
HAL Id: hal-00998277
https://hal.science/hal-00998277v1

Submitted on 2 Jun 2014 (v1), last revised 16 Dec 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Implementation of Parallelized ECSM over
Binary and Prime Fields

Jean-Marc Robert

To cite this version:
Jean-Marc Robert. Software Implementation of Parallelized ECSM over Binary and Prime Fields.
2014. �hal-00998277v1�

https://hal.science/hal-00998277v1
https://hal.archives-ouvertes.fr

Software Implementation of Parallelized

ECSM over Binary and Prime Fields

J.M. ROBERT1,2

1 Team DALI, Université de Perpignan, France
2 LIRMM, UMR 5506, Université Montpellier 2 and CNRS, France

Abstract. Recent developments of multicore architectures over various platforms (desk-
top computers and servers as well as embedded systems) challenge the classical ap-
proaches of sequential computation algorithms, in particular elliptic curve cryptography
protocols. In this work, we deploy different parallel software implementations of elliptic
curve scalar multiplication of point, in order to improve the performances in compari-
son with the sequential counter parts, taking into account the multi-threading synchro-
nization, scalar recoding and memory management issues. Two thread and four thread
algorithms are tested on various curves over prime and binary fields, they provide im-
provement ratio of around 15% with best known methods.

Keywords: Elliptic curve cryptography, parallel algorithm, efficient software implemen-
tation

1 Introduction

Elliptic curve cryptography (ECC) is widely used in a large number of protocols:
secret key exchanges, asymetric encryption-decryption, digital signatures... The main
operation in these protocols is the scalar multiplication (ECSM) defined as k ·P where
P is a point of order r on an elliptic curve E(Fq) and k ∈ [0, r[is an integer. The
scalar multiplication is computed with Double-and-add approaches which consist of
sequences of several hundreds of doublings and additions of curve points. It is thus a
costly operation which might be implemented efficiently.

In this paper we consider parallel approaches for software implementation of scalar
multiplication. There are two versions of the Double-and-add scalar multiplication: the
left-to-right and the right-to-left depending on the way the bits of k are scanned. On the
one hand, the left-to-right version cannot be parallelized due to the strong dependence
of the consecutive doublings and additions. On the other hand, the right-to-left version
is easier to parallelize: this was noticed by Moreno and Hasan in [14]. Indeed, in [14], the
authors provide an algorithm consisting in one thread producing the points 2iP through
consecutive doublings, which are then consumed by a second thread performing all the
necessary additions. They did not provide any implementation results of their approach.
In practice this can be challenging to implement efficiently the synchronizations between
the two threads.

When the elliptic curve is defined over a binary field F2m , a formula exists (cf. [11,5])
which computes efficiently the halving of a point, i.e., 1

2P . This makes possible to
perform the scalar multiplication through a sequence of halvings and additions of points.
This can be used to parallelize the scalar multiplication into two totally independent
threads: one thread performing a halve-and-add scalar multiplication and a second
thread performing a double-and-add operation. This approach has been implemented
by Taverne et al. in [18] showing a significant speed-up compared to non-parallelized
versions.

In this paper we first explore the implementation of the two threads parallel approach
of Moreno and Hasan [14]. Specifically, we analyze three different strategies to perform
synchronization between both threads: using signals, mutexes or busy-waiting ap-
proaches, we propose a synchronization strategy based on this analysis. We also study
the best approach for the coding of the integer k: this impacts the number of additions
and post-computations, i.e., the work load of the thread performing the additions.

We then investigate a four thread parallelization of the scalar multiplication in
E(F2m). This approach combines the Double/halve-and-add algorithm of [18] with the
approach of Moreno and Hasan.

We provide experimental results for a curve defined over a prime field p = 2255 − 19
and for the two binary elliptic curves B409 and B233 recommended by NIST. Our
experimental results show that the parallelized scalar multiplication is faster than their
non-parallelized counter-parts.

The remaining of the paper is organized as follows: in Section 2 we review basic
definitions of elliptic curve and scalar multiplication algorithms. In Section 3, we present
our implementation approaches of scalar multiplication. We then provide in Section 4
the experimental results and comparisons with the state of the art. We end the paper
in Section 5 with some concluding remarks.

