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Abstract

A fine-grained segmentation of Radio or TV broadcasts is an essential step
for most multimedia processing tasks. Applying segmentation algorithms to
the speech transcripts seems straightforward. Yet, most of these algorithms
are not suited when dealing with short segments or noisy data. In this paper,
we present a new segmentation technique inspired from the image analysis
field and relying on a new way to compute similarities between candidate
segments called Vectorization. Vectorization makes it possible to match text
segments that do not share common words; this property is shown to be par-
ticularly useful when dealing with transcripts in which transcription errors
and short segments makes the segmentation difficult. This new topic segmen-
tation technique is evaluated on two corpora of transcripts from French TV
broadcasts on which it largely outperforms other existing approaches from
the state-of-the-art.

Keywords: Watershed Transform; Image Segmentation; Vectorization;
Topic Segmentation

1. Introduction

Topic segmentation is of high interest in Multimedia information retrieval.
Indeed, it is needed to perform automatic structuring of TV streams, a key-
stone for every processing of such streams, which is still done manually in
national archive agencies like the French INA. A way to obtain this struc-
turation is to first transcribe the audio tracks of the TV streams into textual
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data, and then perform the topic segmentation from textual data to split the
streams into semantic units (e.g., reports).

In this paper we address the problem of topic segmentation of speech in
this applicative framework based on a twofold contribution1. First, our topic
segmentation system is based on the watershed paradigm derived from image
segmentation. Second, a key component for this approach is the calculation
of the similarity between two successive possible segments; in this paper we
present a new technique, called vectorization that we recently introduced in
the information retrieval field.

The paper is organized as follows. We first present state-of-the-art ap-
proaches used for topic segmentation. We then show that topic segmentation
and image segmentation have common characteristics (Sec. 3). From this
observation we build a topic segmentation method based on the watershed
transform, a common morphological tool that identifies segments or regions
within a topographic surface. We suggest to build this topographic surface
with the help of vectorization which we think is especially suited when deal-
ing with small segments or noisy data such as TV streams (Sec. 4). A first
set of experiments, whose goal is to assess the performance of this approach
on a standard segmentation benchmark, is presented in Sec. 5. Then, ex-
periments performed on two real TV broadcast corpora are presented and
discussed (Sec. 6). Finally, Sec. 7 concludes this work and provides future
research directions.

2. Related work

This section is divided into two parts. The first one presents state-of-the-
art techniques for topic segmentation. In the second subsection, we compare
those techniques and image segmentation ones and show that both fields
share many similarities that explain our choice of the watershed transform
as a basis for our approach.

2.1. Approaches for topic segmentation

Topic segmentation in TV streams has addressed in several ways in the
literature. Multimodal approaches have been proposed, which makes the
most of audio, visual and speech features. For instance, segmentation of TV

1Preliminary versions and results of this system have been published in Claveau and
Lefèvre (2011)
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news reports have been explored in TRECVID competition2 (Amir et al.,
2004, for a representative multimodal system). It is worth noting that most
of the approaches proposed chiefly rely on training data and do not extend
well to other dataset as they focus on superficial clues such as anchor person
recognition or background colors. While Poulisse and Moens (2009) have
shown the interest of adding multimodal features to improve text-based story
segmentation, in the remaining, we only focus on text only approaches.

Various approaches have been applied to speech or text based topic seg-
mentation. Several methods rely on some particularities of the document
format, on the detection discourse markers either given by experts (Chris-
tensen et al., 2005), or automatically learned (Beeferman et al., 1999). Such
techniques require well-formed text and especially a grammatically correct
sentence tokenization; they are therefore not suited for texts generated from
automatic speech recognition (ASR) systems in which the concept of sen-
tence can rarely match with the oral specifics. Conversely, another kind of
approaches is to detect topic changes through document content analysis.
These content-based approaches yield high performances and they are less
dependent to the document formatting. The overall good quality of mod-
ern ASR systems (Ostendorf et al., 2008) makes the use of such approaches
on transcribed texts possible (Mulbregta et al., 1999). This is also the ap-
proach adopted in our system. In the following, we present representative
content-based techniques from the state-of-the-art.

The segmentation process of segmenter (Kan et al., 1998) relies on a
representation of the text as weighted lexical chains. Finding the boundaries
is thus equivalent to partitioning the resulting graph. The two approaches
in dotplotting (Reynar, 2000) and C99 (Choi, 2000) differ in the way
the content is represented, but both rely on the computation of similari-
ties between the candidate segments and then on a clustering based on the
resulting similarity matrix. Utiyama and Isahara (2001) propose to use a
statistical approach based on hidden Markov models. Here again, the lex-
ical cohesion, key component of the approach, is measured classically with
the help of language modeling. The computation of similarity is also at the
heart of the text-tiling system (Hearst, 1997), in which a sliding window
is used to compare the content before and after each possible boundary. The
similarity measure used is inspired from the information retrieval domain

2http://www-nlpir.nist.gov/projects/tv2004/tv2004.html
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(for instance, a cosine computed from TF or TF-IDF vector representation
of the context), and the final boundaries are searched among the places in
which the lexical cohesion reaches a significant local minimum. It is worth
noting that the approach proposed in this paper can be seen as an modern
version of text-tiling in which the similarity computation is done through
vectorization (see Sec. 4) and in which the watershed extends the simple
boundary detection process used in the original version of text-tiling (cf.
next subsection).

