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Eliciting a Suitable Voting Rule via Examples

We address the problem of specifying a voting rule by means of a series of examples. Each example consists of the answer to a simple question: how should the rule rank two alternatives, given the positions at which each voter ranks the two alternatives? To be able to formalise this elicitation problem, we develop a novel variant of classical social choice theory in terms of associations of alternatives with vectors of ranks rather than the common associations of voters with preference orders. We then de ne and study a class of voting rules suited for elicitation using such answers. Finally, we propose and experimentally evaluate several elicitation strategies for arriving at a good approximation of the target rule with a reasonable number of queries.

INTRODUCTION

Voting theory is concerned with the analysis of rules for conducting an election [START_REF] Taylor | Social Choice and the Mathematics of Manipulation[END_REF]. In recent years, there has been a marked interest in voting theory within AI, for two reasons: rst, voting is relevant to AI-related applications such as recommender systems, search engines, and multiagent systems; and, second, techniques developed in AI and computer science more generally, such as complexity theory and knowledge representation, turned out to be useful for the analysis of voting rules [START_REF] Brandt | Computational social choice[END_REF].

In this work, we consider the problem of identifying an initially unknown rule that is suitable in a given situation. Consider a committee that wants to decide on a voting rule to use for some future decisions it will have to take. How can this committee articulate its requirements regarding the rule? The literature on voting theory provides a number of axioms, such as homogeneity or monotonicity, that are satis ed by some rules and not by others [START_REF] Taylor | Social Choice and the Mathematics of Manipulation[END_REF]. Following this approach, the committee could select the voting rule that satis es the axioms it considers most important. This might however be difficult to implement. For example, the committee might choose axioms that are mutually incompatible or that do not determine a single rule. Considering the range of surprising paradoxes and impossibility theorems in social choice theory, it is also likely that they will not fully comprehend the implications of adopting a given axiom.

We propose to treat the problem of selecting a voting rule as a problem of preference elicitation. In classical voting theory, each voter provides a ranking (a linear order) of the alternatives on the table. Thus, we can identify each alternative with the vector of ranks it receives, one for each voter. We shall assume the voting rule our committee has in mind can be speci ed in terms of an ordering over these rank-vectors: an alternative wins if the rank-vector it is associated with is not dominated by any other rank-vector occurring in the election instance at hand (this may be considered a basic axiom Institute for Logic, Language and Computation, University of Amsterdam, email: olivier.cailloux@uva.nl, ulle.endriss@uva.nl our committee accepts). To determine which rule is best for our committee, we ask questions about the ideal behaviour of the rule. Each question takes the following form: we present two rank-vectors to the committee and ask which of them they want the voting rule to prefer or whether they think the rule should remain indi erent between the two. Every answer is interpreted as a constraint on the rule. For example, a committee wanting to favor "consensual" alternatives may prefer a rank-vector composed only of ranks and to one consisting of ranks and .

To fully specify a voting rule requires a huge number of queries, even for moderate numbers of voters and alternatives. We therefore are interested in approximating the target rule as well as possible by means of what we call a robust voting rule: the rule returning the union of the sets of winners of all voting rules compatible with the constraints elicited at a given point.

In this paper, we introduce and study a class of voting rules suited for such questioning process.

Our approach is inspired by a similar idea used in multiple criteria decision aiding [START_REF] Figueira | Multiple Criteria Decision Analysis: State of the Art Surveys[END_REF]. To obtain a model of the preferences of a decision maker [START_REF] Dias | An aggregation/disaggregation approach to obtain robust conclusions with ELEC-TRE TRI[END_REF][START_REF] Greco | Robust ordinal regression[END_REF], or a group of decision makers [START_REF] Cailloux | Eliciting ELECTRE TRI category limits for a group of decision makers[END_REF][START_REF] Greco | Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP[END_REF], looking for a preference model in some a priori de ned class of possible models, the preference elicitation process asks for constraints given by the decision makers in the form of examples of input and related expected output of the model. Robust results are then computed by considering every model of the considered class that is compatible with the constraints given so far. The process is iterated by asking more questions and showing intermediate results until the decision makers are satis ed or some stopping criterion is met.