2 Background on elliptic curve scalar multiplication

In this section, we briefly review basic results concerning elliptic curve and their
use in cryptography. For further details on this matter we refer the reader to [8]. An
elliptic curve over a finite field E(Fq) is the set of point (x, y) ∈ F

2
q satisfying a smooth

curve equation of degree 3 in x and y plus a point at infinity O. A group law can be
defined using the so-called chord-and-tangent approach, providing formula in terms of
point coordinates which compute doubling 2P and addition P + Q in the group. The
element O is the neutral element of the group. Cryptographic protocols are based on
the intractability of the discrete logarithm problem: given a generator of the group P
and a point Q, compute k such that Q = kP . The most costly operation involved in
most ECC protocols is the scalar multiplication: given P ∈ E(Fq) and an integer k,
the scalar multiplication consists in computing kP = P + P + · · · + P (k times). The
elliptic curves used in practice are defined either over prime field Fp with p prime or over
binary field F2m . In the remainder of this section, we briefly review explicit formulas
and algorithms for scalar multiplication over these two fields.

2.1 Scalar multiplication over prime field

Weierstrass Elliptic curve. An elliptic curve E over a prime field Fp is generally
defined by a short Weierstrass equation:

E : y2 = x3 + ax+ b, (a, b) ∈ F
2
p.

Then, in this case addition and doubling on E(Fp) works as follows: let P1 =
(x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1 + P2,
then we have:

{
x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

and

{

λ = y2−y1
x2−x1

if P1 6= P2,

λ =
3x2

1
+a

2y1
+ x1 if P1 = P2.

2

Jacobi Quartic curves over prime field. This curve was suggested by Billet et al.
in [4]. The curve equation of E is:

y2 = x4 − 2δx2 + 1 where δ ∈ Fp defined as δ = 3θ/4.

For such curve, the addition and doubling formulas are unified. Let P1 = (x1, y1), P2 =
(x2, y2), P3 = (x3, y3), be three points of E such that P3 = P1 + P2, then we have:.

{
x3 = (x1y2 + y1x2)/(1− (x1x2)

2)
y3 = ((1 + (x1x2)

2)(y1y2 + 2ax1x2) + 2x1x2(x
2
1 + x22))/(1− (x1x2)

2)2

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic curve:

y2 = x3 + ax+ b where a = (−16− 3θ2)/4 and b = −θ3 − aθ.

Elliptic curve point operations. The most expensive field operation is the inver-
sion which roughly requires several decades of field multiplications. In order to avoid
such operation, additions and doublings utilize projective coordinate system. In our
implementation, we consider two systems: the Jacobian coordinate where the point
(X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3) and the XXY ZZ coordi-
nate system where the point (X : XX : Y : Z : ZZ) corresponds to the affine point
(X/Z, Y/ZZ) with XX = X2 and ZZ = Z2. Explicit formulas for addition and dou-
bling in these systems can be found in [1] The resulting complexities are shown in

Complexity comparison for: Weierstrass Jacobi Quartic curve
point operations with Jacobian coord. with XXY ZZ coord.

Doubling 4M+4S+8R 3M+4S+7R

mixed Addition 9M+3S+12R 6M + 3S+9R

full projective Addition 13M+2S+15R 7M + 4S+11R

Table 1. Weierstrass curve and Jacobi Quartic curve point operations, M = multiplications, S =
squaring, R = field reduction.

Table 1, which shows that the complexities of the Jacobi Quartic curve operations are
better than for the Weierstrass equation case. Moreover, based on the elliptic curve
formula database in [1], the Jacobi Quartic curves provide the most efficient point oper-
ation among all known curves and formulas. This is the reason why we used such curve
and these formulas in our implementations.

Scalar multiplication algorithm. The basic method to perform a scalar multipli-
cation consists in scanning the bits ki of k =

∑t−1
i=0 ki · 2

i and perform a sequence of
doubling followed by an addition when ki = 1. This approach is described in Algo-
rithm 1.

In order to reduce the number of additions, the non adjacent form (NAF) and W-
NAF recoding of the scalar are well-known methods, which reduce the number of non
zero digit representing the scalar. In the binary scalar representation, half of the digits
are either zero or one on average. In the NAF representation, one uses three digits
instead of two: k =

∑t−1
i=0 ki · 2

i with ki ∈ {−1, 0, 1}. There is only t/3 non zero digits
on average now.

3

The W-NAF representation extends this concept by using more digits: k =
∑t

i=0 ki ·
2i with ki ∈ {−(2w−1−1), . . . ,−5,−3−1, 0, 1, 3, 5, . . . , (2w−1−1)}. The number of non
zero digits is now t/(w + 1) on average. Algorithm 1 can be adapted to use k recoded
as NAF or W-NAF. The complexities of the resulting scalar multiplication are given in
Table 2.

nb. of doublings nb. of additions

Double-and-add t t/2

NAF Double-and-add t t/3

W-NAF Double-and-add t+ 1 t/(w + 1) + 2w−2 − 1

Table 2. Complexity comparison between binary, NAF and W-NAF scalar representation.

The reader may refer to [7] for further details and algorithms to compute NAF and
W-NAF representation.

