom based on the well known Shepp-Logan model [33],

Fig. 1. Segmented 3D views of one motion cycle of our dynamic 2D Shepp-
Logan phantom. The depth corresponds to the temporal dimension.

Fig. 2. Static reconstruction from the set of dynamic projections generated
from the simulated dynamic Shepp-Logan phantom.

[18]. We let the shape parameters of its composing ellipses

vary periodically over time, following a temporal sinusoidal

signal with a given period. As a result, these ellipses can

be translated, rotated or distorted, simulating the anatomical

variations induced by the respiratory motion at any instant

t. Fig. 1 illustrates, on 3D views, the anatomical evolution

of one motion cycle of our phantom. The observed waves in

the temporal direction show the anatomical variations of the

ellipses.

Fan beam projections are computed in close form under

the hypothesis of an instantaneous measurement. This yields

CBCT-like dynamic data in 2D. We simulated 600 such

projections for a 360◦ angle coverage corresponding to a total

acquisition time of 120 seconds. The period of the “respira-

tory” cycle is set to 5 seconds. As a result, 24 complete motion

cycles are done during the acquisition, with 25 projections per

cycle.

Figure 2 displays a static reconstruction from the generated

set of dynamic projections. The strong motion artifacts that

result from the oversimplified “static” hypothesis highlight the

need for a 2D+t sequence reconstruction.

III. METHOD

A. Reconstruction criterion

We solve the inverse problem [36] of 3D+t reconstruction

by minimizing the joint criterion:

f+ = argmin
f

{Jdata(f) + Jprior(f)} , (2)

where Jdata and Jprior are respectively the data-fidelity and

regularization terms (detailed in the following paragraphs)
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Fig. 3. RMS errors between simulated data of our dynamic Shepp-Logan
phantom and the output of our dynamic projection model, Rθ·Stθ , as a
function of the temporal sampling rate. Each curve is for a given temporal
interpolation method implemented by the operator Stθ .

and f denotes the parameters of the 3D+t sequence to be

reconstructed, i.e. a 4D image of “spatio-temporal” voxels,

corresponding to one period of motion.

B. Data fidelity and direct model

Assuming independent projections and Gaussian noise, the

data fidelity writes:

Jdata(f) =
∑

θ∈Θ

∥

∥yθ −R
θ·Stθ ·f

∥

∥

2

Wθ

, (3)

where yθ denotes the measured projections at orientation

θ of the detector and time tθ, Θ is the set of projection

angles. The term R
θ·Stθ ·f is the model of the data, operator

S
tθ interpolates its arguments at time tθ while operator R

θ

performs the projection for orientation θ (as further detailed

below). The discrepancy between the data and its model is

measured by the squared Mahalanobis distance:

‖u‖2
Wθ

= u⊤ ·Wθ · u

with Wθ a weighting matrix equal to the inverse of the

covariance of the noise.

As already mentioned, we assume that the acquisition of

a projection is instantaneous. This hypothesis motivates the

decomposition of the dynamic projection of the 3D+t object

f in two successive operations:

1) The operator S
tθ performs a temporal interpolation of

the 3D+t voxels to extract the 3D object f(x, tθ) at the

projection time tθ. Our choice is justified by the fact

that the temporal variation of the object is a continuous

phenomenon. Hence it is possible to approximate the

anatomical state of the object at any date by interpolating

the frames sampled by the 4D voxels. Of course, the quality

of the interpolation depends on the temporal sampling rate,

as well as on the type of interpolation used.

Figure 3 shows the evolution of the root mean square

(RMS) error between the data simulated in Section II-B and

the output of our dynamic projection model as a function

of the temporal sampling rate, for different interpolation

methods. As expected, the error decreases when the number

of frames increases. In 4D-CT, the selection of projections

can be compared to using a nearest neighbor interpolation,

which generates much more modeling errors than linear

or B-spline-based interpolations as can be seen on the

figure. Oscillations in the RMS error curves (notably for the

nearest neighbor interpolation) correspond to the sampling

rates where some frames are exactly synchronized with

the actual projections. In these particular cases, Stθ is just

the identity operator and the remaining errors are due to

the spatial sampling of f and to the approximations made

by the projector Rθ. In our implementation, we use linear

temporal interpolation as it gives the least approximation

errors (see Fig. 3).