Preference learning [START_REF] Fürnkranz | Preference Learning[END_REF] is another eld concerned with methods for obtaining preference models about various kinds of objects, often preferences of consumers over sets of goods. Our approach, however, is about eliciting information about something more abstract, namely a preferred voting rule. Therefore, a crucial part of the problem that we explore in this paper is to develop a way of asking simple questions that can serve as examples for directing the elicitation process.

The remainder of the paper is organised as follows. Our formal framework for modelling voting rules is presented in Section 2. In this framework, we adopt an unusual perspective and describe elections in terms of mappings from alternatives to rank-vectors rather than the familiar pro les (which are mappings from voters to preference orders). In Section 3, we introduce the concept of a voting rule that is based on either a preorder or a weak order on rank-vectors. We prove several results that shed light on the structure of these classes of rules and show how they relate to the rules that are de nable by the answers to the type of questions we are interested in here. In Section 4, we propose di erent strategies for deciding which questions to ask at what point in an elicitation process and we provide experimental results on the performance of di erent elicitation strategies. Section 5 concludes with a brief discussion of future directions. . We write for the set of linear orders on . Recall that a linear order is a complete, transitive, and antisymmetric binary relation. We use linear orders to model preferences over alternatives. A pro le is a function mapping each voter to her preference order. We write rather than for the preference of voter . The set of all possible pro les is . A voting rule , given a pro le on , returns a non-empty subset of , which are the winning alternatives according to :

(1) This is the standard model of classical voting theory familiar from the literature [START_REF] Taylor | Social Choice and the Mathematics of Manipulation[END_REF]. Let us now change perspective and consider a pro le from the viewpoint of one alternative . Each voter has ranked at a certain position in her own preference order. That is, we can think of as a function mapping voters to ranks (numbers between and ). When taking this perspective, we shall identify alternatives with rank-vectors. Formally, a rank-vector is a function mapping each voter to a rank. 2 We write for . The set of all possible rank-vectors is . Given a pro le and an alternative , the rankvector associated with by is de ned so that is the rank of according to , i.e. where is the number of alternatives strictly better than in . The rank-pro le corresponding to a pro le thus is such that is the rank-vector associated with by . The correspondence between and is illustrated in Figure 1. When the identity of the alternative to which a rank-vector corresponds is not important, we denote a rank-vector by rather than . Note that not all combinations of rank-vectors are admissible as rank-pro les. As we only deal with linear orders as basic preferences, rank-pro les featuring multiple times the same rank for a given voter are not allowed. The set of admissible rank-pro les is therefore:

| (2)
Note that a rank-pro le contains the same information as a pro le: given an admissible rank-pro le , there is a unique pro le such that , and vice versa. We can therefore consider a voting rule as operating on rank-pro les, rather than on proles. Given a voting rule , we de ne the corresponding rank-voting rule as the function that selects the winning alternatives out of an admissible rank-pro le:

. Conversely, to each

Throughout the text, bracket notation such as designates intervals in the natural numbers , not in . rank-voting rule corresponds a unique standard voting rule. 3 In this paper, we will only be concerned with voting rules that are neutral [START_REF] Taylor | Social Choice and the Mathematics of Manipulation[END_REF], i.e. rules that treat all alternatives symmetrically. Just as in the standard framework assuming anonymity (symmetry w.r.t. voters) permits us to model pro les as multisets (rather than vectors) of preferences, in our model neutrality permits us to simplify notation and to model rank-pro les as sets (rather than vectors) of rank-vectors. (Observe that we can indeed work with sets rather than multisets because no rank-pro le can include the same rank-vector more than once.) Thus, we can think of a voting rule as selecting a subset of rank-vectors from a given set of rank-vectors. We write for the set of available rank-vectors in a rank-pro le (i.e. for ), which becomes the input to our voting rule using this simpli ed notation. We call a voting instance. Let denote the set of all admissible voting instances. Having a pro le , with the corresponding voting instance, we dene . There is thus a bijection between these simpli ed voting rules selecting subsets of rank-vectors and neutral classical voting rules. By a slight abuse of notation, we write rather than . When giving examples of rank-vectors, we only use one-digit ranks. Therefore, instead of writing the rank-vector as a tuple of ranks, we write it as a string of ranks. For example, instead of writing we will write . Furthermore, we will write if for every voting instance . Let us now de ne a few classical properties and voting rules that we will need, all translated into our framework of rank-vectors. Observe that for two rank-vectors and , means that voter prefers the alternative associated with to the alternative associated with . A Condorcet winner is rank-vector that would beat every other rankvector in a given set of rank-vectors in a pairwise majority contest.