Algorithm 1 Left-to-Right Double-and-add

Require: k = (kt−1, . . . , k1, k0), P ∈ E(F2m)
Ensure: Q = k · P
1: Q← O
2: for i from t− 1 downto 0
3: Q← 2 ·Q
4: if ki = 1 then
5: Q← Q+ P
6: endif
7: endfor
8: return (Q)

Algorithm 2 Right-to-left Halve-and-add

Require: k = (kt−1, . . . , k1, k0), P ∈ E(F2m)
Ensure: Q = k · P

1: Compute k′ = 2t · k mod r =
∑t

i=0
k′i2

i

with t = ⌊log2(r)⌋+ 1
2: Q← O
3: for i from t downto 0
4: if ki = 1 then
5: Q← Q+ P
6: endif
7: P ← P/2
8: endfor
9: return (Q)

2.2 Elliptic Curve Scalar Multiplication over binary field

An elliptic curve E over a binary field F2m is the set of points P = (x, y) ∈ F
2
2m

satisfying the following equation:

E : y2 + xy = x3 + ax2 + b, (a, b) ∈ F
2
2m .

Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), be three points of E such that P3 =
P1 + P2, then we have:

{
x3 = λ2 + λ+ x1 + x2 + a,
y3 = (x1 + x3)λ+ x3 + y1,

where







λ = y1+y2
x1+x2

if P1 6= P2,

λ = y1
x1

+ x1 if P1 = P2.

(1)

Elliptic Curve Scalar Multiplication with halving. It was noticed by Knudsen in
[11] that over a binary field, halving of points is possible in case of points of odd order
since 2 admits an inverse modulo the order of the point. In other words, point halving
is the reciprocal operation of point doubling: given Q = (u, v) ∈ E(F2m), one looks for

4

P = (x, y) ∈ E(F2m), P 6= −P such as Q = 2 · P . Based on equation (1), we know that
x, y, u and v satisfy the following relations:

λ = x+ y/x (2)

u = λ2 + λ+ a (3)

v = x2 + u(λ+ 1) (4)

Consequently, in order to compute P , we first have to solve equation (3) to get λ
(which means solve λ2 + λ = u+ a), then, equation (4) gives x =

√

v + u(λ+ 1), and
finally, equation (2) gives y = λx + x2. The reader may refer to Knudsen in [11] and
Fong et al. in [5] for further details. In practice, this can be implemented efficiently and
has roughly the same cost as two field multiplications (see [18]).

The Double-and-add method can be modified into an Halve-and-add scalar multipli-
cation. Preliminary, we need to change the scalar. Assuming the point P to be multiplied
is of odd order r, we compute k′ = 2t · k mod r =

∑t
i=0 k

′
i2

i with t = ⌊log2(r)⌋ + 1.
Then, we have k ≡ k′/2m ≡

∑t
i=0 k

′
i2

i−m mod r and the scalar multiplication can be
computed as follows:

k · P = (k′t + k′t−1 · 2
−1 + . . .+ k′02

−t) · P.

This can be computed as a sequence of halvings and additions as shown in Algorithm 2.

Cost of elliptic curve point operations. Over a field of characteristic 2, and in
order to avoid the inversions during the computation, which is the most expensive
field operation again, one may use projective coordinate systems. The most interest-
ing systems are the Lopez-Dahab (LD, as shown in [7]) and the Kim-Kim (KK, see
[10]) projective coordinate systems. With such point representation, the addition and
doubling operations do not include any inversion as shown in Table 3, and the whole
scalar multiplication is computed with a significant speed-up. Table 3 shows that the
complexities of KK are slightly better and then, when possible, we give the preference
to the KK coordinate system.

Complexity comparison of the point operations in E(F2m)

LD Doubling 4M+4S+8R

LD mixed Addition 9M+4S+13R

LD full projective Addition 13M+4S+17R

KK Doubling 4M+5S+7R

KK mixed Addition 8M+4S+9R

Affine Halving 1M+1SR+1R+1QS
Table 3. Elliptic curve point operations, M = multiplications, S = squaring, SR = square root, QS =
quadratic solver, R = field reduction.

3 Experimentation

In this section, after a quick review of the implementation strategies used for the
field operations, we expose how we elaborate the parallelized algorithm, taking into
account all the constraints for such concurrent programming.

5

The platform used for the experimentations is an Optiplex 990 DELLr, with a
Linux 12.04 operating system. The processor is an Intel core i7r-2600 Sandy Bridge
3.4GHz. This processor owns four physical cores, which corresponds to the maximum
thread number of our implementations. The code is written in C language and compiled
with gcc version 4.6.3.