The coefficients of Stθ are determined from a 1D temporal

signal giving the periodic evolution of the motion, similar

to the signals used for 4D-CT reconstructions. It is easy

from this signal to extract the period of a cycle, and

to identify the phase of each temporal frame. Then the

projection dates tθ give the locations of the interpolation

points on the temporal axis, from which the coefficients

of S
tθ are deduced. Since the period of the respiratory

or cardiac motion is likely to vary from one cycle to

another, the sequence f has to be normalized to a mean

period. Hence the cycles in the 1D signal are virtually

dilated or contracted to coincide with the normalized cycle

and achieve a finer and more realistic calculation of the

interpolation coefficients. A similar temporal registration

method is used by Blondel et al. [4], [5] for cardiac SPECT.

In our tests, we made the same simplification as Blondel

et al. [4], [5], i.e. we have neglected the variation of the

spatial amplitude of the motion from one cycle to another.

Our results on empirical data discussed in sections IV-B

and IV-C support the use of this simplifying hypothesis.

2) The operator R
θ is the tomographic projector which per-

forms a static projection of the 3D object interpolated

at tθ. R
θ can be any numerical model implemented for

iterative CT reconstruction. As already mentioned, projec-

tions must be separated according to the motion phase in

order to reconstruct the temporal sequence. This implies

a drastic reduction of the number of projections available

per reconstructed temporal frame. In this context of re-

construction from a few projections, we have shown [22]

that the accuracy of the projector is a critical issue to

make the best of available data. In order to cope with

such cases, we have developed an accurate and fast model.

It exploits B-spline basis functions to represent the 3D

object and to approximate their projections. This model

will be designated henceforth under the name spline driven

[22]. When reconstructing objects from a limited number

of projections, spline driven has proven to be more accurate

than classical projectors such as distance driven [10], with

a satisfactory computional time. To better exploit dynamic

data, we therefore used the spline driven projector to



Fig. 4. A spatio-temporal representation of a situation where a same voxel
P is “seen” at different times in two different neigbouring tissues : due to the
motion of the interface between tissues A and B, point P is in tissue A at
time t1, and in tissue B at time t2. The attenuation at point P then quickly
changes between t1 and t2 when the boundary reaches P .

implement our dynamic reconstruction approach.

C. Spatio-temporal regularization

The term Jprior in equation (2) is essential to regularize

the otherwise ill-conditioned inverse problem of dynamic

reconstruction. In contrast to gated CT reconstructions that

are performed independently, the regularization Jprior can en-

force a temporal coherence in the reconstructions. The spatial

regularization must be chosen so as to favor smooth areas

while preserving discontinuities at the boundary of anatomical

structures. Total variation [28] is typically used in this context.

From the 3D representation of our 2D+t simulated phantom

shown in Fig. 1, we observe that the variations of shapes are

exclusively noticeable at the interfaces between the different

parts of the object. For such an object, the spatial gradients

with a high magnitude, identifying the separation between

different tissues, are therefore intrinsically correlated to the

temporal gradients out of which moving boundaries can be

traced back. Figure 4 illustrates the case where a given spatial

position sees two different tissues between time t1 and time

t2. The temporal profile of attenuation sketched in Fig. 4

corresponds to a large motion where the change of the intensity

value at position P is sharp. On the contrary, for sub-voxel

motions, the sharp boundary will progressively cross the voxel

and thus yield a smoother transition. Cardiac and respiratory

movements also cause smooth spatial and temporal changes

because they induce fluctuations of the absorption, particularly

at the interfaces between different tissues, e.g. the lung walls

or the myocardium’s tissues. Consequently, we advocate the

use of an ℓ2 − ℓ1 edge preserving regularization [7], [11],

[9], [38] which is known to favor smoothness for small am-

plitude changes while preserving larger discontinuities. Being

concerned with spatio-temporal (dis)continuity, we propose to

use the following generalized form of relaxed TV:

Jprior(f) =
∑

k,ℓ

(

ǫ2 + µ2
space

∥

∥

∥
∇space

k,ℓ · f
∥

∥

∥

2

+ µ2
time (∂

time
k,ℓ · f)2

)1/2

. (4)

Here operators ∇space

k,ℓ et ∂time
k,ℓ are respectively the 3D spatial

gradient and the temporal derivative of the 3D+t object at the

voxel (k, ℓ) with k and ℓ the spatial index and temporal index

(i.e., the frame) of the voxel. In order to tune the strength of

the regularization (relatively to the data fidelity term) and to

account for the heterogeneity of the physical dimensions of the

spatial gradient and of the temporal derivative, we introduce

two different hyperparameters µspace ≥ 0 and µtime ≥ 0 in

Eq. (4). Note that the ratio of these two hyperparameters is

homogeneous to a velocity. In Eq. (4), the parameter ǫ > 0 is

not to be mistaken with a relaxation parameter introduced to

avoid a singularity: it has to be appropriately tuned to set the

trade-off between sharp and smooth changes.