Definition 1 (Condorcet winner). Let . A rank-vector is a Condorcet winner if for all .

Definition 2 (Condorcet consistency). A voting rule is Condorcetconsistent if being a Condorcet winner for implies .

Definition 3 (PSR). A voting rule is a positional scoring rule (PSR)

if there exists a function , mapping ranks to scores, such that for every voting instance we get:

(

It is common to require the scores to be non-increasing with increasing ranks. We do not impose this restriction here. We now de ne the Bucklin rule. We will use it as an example of rule that is not a PSR but is included in the class of voting rules dened in Section 3.

Definition 4 (Bucklin rule). Let . For and , de ne

as the number of ranks in that are better (thus lower) than, or as good as, , i.e.

. The Bucklin threshold given is the smallest number such that some alternative has a majority of ranks at least as good as , thus

| . The Bucklin rule is the voting rule which, given , and considering the Bucklin

There are some similarities with the informational approach to social choice theory using utilities rather than ordinal preferences. In that approach, it is natural to view an alternative as being associated with a set of numbers, representing the utilities given by each voter to that alternative [START_REF] Blackorby | Social choice with interpersonal utility comparisons: A diagrammatic introduction[END_REF][START_REF] Sen | On weights and measures: Informational constraints in social welfare analysis[END_REF].

threshold given , selects as winners the alternatives that attain the maximum score as evaluated by :

(4)

Fact 1. The Bucklin rule is not a PSR.

Indeed, consider the voting instances and , with and . Under Bucklin, the winners for are and the only winner for is . For Bucklin to be a PSR we would need, from the rst instance, , which contradicts the second instance.

VOTING FROM A PREORDER

In this section we study several new classes of voting rules. We rst introduce two simple classes of voting rules: the preorder-based rules and the weak order-based rules. We then present two ways of de ning voting rules from answers to the elicitation questions we are interested in. Our goal is to show the links between the rules that can be de ned from the questioning process we propose and the classes of preorder and weak order-based rules, as well as how these compare to classical voting rules. Speci cally, we will show the following. First, the class of weak order-based rules is a strict superset of the PSR's and a strict subset of the preorder-based rules. Second, the class of preorder-based rules equals the class of rules that can be dened from our questions. The last result holds for both proposed ways of interpreting the answers.

A preorder, denoted , is a transitive and re exive binary relation. Its asymmetric part is denoted , its symmetric part . Let be the set of all preorders de ned over .

Definition 5 (Voting from a preorder). Let be a preorder on . Given , the voting rule returns as winners those rank-vectors which are maximal under in :

(5) A voting rule is called preorder-based if there exists a preorder in such that . A weak order is a complete preorder. We use the symbol ⪰ to denote a weak order over the set of rank-vectors , its asymmetric part being denoted ⪲. Let denote the set of weak orders de ned over . Observe that . We call a voting rule weak order-based if there exists a weak order ⪰ in such that ⪰ . Any voting rule that is weak order-based is also preorder-based. The following example shows that the converse is not true. 

Let be the preorder-based rule based on ; let us show that it is not weak order-based. When given the voting instances and ,

elects the boxed rank-vectors. For any rule ⪰ , with ⪰ a weak order, satisfying the instances and , it must be the case that ⪰ is indi erent between 11 and 33, and also between 22 and 33. By transitivity of indi erence, ⪰ thus must be indi erent between 11 and 22, but this is impossible while also ensuring 22 is not a winner for .