3.1 Field implementation strategies

Prime field implementation strategies. We considered the prime field Fp, with
p = 2255−19, which was introduced by Bernstein in [2]. To compute the field operations,
we reused the publicly available code of Adam Langley in [12]. A field element is stored
in a table of five 64 bit words, each word containing only 51 bits. This allows a better
management of carries in field addition and subtraction operations. The multiplications
and squarings are performed with schoolbook method. Squaring is optimized with the
usual trick which reduces the number of word multiplications. The reduction modulo
p = 2255 − 19 consists in multiplying by 19 the 255 most significant bits and adding
the result to the lower 255 bits. An inversion of a field element is computed using the
Itoh-Tsujii method [9]: a−1 ≡ ap−2 mod p, and the exponentiation to p−2 is performed
with a serie of squaring and multiplication.

Binary field implementation strategies. Our implementations deal with NIST
recommended fields F2233 = F[x]/(x233 + x74 + 1) and F2409 = F[x]/(x409 + x87 + 1).
Concerning the binary polynomial multiplication, we apply a small number of recursions
of the Karatsuba algorithm. The Karatsuba algorithm breaks the m bit polynomial
multiplication into several 64 bit polynomial multiplications. Such 64 bit multiplication
are computed with the PCLMUL instruction, available on Intel Core i7 processors. Due
to the special form of the irreducible polynomials, the reduction is done with a small
number of shifts and bitwise XORs. We compute the field inversion with the Itoh-Tsujii
algorithm, that is a sequence of field multiplications and multisquarings performed with
look-up table. For field squaring, square root and quadratic solver (needed in halvings),
we also use a look-up table method, which is the fastest way according to our tests.

3.2 Parallelization

The left-to-right Double-and-add algorithm (see Algorithm 1 page 4) does not allow
any parallelization of the computations, due to the read-after-write dependency inside
each loop iteration, between step 5 (addition) and step 3 (doubling). It is necessary
to use the right-to-left variant of this algorithm (see Algorithm 3) which allows the
parallelization. Indeed Algorithm 3 can be parallelized into two threads as follows:

– A producer-thread performing the sequence of doublings generating the points 2iP .
– An addition-thread accumulating the points generated by the producer-thread.

In the sequential case, the left-to-right Double-and-add algorithm (Algorithm 1) is bet-
ter, because the point addition in step 5 can use a mixed coordinate addition. This is
faster than the full projective addition used in the right-to-left version in step 4 (Algo-
rithm 3). We will see that this penalty is overcome in most of the cases, thanks to the
parallelization.

The Halve-and-add algorithm (Algorithm 2 page 4) can also be parallelized with two
threads. Indeed, since the computation in step 7 of Algorithm 2 only depends on the

6

same step in the previous loop iteration (read-after-write dependency), the sequence of
halvings (step 7) can be performed in a separate thread (the producer-thread) and the
addition in an addition-thread which accumulates the points generated by the producer-
thread.

Algorithm 3 Right-to-left Double-and-add
Require: k = (kt−1, . . . , k1, k0), P ∈ E(Fq)
Ensure: Q = k · P
1: Q← O
2: for i from 0 to t− 1 do
3: if ki = 1 then
4: Q← Q+ P
5: end if
6: P ← 2 · P
7: end for
8: return (Q)

Synchronization between threads. Both parallelization (right-to-left Double-and-
add, Algorithm 3 and Halve-and-add, Algorithm 2) are classical producer-consumer
configurations.

The safest way to guarantee absolute correct computation is to use a strong syn-
chronization device, processing the computation by small batches: the producer-thread
computes and stores a small batch of point doublings/halvings, sends a signal in order
to trigger the addition computation in the addition-thread only concerning the batch
in shared memory. In parallel, the producer-thread goes on with the next batch and the
addition-thread waits the end of each batch before processing the corresponding addi-
tions (in the way described by Mueller in [15] or by Tannenbaum in [17]). In our case,
on the one hand, the batch size has to be small to compute the maximum of additions
in parallel. But on the other hand, if the batches are too small, the synchronization cost
would increase, due to the bigger number of synchronization signals to manage. This is
especially true as the granularity of doublings/halvings and additions (several hundreds
of processor clock cycles) is too low in comparison with synchronization barriers and
signals cost.

The three following methods can be used to synchronize the two threads:

– mutex. A mutex is a mutual exclusion lock provided by pthread library used to
synchronize threads. When a thread holds a mutex, another thread, trying to take
it, is locked, waiting for the releasing of the mutex from the first thread. Mutexes are
generally used to protect critical sections of code. The cost of a lock or an unlock is
about 150-200 processor clock cycles, which is almost negligible.