Having a convex differentiable criterion (2), we perform the

numerical minimization with the VMLM algorithm [23] which

is a limited memory quasi-Newton optimization method with

BFGS updates.

IV. RESULTS

A. Numerical data

To test our approach, we reconstructed our dynamic Shepp-

Logan phantom presented in section II-B, from a simulated

set of 600 projections. We chose to sample the 2D+t sequence

with 25 frames. In this configuration, the frames are exactly

synchronized with the projections which, as explained below,

lets us mimic a gated reconstruction. Figure 5 displays some

frames of two different reconstructions from this dataset:

1) The sequence in the second column was reconstructed

while imposing only the spatial regularization for each

frame. This was achieved by setting µtime = 0 in Eq. (4).

Thanks to the perfect synchronisation of the frames with

the projections, the result corresponds to an ideal gated-

like reconstruction. The spatial hyperparameter µspace > 0
was tuned to achieve the best visual quality for the result.

2) The sequence in the third column was reconstructed using

the spatio-temporal regularization in Eq. (4) with µtime > 0
and µspace > 0 both tuned to improve the visual quality of

the result.

To visualize the temporal continuity between the reconstructed

frames, Fig. 6 displays spatio-temporal slices of these recon-

structions (the green lines indicate the positions of the slices

on the topmost panel of the figure).

In the first case, each frame has been reconstructed in-

dependently from the others because there was no temporal

correlation imposed between frames in this configuration.

A set of only 24 projections is available per frame, which

explains the rather poor quality of the reconstruction. This is

particularly noticeable on the fine moving structures which

are perturbed by strong artifacts. We can observe on Fig. 6

the decorrelation between the frames, identified by small

fluctuations of contrast from one frame to another in the

uniform parts of the object.
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Fig. 5. 2D+t reconstructions (25 frames) of the dynamic Shepp-Logan
phantom (values are given in Hounsfield unit). 24 projections are available
per frame of the reconstructed cycle, with which they are synchronized
(perfect gated-like case). The first column shows some reference frames
identified by their number. The second column shows the reconstruction
where no temporal regularization is applied (µtime = 0), i.e. the frames are
independently reconstructed with a spatial regularization. The third column
shows the reconstruction with a 3D (2D+t) spatio-temporal regularization
(µtime 6= 0).

The second case, µtime 6= 0, shows the substantial gain

brought by the temporal regularization of the 2D+t sequence

in the quality of the reconstruction. The imposed continuity

between frames helps to reduce artifacts due to the lack of

available projections per frame. As a result, structures are

better recovered, as well as their motion, in a non-ambiguous

way. The gain is particularly clear on the spatio-temporal

slices of Fig. 6 where the transitions between the frames

are much smoother than in the gated-like case. Thanks to

this improvement, fine nearby structures can be more easily

discriminated without ambiguity.

B. Mechanical phantom data

We have reconstructed a mechanical phantom from a dataset

acquired at the Centre Léon Bérard, on a scanner Elekta

Synergy Cone-Beam CT. The flat panel is composed of a

grid of 512 × 512 detector pixels of size 0.08 × 0.08 cm2.

The acquisition process is similar to that described for CBCT

scanners in section II-A.

The phantom has the features of a human thorax. Several

zones of various densities mimic the lungs, the muscles and

the spine. A small sphere of 2 cm in diameter is inserted
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Fig. 6. Spatio-temporal slices of the 2D+t reconstructions of Fig. 5.
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Fig. 7. 2D+t reconstruction of a mechanical phantom. Left: A sinogram
extracted from the CB projections of the mechanical phantom. Right: The
corresponding reconstruction. The disk’s interior corresponds to the part of
the object that is projected, hence “visible”, on all the frames. A remarkable
feature of our inverse approach is that it is able to reconstruct, in a rather
satisfactory way, an “uncomplete” part of the data.

in the right lung. It can be mechanically animated with a

periodic circular motion in the transversal plane, and a periodic

translation in the cranio-caudal direction. The two motions can

be combined, reproducing the trajectory of a tumor during the

respiratory cycle.

1) 2D+t reconstructions: A set of 630 projections has been

acquired regularly in time and angle on 360◦ during 116

seconds. The spherical insert was animated with a periodical

motion in the transversal plane. The period of this “respira-

tory” cycle was 4 seconds. Thus, about 29 cycles are done

during the acquisition, corresponding to about 22 projections

per cycle.

The phantom was positioned so that the isocenter of the

scanner is contained in the same plane as the trajectory

of the spherical insert. Extracting the median detector lines

corresponding to this plane from the CB projections, we

obtained a fan beam sinogram from which we reconstructed

a 2D+t sequence of the corresponding phantom’s slice. A

temporal frame of this reconstruction is shown in Fig. 7.