Relationship to classical voting rules

The class of preorder-based voting rules, including in particular rules based on weak orders, is certainly an intuitively appealing class to consider. We will now see that it is a generalisation of the PSR's, but not one that is so general as to encompass all voting rules. 

Observe that if

, we can construct a similar example: simply suppose that every voter ranks the th alternative (for ) always in the th position. Also, if and is divisible by 3, we can produce a variant of the above example with three groups of voters of equal size voting exactly like the three individual voters above.

Constraints and robust voting rules

We now want to approach the problem of specifying a weak orderbased voting rule by means of a series of examples provided to us by a committee that needs to identify a rule they want to employ. Each example amounts to imposing a constraint on the voting rule, by xing the relative ordering of two rank-vectors. Given two rankvectors and , we may say that we want to place above , that we want to place below , or that we want to place them both in the same indi erence class. Formally, we do this by de ning two binary relations, and , on the set of rank-vectors. Given two rank-vectors and , says that must be strictly better than , while says that must be equivalent to . Given constraints , we say that a preorder satis es if and . We de ne as the set of preorders satisfying , and we say that is consistent if . Similarly, denotes the set of weak orders satisfying .

Definition 6 (Robust voting rule). For any nonempty set of preorders , the robust voting rule returns as winners all those rankvectors that win under some rule associated with a preorder in :

(7)
Such a rule is called robust, because we will use it to make sure that we do not exclude a potential winner, facing incomplete preference information from the committee about which preorder should be used. It is thus robust against this kind of information incompleteness.

This gives two ways of de ning a robust voting rule, given constraints : the rule , considering all preorders satisfying , and the rule , considering only the compatible weak orders. We can think of these rules as an approximation of the voting rule the committee wants to communicate to us. We now study the relationships between the preorder-based rules and such robust rules. We rst state without proof some important and useful facts as a lemma. The proofs follow from the relevant de nitions. We rst show that a robust voting rule, when considering preorders, necessarily corresponds to some preorder-based rule.

Proposition 7. Let be a set of consistent constraints. Then the robust voting rule induced by is equal to the voting rule based on the minimal preorder associated with : (9)

Proof. As , follows from Lemma 5, parts and . For the other direction, from the de nition of a robust rule we get ⋃ for all voting instances . For each of these , by Fact 6, we have ; and thus we get from Lemma 5, part . Hence, ⋃ for all .

Conversely, any preorder-based rules can be de ned using some constraints.

Proposition 8. Let be a preorder and let be the corresponding constraints. Then is consistent and the robust rule induced by is equal to the rule based on : [START_REF] Taylor | Social Choice and the Mathematics of Manipulation[END_REF] Proof.

is consistent as satis es it. And as , the preorder induced by , the result follows from Proposition 7.

The following proposition shows that our earlier results still hold if we consider only weak orders instead of all preorders.

Proposition 9. Let be a set of consistent constraints. Then the robust voting rule induced by together with completeness is equal to the voting rule based on the minimal preorder associated with :

(11)

Proof. We have from Proposition 7, and as , follows from Lemma 5, part . To obtain , we take and , and show that . We know that no rank-vector among those in is better than according to . Therefore, a weak order can be de ned over , by completing , that satis es and has as a maximal element among . That weak order being a member of , we obtain .

Denoting the set of consistent constraints by , Propositions 7, 8, 9 show the equality of the following three classes of voting rules: the robust rules using preorders,

; the robust rules using weak orders, ; and the preorderbased voting rules, . Furthermore, Propositions 7 and 9 provide us with a convenient way to compute winners of a robust rule, given some constraints .