– signals: they are used in the inter-thread and inter-process communication. A
thread waiting for a signal is put in a sleeping state until another thread sends the
corresponding signal. Then, the thread wakes up and goes on running. The sleeping
state allows savings of resources which are then available for another process. In our
experience and on our platform, the cost to send a signal is about 2000 clock cycles.

– busy-waiting: this method consists in using a shared flag (in the global memory)
and use it to keep the addition-thread in a busy-waiting loop while waiting for the
producer-thread to output the next point and modify the flag. The main drawback
of this method is to waste processor resources.

7

According to our experiments, signals are too costly compared to the two other
techniques. The busy-waiting and mutex techniques almost give the same results in
terms of performance, although the mutex method is slightly better in some cases. Thus
we decided to use exclusively mutexes.

Proposed synchronization method. Our strategy was to avoid the use of mutex
synchronization as much as possible. We chose to use only one single mutex: at the very
beginning of the computation the mutex keeps the addition-thread in an inactive state
while a first batch of doublings or halvings are performed by the producer-thread. At
the end of the computation of this batch, the producer-thread releases the mutex and
pursues the whole sequence of doubling without performing any further locking on the
mutex.

This approach is depicted in Figure 1 while Algorithm 4 presents an algorithmic
formulation in the case of Right-to-left Double-and-add scalar multiplication.

Launches

Thread 2

takes the Mutex

and computes the additions

computes and stores

doublings/halvings
the remaining

stores the final result

and terminates.
in shared memory

Tries to

take the Mutex

Thread 2

starts

computes and stores

doublings/halvings
a batch of

sends the

final result

waits the

end of Thread 2

Thread 2

releases the Mutex

Takes the Mutex

END

START

Thread 1
(producer)

(consumer)

time

Fig. 1. Synchronization and thread processing for our ECSM implementation

The correctness of the final result depends on the size of the first batch of points
before the mutex releasing, which ensures that the writings of the point stored in shared
memory by the doubling thread precedes the reading of the same point by the addition
thread. If this batch is too small and in case of long sequence of zeros in the binary or
NAF scalar representation, one can meet a violation of the read-after-write dependency,
and the computation is not correct. To avoid this configuration, we carefully tuned this
batch size in order to have the error rate as close as possible to zero. In our test results
shown below, this error rate is limited to 0.55%.

The two following methods can be used to eliminate all remaining calculation errors:

– using a modified NAF representation to ensure a limited number of consecutive zeros
in order to have the addition-thread progressing at the same pace as the producer-
thread and then avoid any violation of the read-after-write dependency.

– add a special counter in global memory, incremented after each doubling or halving
which can be checked before the corresponding addition.

8

Algorithm 4 Parallel Double-and-add Elliptic Curve Scalar Multiplication
Require: scalar k, P ∈ F2m .
Ensure: kP .

(Barrier)

Compute Doublings
1: D[0]← P

2: for i = 1 to initialBatchSize do
3: //Doubling LD projective

D[i]← D[i− 1]× 2
4: end for
5: signal to thread addition
6: for i = initialBatchSize+ 1 to M − 1 do
7: //Doubling LD projective

D[i]← D[i− 1]× 2
8: end for

Compute Additions

9: Q← O
10: Wait for signal from thread Doubling

11: for i = 0 to M − 1 do
12: if ki = 1 then
13: //Full LD projective addition

Q← Q+D[i]
14: end if
15: end for

(Barrier)
16: return Q

These improvements are not yet taken into account in this work, and their costs have
to be evaluated.

Impact of scalar recoding. In the sequential case, it is a useful technique to recode
the scalar using NAF and W-NAF to speed-up the computation (as previously men-
tioned in Subsection 2.1 page 3). In the parallel algorithms, the situation is different.
Indeed, the NAF and W-NAF recodings reduce the number of additions performed by
the addition-thread. This fact can be seen when analyzing the amount of computations
performed by the two threads. We can compute this complexity using the number of
doublings and additions for a scalar multiplication given Table 2 along with the com-
plexities of the curve operation in E(Fp) in Table 1 and in E(F2m) given Table 3. For
simplicity we assumed that S = 0.8M in Fp and that a squaring and square root are
negligible in F2m and that the cost of a quadratic solver is roughly 1M . The resulting
complexities are given in Table 4.

Double-and-add Double-and-add Halve-and-add
over Fp over F2m over F2m

Recoding thread thread post- thread thread post- thread thread post-
producer addition comp. producer addition comp. producer addition comp.

binary 6.2tM 5.1tM 0 4tM 6.5tM 0 2tM 4tM 0
NAF 6.2tM 3.4tM 0 4tM 4.33tM 0 2tM 2.66tM 0

W-NAF (w = 4) 6.2tM 2.04tM 33M 4tM 2.6tM 39M 2tM 1.6tM 39M

Table 4. Complexity of the two threads for a t-bit scalar coded in binary, NAF and W-NAF, in
multiplication number.