The projections are clearly truncated by the detector. With

iterative reconstruction methods, this problem can be partially

addressed by reconstructing a larger volume of interest in order

to encompass the whole object, the regularization helping to

extrapolate regions with missing data. The static reconstruction

displayed by Fig. 7 shows that, despite the truncation of the

field of view, the object support is correctly restored even

though there are some artifacts and a loss of details outside

the fully seen region. However note that these defects have

no impact on the quality of the reconstruction inside the fully

seen region.

Our dynamic 2D+t reconstructions are presented on Fig. 8.

As for the dynamic Shepp-Logan phantom, we have per-

formed two reconstructions: a plain spatially regularized one

(Fig. 8(e)), and a fully spatial and time regularized one

(Fig. 8(f)). We chose to reconstruct a 2D+t sequence of

22 frames. The operator S
tθ of our direct model (see Sec-

tion III-A) is implemented by a linear temporal interpolation.

Hence, as the direct model links each object frame to two

projections, about 29×2 projections per frame are available

for the reconstruction. For comparisons, Fig. 8 also displays

static reconstructions from a varying number of projections

with the mechanical insert at still (a–c) and, to illustrate motion

artifacts, from the set of dynamic projections (d). Thanks to

the spatio-temporal regularization, the reconstructed frames

of the dynamic reconstruction in Fig. 8(f) have the same

visual quality as the reconstruction from 630 projections in

Fig. 8(a), and are much better than the static reconstruction

from 64 projections shown in Fig. 8(b) or from the gated-like

reconstruction in Fig. 8(e). The motion of the insert is correctly

recovered and the anatomic structures better reconstructed, in

particular the spine.

2) 3D+t reconstructions: Figure 9 displays a 3D+t recon-

struction of the phantom from another set of CB projections,

acquired in the same conditions as previously. This time, the

spherical insert was periodically animated with two kinds of

motion: circular in the transversal plane and translational in

the cranio-caudal direction. Hence the insert had a realistic 3D

movement. We reconstructed a sequence of 22 frames made of

225×225×75 voxels of size 2×2×2mm3. To better visualize

the dynamic aspect of our 3D+t reconstruction, we have

uploaded a video clip of the sliced frames in the supplementary

files (phantom-dynamic.mp4). Outside the field of view, the

reconstruction appears corrupted by motion and truncation

artifacts. However, inside the field of view, the quality of the

reconstruction is comparable to that of our 2D+t reconstruc-

tions, thanks to the spatio-temporal regularization. To focus

on the quality of the restored images, Fig. 9 only shows the

non-truncated field of view. Transition from 2D+t to 3D+t

involves no additional difficulties, but a bigger computional

burden (many more variables, computations of 4D instead of

3D gradients in the regularization process).

C. Patient data

We have processed the same CBCT dataset of a patient’s

thorax as the one used in the article of Rit et al. [25]. The CB

projections were acquired at the Centre Léon Bérard, (Lyon,

France), on a scanner Elekta Synergy Cone-Beam CT. Thus the

acquisition process is the same as for the mechanical phantom

in section IV-B. In [25], the reconstructions were performed

with a motion-compensated (MC) method developed by the

authors and with a gated method. These reconstructions have

been made available to us, in order to make a comparison with

our method. We also obtained the recorded 1D temporal signal

giving the periodic linear phase of the respiratory cycles, from

which we have calibrated the temporal interpolator S
tθ . The

mean period of a cycle was evaluated to 2.4 s. We only kept the

full cycles, reducing the number of required CB projections to

625. The duration of acquisition was 116 seconds, involving

about 48 cycles, and 13 projections per cycle. We chose to

reconstruct a 3D+t sequence of 13 frames. Using again linear

interpolation for S
tθ , about 48×2 projections were available

per reconstructed frame.

Figure 10 displays the full 3D+t reconstruction. Each frame

consists in 275×200×135 voxels of 2×2×2mm3. Inside the

field of view, the thorax is correctly reconstructed, and one

can identify the different anatomical structures: the right lung



(a) static 630 proj. (b) static 64 proj. (c) static 29 proj. (d) dynamic / statically reconstructed

(e) dynamic / spatial regularization only (∼ gated)

(f) dynamic / spatio-temporal regularization (our approach)

Fig. 8. 2D+t reconstructions of the median transversal slice of the mechanical phantom. Each restored sequence consists in 22 temporal frames with
500×500 pixels of size 1×1mm2 (the region of interest is zoomed in). (a,b,c): Static reconstructions from respectively 630, 64 and 29 projections of the
static phantom (i.e., the insert was motionless). (d) Static reconstruction of the phantom from the dynamic dataset. (e): Only spatially regularized reconstruction.
(f): Spatio-temporally regularized reconstruction. The reference position of the spherical insert is identified on each frame by a small circle.

containing a tumor, its bronchi, and also the heart and the

ribs. The respiratory motion is well recovered, particularly that

of the diaphragm and of the tumor, without ambiguities nor

noticeable artifacts. As for the mechanical phantom, a video

clip of this 3D+t reconstruction has been uploaded in the

supplementary files (patient-dynamic.mp4).