ELICITING VOTING RULES

Suppose we have been asked to implement a voting rule for the use of a committee and we need to elicit the views of that committee regarding the rule to be implemented. We shall assume that our committee has a weak order ⪰ over the set of rank-vectors in mind, so that their preferred voting rule is ⪰ . We call ⪰ the target rule. We want to de ne a rule , as resolute as possible (i.e., returning as few tied winners as possible), such that ⪰ . Besides being weak order-based, we shall make two further assumptions regarding the target rule. First, we assume the committee will respect the Pareto principle. De ne Pareto dominance over rank-vectors as i . We assume that ⪰ is an extension of the Pareto dominance relation (thus ⪲). Second, we assume that ⪰ is indi erent to a permutation of the ranks in a rank-vector. Writing for the rankvector resulting from a permutation of the ranks of a rank-vector , we have thus that permutations ⪰ ⪰ . We thus start out with a set of constraints representing these two assumptions: where permutation . We then ask questions to the committee to elicit the target rule. A question is an unordered pair of rank-vectors . They answer each question according to their weak order: ⪲ , ⪲ or ⪰ ⪰ . Starting from constraints , obtained after answers, we can build as follows. If the answer is ⪲ ,

. If the answer is that and are equivalent, . Having elicited constraints , we can de ne a robust voting rule selecting the potential winners according to the preferential information known so far. This is by de nition , the rule selecting as winners all alternatives that win in at least one weak order satisfying . This process leads to a sequence of embedded voting rules that get more and more re ned, approaching the target rule:

⪰

We now want to nd a good way of asking questions (i.e. of choosing unordered pairs of rank-vectors) such that the rule obtained at the end of the questioning process is as "close" as possible to ⪰ .

Elicitation strategies

To determine which question should be asked at a given step (with the current set of constraints at that step and the preorder induced by ), we de ne a tness measure t , a heuristic that indicates how good we expect a question to be. A tness measure is de ned for all pairs of rank-vectors that are incomparable in . Pairs for which status is already known in are assigned a tness of zero. An elicitation strategy then simply picks one of the maximally t pairs (ties are broken lexicographically). Here are four strategies, de ned in terms of their respective tness functions.

Optimistic This strategy takes the tness to be proportional to the number of rank-vectors dominated by or , but not both. De ne as the set of rank-rectors dominated by according to the strict version of . Then, t o Pessimistic This is a variant of the previous strategy, which makes use of the min operator rather than the sum: t p Likelihood The tness used by this elicitation strategy is proportional to the likelihood of a pro le occurring where both and are possible winners as determined by the current approximation: with being a probability distribution over , t l ∑ Random This elicitation strategy (used as a basis for comparison) selects randomly a pair among incomparable pairs in , using a uniform distribution, using one instance of each class of permutation-indi erent rank-vectors.

The optimistic elicitation strategy tries to optimise the number of pairs that become comparable in as compared to , thus after the answer is given. If the answer to the question is that ⪲ , then gains at least one pair for every such that , thus . (It also gains new pairs stemming from rank-vectors that dominate , but the strategy does not consider those.) It implicitly makes the assumption that, when considering a pair , the probability of an answer being ⪲ equals the probability that the answer is ⪲ . The pessimistic strategy aims at optimising the number of pairs that become comparable in the case the answer is the least favorable.

The likelihood strategy considers that we do not only want to augment the number of pairs we know how to compare in , we also want to be able to compare speci cally those pairs that often appear in voting instances and might be incorrectly considered as both winning in the current approximation. To estimate the probability distribution of encountering a particular rank-pro le, we use the impartial culture assumption, under which every voting instance is equally likely. It is well known that real elections do not conform to this assumption, but it is a useful simpli cation for our estimations.

Note that when implementing these strategies using the assumptions discussed here, it is only necessary to deal with one representation of each class of permutations of rank-vectors. This is so because all permutations of a rank-vector play the same role. Fix an arbitrary ordering on the voters . Then de ne the set of increasing rankvectors as the set of rank-vectors whose representation as a sequence of ranks following that arbitrary ordering is nondecreasing: .