We remark that, generally, the amount of computation of the addition-thread is
larger than the producer-thread for the binary coding. When using the NAF recoding
the amount of computation of the two threads are roughly the same. Finally the use of
W-NAF makes the amount of computation of the addition-thread significantly smaller
than the producer thread. This means that when using W-NAF recoding, the addition-
thread progresses faster and even would have to wait for the producer-thread to output
new points. But in any case the addition-thread would terminate after the producer-

9

thread. Moreover in the W-NAF case, the post-computations delay the output of the
results after the end of the producing process, since in the parallel algorithms, this final
reconstruction cannot be done before the end of the parallelized additions.

These remarks are confirmed by the chronogram given in Figure 2 which shows the
different timings required by each thread related to the recoding used for the execution
of the parallelized halve-and-add for scalar multiplication in E(F2233). This fact lead us
to opt for the NAF recoding for our implementations.

HALVINGS (81000 cycles)

98000 113000860000
End NAF End W−NAF

W−NAF Additions (51000 cycles)

signal to start W−NAF additions

signal to start binary or NAF additions

Additions (111000 cycles)

131000
End binary

Epilog

binary

Delay for synchronization

Reconstruction (12000−15000 cycles)

Additions (73000 cycles)

Cycle number

NAF

≈ 45000≈ 15000

Fig. 2. Chronogram of the halve-and-add computation with binary, NAF and W-NAF scalar represen-
tation over B233

3.3 Four-thread parallel version over binary elliptic curve

Over binary field, the parallelization proposed by Taverne et al. in [18] splits the
scalar multiplication into two independent threads. Specifically, they split the t-bit
scalar k = k1 + k2 where k1 and k2 are as follows

k = (k′t2
t−ℓ + . . .+ k′ℓ)

︸ ︷︷ ︸

k1

+(k′ℓ−12
−1 + . . .+ k′02

−ℓ)
︸ ︷︷ ︸

k2

. (5)

In general ℓ is close to t/2. Then the computations can be parallelized into one thread
computing k1P with the Double-and-add algorithm and a second thread computing k2P
with the Halve-and-add algorithm.

We propose to combine the approach of Taverne et al. with the parallelization ap-
proach discussed in Subsection 3.2. This results in a four-thread algorithm: the partial
scalar multiplication k1P is computed with the parallel two-thread algorithm //Double-
and-add and k1P is computed with the parallel two-thread algorithm //Halve-and-add.
We show in Table 5 this four-thread algorithm.

This approach is interesting since it increases the level of parallelization, but it also
requires additional thread launching and management. Therefore, this algorithm works
better on large fields, as it will be shown in the next section.

4 Timings

The platform used for the experimentations is an Optiplex 990 DELLr, with a Linux
12.04 operating system. The processor is an Intel Core i7r-2600 Sandy Bridge 3.4GHz,

10

Recode k
k is split in two subkeys (> 0 powers of 2, and ≤ 0 powers of 2).

ւ ց

Double-and-add // (2 threads) Halve-and-add // (2 threads)

Compute
∑t

i=ℓ
k′

i2
i−ℓ · P . Compute

∑ℓ−1

i=0
k′

i2
i−ℓ · P .

thread 1 thread 2 thread 3 thread 4
Compute doublings of P Compute additions Compute halvings of P Compute additions

ց ւ

Final reconstruction
Q = k · P .

Table 5. Four-thread algorithm.

which owns four physical cores. The code is written in C language, compiled with gcc

version 4.6.3. The Hyperthreadingr BIOS and also the Turbo-boostr options have
been deactivated on our platform in order to measure the performances as accurately
as possible.

Since the operating system has the possibility to preempt the resources in order to
launch another task, we avoid such difficulties by choosing to run our codes in a recovery
mode shell. But we noticed that the codes generally run well in normal operating system
conditions too, although perturbations may be observed in a few cases.