For comparison, Fig. 11 shows side by side the MC and

gated reconstructions by Rit et al. in [25] and the result

with our method. The end-exhale phase reconstructed by

the MC method has a size of 262×261×132, i.e. a voxel’s

size of 0.98×0.98×2mm3. The gated 3D+t sequence was

reconstructed with the same parameters. Because only one

frame is reconstructed by the MC method (the 3D+t sequence

can be obtained by applying the motion model to the reference

frame), we compare the reconstructed frame corresponding to

the end-exhale phase. We have re-interpolated our reconstruc-

tion on the grid of finer voxels used by Rit et al., using a cubic

B-spline interpolation kernel.

Regarding the gated reconstruction, our method has elim-

inated the motion artifacts and better recovered the anatom-

ical structures. Indeed gated methods have to be applied on

extended datasets (4D-CT) to be efficient, which is not the

case for CBCT and explains the poor quality of the gated

reconstruction. It evidences the gain of our approach which

achieves a good quality of reconstruction using only the CBCT

dataset.

The MC reconstruction reveals a finer resolution of recov-

ered structures than ours, which looks smoother. Note that

MC requires an accurate motion model computed from a high

resolution 4D-CT data set. Our method only needs the current

set of CB projections to reconstruct the patient’s thorax and

the respiratory motion, recovering the motion as well as the

static structures without ambiguity or motion artifact. As a

result, lower X-ray doses are necessary with our method than

with the MC method.

V. CONCLUSION

This paper described a new approach for dynamic CT

reconstruction without motion compensation. Our motivation

was to perform 3D+t reconstructions from a limited number

of projections, such as provided by a CBCT system, without

resorting to additional 4D-CT data. Rather than building an

explicit model of the motion of human tissues, we addressed

the full 3D+t reconstruction problem, i.e., we reconstruct

sequences of 3D images. Our results on CBCT data show that

satisfying reconstructions can be obtained from limited data

sets using a simple prior model based on spatial and temporal

coherence.

Reconstruction of a 3D+t sequence from limited data is

possible by considering jointly all projections in a global
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Fig. 9. 3D+t reconstruction of the mechanical phantom from the CB projections. A sliced view of each frame in the axial (center), sagittal (right), and coronal
(top) directions is displayed. Only the non-truncated field of view is shown. A MPEG-4 video clip of these slices of the reconstructed frames is available as
a supplementary file (phantom-dynamic.mp4).

inverse problem. We carefully designed the model of pro-

jections, based on spatial and temporal interpolation. Images

are represented on quasi-isotropic B-spline functions that can

be accurately and efficiently projected. Temporal frames are

linearly interpolated to match phases of the cyclic movement

under reconstruction. A joint spatio-temporal regularization

exploits spatial and temporal coherence of the dynamic vol-

ume to provide images with smooth regions and motion. To

preserve sharp boundaries and prevent from blurring motion,

we proposed a relaxed 3D+t total-variation regularization.

Our method has been applied to dynamic CBCT reconstruc-

tion problems. Reconstructions of a dynamic phantom and

of patient data both confirmed that our method can produce

3D+t reconstructions using only CBCT data, with a quality

significantly improved compared to gated reconstructions. The

motion of a lung tumor can be clearly identified in our recon-

struction, which is confirmed by comparison with a reconstruc-

tion obtained using a state-of-the-art motion compensation

method based on an accurate estimation of motion from high-

resolution 4D-CT images. The reconstruction quality does not

match that achieved using accurate motion models but may

be very useful when high-resolution dynamic data sets are not

available.

At present, we are working on refined registration to account

for variability of the motion between cycles (differences in

motion amplitude); in the future, one of our main goals is

to achieve better final reconstruction of the spatio- temporal

image, by alternating reconstruction and registration.

By avoiding the use of additional 4D-CT data in dynamic

CBCT reconstructions, we believe that the approach we fol-

lowed will help in the future to reduce the X-ray dose delivered

to the patient.
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