Experimental results

We now want to run an experiment in order to compare these elicitation strategies and see how "close" an approximation we can get depending on the number of questions asked. Recall that ⪰ . Thus, contains all the target winners (those given by ⪰

), but may also contain supplementary winners, denoted ⪰ . To measure the quality of the approximation, we count how many supplementary winners the approximation gives, and we measure how bad these supplementary winners are compared to the target winners. We also make use of the impartial culture assumption in these de nitions. . Observe that for a voting instance , the target winners all have the same wo score; denote that score by .

Ratio of number of winners

The badness is

∑ ∑ ∑
We approximate these badness measures by sampling 1000 randomly chosen voting instances. We also approximate the tness given by the likelihood strategy by sampling randomly chosen voting instances.

As target rule, we used the Borda rule and randomly generated rules. To obtain a random weak order-based rule ⪰ , we generate a weak order ⪰ on the set of increasing rank-vectors , as follows. We start with a preorder ⪰ , the Pareto dominance relation. At step , we pick at random, using the uniform distribution over , a pair of rank-vectors that is incomparable in ⪰ . We determine how this pair compares ( ⪲ ; ⪲ ; or equivalence) with equiprobability, one chance in three for each possibility. We add this comparison to the preorder as well as the comparisons resulting from transitivity, obtaining ⪰

. We iterate until all pairs are comparable.

Using our implementation, nding the next question to ask using any of these elicitation strategies only takes a few seconds on a normal desktop computer, for the problem sizes we tried.

Table 1 shows the performance of di erent elicitation strategies on some representative problem sizes. The two rst columns indicate the problem size; the column "q" indicates the number of questions the elicitation strategy asked before computing the quality of the approximation; the column " t" indicates which elicitation strategy that line is about (o is optimistic, r is random, p is pessimistic, l is likelihood with a sample size of 1000 and l+ is likelihood with a sample size of 10 000). The next two pairs of columns indicate the quality of the approximation according to the ratio of number of winners (nb w.) and according to the average WO error on a supplementary winner (wo su.). The rst two columns of numbers relate to experiments eliciting the Borda rule; the second pair of columns of numbers indicate the quality of approximation reached when eliciting a randomly generated rule (as described above). Those results are averaged over ten runs. For each problem size, the rst line gives an indication of the difficulty of the elicitation problem, as it indicates the badness of the robust rule for zero questions. Observe that the approximation using simply Pareto dominance and indi erence to the permutation of rank-vectors (q ) already gives results that are surprisingly good, for the problem sizes considered here. For instance, for elections involving 10 voters and 4 alternatives, out of random elections, the approximation gives only a factor of 1.5 times the number of true winners. Furthermore, asking 25 questions using the l+ elicitation strategy already achieves sig-ni cant improvement. Asking 99 questions suffices in most of these (small but realistic) cases to achieve near perfect approximation.

We see that the optimistic heuristic is surprisingly bad, as it performs worse than choosing questions at random. This can be understood as a consequence of its assumption that every answer is equally likely. Indeed, the pessimistic strategy performs much better that the optimistic one. The likelihood strategy is the clear winner among the elicitation strategies considered. Interestingly, its performance does not strongly bene t from increasing the sampling size to 10 000.

As a side note, it is also interesting to observe that the way used here to generate random rules yields rules that have many more equivalence classes than the Borda rule, as can be observed in the columns "wo su." after zero questions.

CONCLUSION

Viewing an election in terms of a set of rank-vectors instead of a set of linear orders raises many interesting theoretical and practical challenges. This perspective is suitable for elicitation by example, as they can be naturally expressed in terms of preferences over rank-vectors. However, nding good elicitation strategies is challenging. Theoretical research, and more experiments, should be conducted in order to direct the de nition and evaluation of new elicitation strategies.

We assumed that the committee has a weak order over rank-vectors in mind and answers all questions accurately. This could be relaxed. First, the committee could have a preorder over rank-vectors in mind, thus it could be the case that they do not know, or do not care, about the relative positioning of some rank-vectors. Second, the committee could sometimes give wrong answers to the questions asked. Similarly, the committee could give di erent types of answers, such as saying that one rank-vector should not be ranked below another one but can be ranked above or be considered equally good. Supplementary theoretical results would have to be developed, in the spirit of the ones presented in Section 3, in order to determine whether the rules that can be de ned using that type of constraint represent the same class as the class of robust preorder-based rules.