Binary Field Prime Field Fp

B233 B409 Weiertrass Jacobi
Quartic

References
Double-and-add 159000 706000 246212 209769

Sequential (W-NAF, w = 4) (NAF)
1 thread Halve-and-add 135000 534000 - -

(W-NAF, w = 4)
2 threads Dbl/Hlv-and-add 98000 347000 - -

(W-NAF, w = 4)
NAF // Double-and-add

mean 130696 620536 207284 175992
2 threads Doublings 117204 599284 166380 132173

Additions-D 109044 536472 115388 86868
error rate 0.3 % 0.1 % 0.15 % 0.15 %

NAF // Halve-and-add

mean 98872 407772
2 threads Doublings 80376 344700

Additions-D 73792 360120
error rate 0.55 % 0.1 %
NAF // Halve-Double-and-add

mean 104492 (ℓ = 95) 326436 (ℓ = 228)
Doublings 70936 260612

4 threads Additions-D 41880 229956
Halvings 61088 194524

Additions-H 28484 193148
error rate 0.55 % 0.55 %

Table 6. Timings (in clock cycles) and typical error rate over 2000 calculations

Table 6 shows the results of our implementations. For each case we provide the de-
tailed duration of each thread: we can remark that generally the overall computation
finishes around 20000 cycles after the producer-thread. These 20000 cycles might cor-
respond to the delayed start of the addition thread. For the four-thread versions, the

11

given value ℓ corresponds to the scalar bit size of the Halve-and-add computation (cf.
(5)).

Concerning the results over F2233 , we remark that of the two-thread parallel Halve-
and-add is almost as competitive as the previously best known approach which is the
two-thread parallel W-NAF Double/halve-and-add over the same field. The four-thread
version is not competitive, this might be due to the synchronization and thread creation
and management cost. Over F2409 , the situation is different since the four-thread version
is now better: it requires 326436 clock cycles whereas the two-thread parallel W-NAF
Double/halve-and-add necessitates 347000 clock cycles.

Concerning the results over Fp, we first remark that scalar multiplication over a Ja-
cobi Quartic is faster than over a Weierstrass curve. This corroborates the complexities
of the curve operations shown in Table 1. We also notice that the tested two-thread par-
allelization provides performance improvements of around 16% compared to the NAF
sequential Double-and-add approach.

Comparison. We give in Table 7 some published results in the litterature. Over,
Fp, the work of Longa is on Intel Core 2 with p = 2256 − 189 and Hamburg is over a
Sandy Bridge with p = 2252 − 2232 − 1. The other works deals with the same processor
and on the same fields as the one considered in this paper. We can see that the proposed
implementations reach and even improve the level of performances of the best known
results found in the litterature.

Scalar Curve Security Method Cycles
multiplication
Hamburg [6] Montgomery 128 Montgomery ladder 153000
Langley [12] Curve25519 128 Montgomery ladder 2290003

Bernstein [3,2] Curve25519 128 Montgomery ladder 194000
Longa et al. [13] jac256189 128 WNAF D&A 337000
Longa et al. [13] ted256189 128 WNAF D&A 281000

This work
WCurve25519 128 //NAF D&A 207000
JQCurve25519 128 //NAF D&A 176000

Nègre et al. [16] B233 112 WNAF D-H&A 98000
Nègre et al. [16] B409 192 WNAF D-H&A 347000

Taverne et al. [18] B233 112 WNAF D-H&A 102000
Taverne et al. [18] B409 192 WNAF D-H&A 358000

This work
B233 112 //NAF H&A 2 th. 99000
B409 192 //NAF D-H&A 4 th. 326000

1 compiled and run on our platform.

Table 7. Performance comparison with the state of the art

5 Conclusion

In this work, we have considered parallelized software implementations of scalar
multiplication over E(F2m) and E(Fp). We first have considered the parallelization sug-
gested by Moreno et Hasan in [14] which splits the right-to-left scalar multiplication
into two threads: one producer-thread computing 2iP or 2−iP for i = 1, . . . , t and one
addition-thread which accumulated these points to compute kP . We have proposed a
lightweight approach for thread synchronization and have evaluated the best approach
for the scalar recoding. In the special case of E(F2m) we have combined this approach to
the parallelized Double/halve-and-add approach of [18]. The experimental results show

12

that these parallelization techniques provide some speed-up on elliptic curve scalar mul-
tiplication computations compared to previously best known implementations. Indeed,
over prime field and binary fields, in most cases the parallelization provides an improve-
ment of roughly 15% on the computation time.

References

1. Explicit formula database, 2014. http://www.hyperelliptic.org/EFD/index.html.
2. D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key Cryptography,

pages 207–228, 2006.
3. D.J. Bernstein and Lange T. (eds). eBACS: ECRYPT Benchmarking of Cryptograhic Systems.

http://bench.cr.yp.to/, 2012. accessed May 25th, 14.
4. O. Billet and M. Joye. The Jacobi Model of an Elliptic Curve and Side-Channel Analysis. In

AAECC, pages 34–42, 2003.
5. K. Fong, D. Hankerson, J. López, and A. Menezes. Field Inversion and Point Halving Revisited.