Example 1 .

 1 Consider the voting instances and as well as the preorder shown below, with , . A down-arrow represents , the transitive closure is left implicit, arrows implied by re exivity are omitted and isolated rank-vectors are not shown. . . . . . . . . . . . . . . . . .

  The badness is ∑ ⪰ . Average WO error on a supplementary winner The second badness measure we use indicates how many equivalence classes below the target winners an average supplementary winner is. De ne the weak order score of a rank-vector as the number of equivalence classes that dominates in the target weak order ⪰. If there are equivalence classes in ⪰, . De ne , with a non-empty set of rank-vectors, as the average weak order score over this set, thus∑ | |

Proposition 2 .

 2 Every PSR is weak order-based.Proof. Take any PSR , de ned by scoring function . De ne the weak order ⪰ such that ⪰ if and only if ∑ ∑ . Then ⪰ by construction. Our next result shows that there are weak order-based voting rules that are not PSR's (recall that Bucklin is not a PSR by Fact 1). ⪰ is the Bucklin rule.

	Proposition 3. The Bucklin rule is weak order-based.
	Proof. Given a rank , de ne which do not have a majority of ranks lower than and have exactly and a number of voters with as the set of rank-vectors ranks lower than or equal to . Thus is:
			and	(6)
	Observe that the sets covering) of sets de ne the equivalence classes of ⪰, and ⪰ orders these form a partition (a complete and disjoint . Now de ne a weak order ⪰ on . The equivalence classes as follows: ⪲ if and only if or both and . Now let be the Bucklin threshold for a given voting instance and de ne . Then is a Bucklin winner if and only if , which is the case if and only if
	Proposition 4. For voting rule is preorder-based. and		, no Condorcet-consistent
	Proof. Take any voting rule consider the following three voting instances (the boxed rank-vectors that is Condorcet-consistent. Now are the Condorcet winners).
	. . .	. . .	. . .
	For the sake of contradiction, assume there exists a preorder in such that . must elect the Condorcet winner in . To have , we must have . Similarly, from the instances and we obtain that and . Hence, we get a cycle and is not a preorder.

⪰

. Hence,

Table 1 .

 1 Results of the experiment

					Borda		Random
	n	m	q	t	nb w. wo su.	nb w. wo su.
	10	4	0 25 o r p l l+ 99 o r p l l+	1.5 1.5 1.5 1.3 1.1 1.1 1.5 1.3 1.1 1.0 1.0	2.4 2.4 2.1 1.7 2.1 2.1 2.4 1.7 1.2 0.8 0.2	1.7 1.7 1.6 1.4 1.2 1.2 1.7 1.4 1.3 1.0 1.0	27.3 26.8 23.4 19.6 19.6 21.0 26.9 17.0 12.7 11.2 15.2
	6	6	0 25 o r p l l+ 99 o r p l l+	1.9 1.9 1.8 1.8 1.5 1.3 1.9 1.7 1.6 1.1 1.0	3.1 3.0 2.7 2.6 2.1 2.0 3.1 2.2 2.0 1.4 1.5	2.2 2.2 2.0 2.0 1.6 1.7 2.2 1.8 1.7 1.3 1.3	52.4 52.8 44.4 45.9 33.4 38.2 51.4 32.0 31.5 22.5 28.4
	4 10	0 25 o r p l l+ 99 o r p l l+	2.3 2.3 2.3 2.0 2.0 1.8 2.3 2.0 1.8 1.4 1.3	3.8 3.7 3.4 3.0 2.9 2.8 3.7 2.8 2.4 1.9 2.2	2.6 2.6 2.4 2.2 2.0 2.1 2.5 2.1 2.0 1.6 1.6	69.9 68.9 61.6 53.5 51.7 56.7 70.2 50.3 44.1 40.1 43.4