IEEE Trans. Computers, 53(8):1047–1059, 2004.
6. Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report

2012/309, 2012. http://eprint.iacr.org/.
7. D. Hankerson, J. López Hernandez, and A. Menezes. Software Implementation of Elliptic Curve

Cryptography over Binary Fields. In CHES 2000, volume 1965 of LNCS, pages 1–24. Springer,
2000.

8. D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer,
2004.

9. T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using
Normal Bases. Inf. Comput., 78(3):171–177, 1988.

10. K.H. Kim and S.I. Kim. A New Method for Speeding Up Arithmetic on Elliptic Curves over Binary
Fields. Technical report, National Academy of Science, Pyongyang, D.P.R. of Korea, 2007.

11. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In ASIACRYPT, pages 135–
149, 1999.

12. A. Langley. C25519 code. http://code.google.com/p/curve25519-donna/, 2008. http://code.

google.com/p/curve25519-donna/.
13. P. Longa and C. H. Gebotys. Efficient Techniques for High-Speed Elliptic Curve Cryptography.

In CHES, pages 80–94, 2010.
14. C. Moreno and M. A. Hasan. SPA-Resistant Binary Exponentiation with Optimal Execution Time.

J. Cryptographic Engineering, 1(2):87–99, 2011.
15. F. Mueller. A Library Implementation of POSIX Threads under UNIX. In USENIX Winter, pages

29–42, 1993.
16. C. Nègre and J.-M. Robert. Impact of Optimized Field Operations ab, ac and ab + cd in Scalar

Multiplication over Binary Elliptic Curve. In AFRICACRYPT, pages 279–296, 2013.
17. A. S. Tannenbaum. Modern Operating Systems, 2009. http://www.freewebs.com/ictft/sisop/

Tanenbaum_Chapter2.pdf.
18. J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodríguez-Henríquez, D. Hankerson, and J. López.

Speeding Scalar Multiplication over Binary Elliptic Curves using the New Carry-Less Multiplica-
tion Instruction. J. Cryptographic Engineering, 1(3):187–199, 2011.

A Appendix: Curve Parameters

A.1 Elliptic curves over binary field

The curve equation is:

y2 + xy = x3 + x2 + b where b ∈ F2m .

The parameters are for B233:

a = 1,
h = 2,

f(x) = x233 + x74 + 1,
b = 0x00000066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad,
n = 0x00000100 00000000 00000000 00000000 0013e974 e72f8a69 22031d26 03cfe0d7.

13

http://www.hyperelliptic.org/EFD/index.html
http://bench.cr.yp.to/
http://eprint.iacr.org/
http://code.google.com/p/curve25519-donna/
http://code.google.com/p/curve25519-donna/
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf
http://www.freewebs.com/ictft/sisop/Tanenbaum_Chapter2.pdf

where the order of the curve is n× h. For B409 we have:

a = 1,
h = 2,

f(x) = x409 + x87 + 1,
b = 0x0021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 4761fa99 d6ac27c8

a9a197b2 72822f6c d57a55aa 4f50ae31 7b13545f,
n = 0x01000000 00000000 00000000 00000000 00000000 00000000 000001e2 aad6a612

f33307be 5fa47c3c 9e052f83 8164cd37 d9a21173.

A.2 Elliptic curves over prime field

The curve equation is:

y2 = x3 − 3x+ b where b ∈ Fp.

The parameters are:

p = 2255 − 19
b = 0x1d09bac9ffe9e7f8284aed0442552779bcdef2e62b9cb1d568513fa798b94003

number of points:
n = 0x800000000000000000000000000000012c18945a05ad7f2edf026258ea5288ef

n is prime.

A.3 Jacobi Quartic curves over prime field

The curve equation is:

y2 = x4 − 2δx2 + 1 where δ ∈ Fp.

The parameters are:

δ = 0x71654f32f99009203353b6c408b839a9fb1ee8b08e9fc5490cb35b4e8acca06b

number of points:
n = 0x800000000000000000000000000000002672bdbb41f31390c5527cab6e282744

= 4 · 0x20000000000000000000000000000000099caf6ed07cc4e431549f2adb8a09d1

δ is defined as:

δ = 3θ/4
with:
θ = 0x1731beeea2156180446f9e5ab64af78d4ed3e0eb68d5070c10ef2468b910d5f7

The Jacobi Quartic curve is isomorphic to the following Weierstrass elliptic curve:

y2 = x3 + ax+ b

where: a = (−16− 3θ2)/4 and b = −θ3 − aθ. Hence, in our case:

a = 0xc500be2450246d16c114830a5d1aef9c2b80c567b4fd87562c69db659713ad2,

b = 0xa38f53e5d27462dcdada9a78b9eac482ef06e855af92ca704060c551a9a5854.

14

	Software Implementation of Parallelized ECSM over Binary and Prime Fields
	Bibliographie