These approaches or similar ones have been used on transcribed texts,
especially for the story segmentation of broadcast news (Merlino et al., 1997;
Stokes et al., 2002; Rosenberg and Hirschberg, 2006; Misra et al., 2010, inter
alia). To the best of our knowledge, no extensive comparison of them exists
for transcribed texts, but all these different approaches have been compared
on well-formed texts for different languages (Choi, 2000; Sitbon and Bellot,
2004, respectively on English and French). It is worth noting that all these
approaches rely on the word repetition to compute some kind of similarity
in order to decide if the topic is changing or not. Therefore, it has been
noticed that dealing with segments with very few common words, like short
segments or segments with many transcription errors caused by ASR in a
noisy environment, is very challenging for this family of approaches. In order
to limit the impact of this problem, several authors have proposed to use
existing lexical resources or to build them. For instance, Ferret (2009) has
compared these two ways, endogenous and exogenous, to bring additional
semantic and lexical information to improve the segmentation system. More
recently, Guinaudeau et al. (2010) integrated semantically related terms to
the segmentation model of Utiyama and Isahara (2001) in order to extend the
description of the possible segments. Our approach, thanks to the properties
of the vectorization, is expected to be more suited for this kind of problem
(cf. Sec. 4).

2.2. Analogies with image segmentation

Although the topic segmentation systems presented above were devel-
oped in different theoretical frameworks, it is interesting to highlight some
conceptual similarities that they share with our watershed transform frame-
work inherited from the image segmentation domain.

First, the boundaries produced by text-tiling (Hearst, 1997) corre-
spond to areas where lexical cohesion between the text blocks preceding and
following the boundaries is associated with a significant local minimum (what
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Hearst names depth score of valleys). Minima that are selected are associated
with areas where cohesion is significantly different from neighboring blocks.
No formalization of this boundary detection process is proposed by Hearst
(1997), and the choices made are pragmatically justified. Yet, as it is already
noted by Hearst (1997, sec 5.3), text-tiling’s boundary detection tech-
nique tends to miss real boundaries or add spurious ones due to variations
along the slopes of the valleys or when dealing with plateaus. On the princi-
ples, this approach is very similar to the morphological segmentation using
watershed transform on which we build our proposal (see next section), but
differs in the implementation. Building on the feedback from the image seg-
mentation literature, it is expected that our watershed formalization yields
better results. In particular, our boundary detection technique does not deal
with cohesion but its inverse form, considered as a topographic surface and
expressed through a gradient, as it is considered as more reliable to extract
significant peaks between valleys or plateaus. Moreover, the image analysis
field brings us techniques (e.g., considerations on the depth of catchment
basins, and subsequent merging strategies) to overcome the weak signal vari-
ations that may mislead the boundary detection of text-tiling. Beside
that algorithmic difference concerning the boundary detection, our approach
can be seen as an improved variant of text-tiling in which the cohesion
(or gradient) is computed more cleverly (see Sec. 4).

This comparison with the watershed transform and text-tiling is rather
straightforward, but other links between image and text segmentation can
also be drawn. This parallel seems, on the one hand, conducive to a better
understanding of the topic segmentation methods and how they relate to
ours, and on the other hand, a potential source of improvements by making
better use of developments in both fields.

For instance, the statistical approach of Utiyama and Isahara (2001),
based on hidden Markov models, can be compared to the numerous image
segmentation techniques relying on Markov chains or Markov fields (Salzen-
stein and Collet, 2006). For both domains, these techniques are known to
adapt well to noisy data (for example, speech transcripts or textured images),
but also requires high computation times.

In the segmenter approach (Kan et al., 1998), the segmentation relies
on lexical chains built from weighted links between terms in the text stream.
This graph representation, also used in other segmentation systems, is thus
similar to the very popular graph-based image analysis framework (Shi and
Malik, 2000). Depending on the size and graph morphology, these approaches
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also tend to suffer from a high algorithmic complexity.
The dotplotting (Reynar, 2000) and C99 (Choi, 2000) systems, al-

though based on different representations of the text, both rely on a clus-
tering step to group coherent segments. This clustering step is also used in
many image segmentation systems (Gonzalez and Woods, 2008)

3. Topic segmentation as morphological segmentation

In this section, our topic segmentation approach is presented. By mak-
ing an analogy with the image segmentation problem (subsection 3.1), we
show that the text segmentation problem can also be modeled so as to be
solved with a watershed transform (subsection 3.2), extending then the sem-
inal text-tiling approach of Hearst (1997). As a key component, the way
to compute the similarity between parts of the stream is discussed in subsec-
tion 3.3.

3.1. Morphological segmentation

Mathematical morphology is both a rich theoretical framework and a com-
plete toolbox mostly used in the image processing community. Particularly,
it has been extensively used for image segmentation, which aims at splitting
an input image into a set of uniform regions given a predefined uniformity
criterion (intensity or colour, texture, etc.). The most famous morphological
method for image segmentation is certainly the watershed transform.

We recall very briefly the principle of watershed-based segmentation (Vin-
cent and Soille, 1991, for a comprehensive presentation). The image I to be
segmented is first represented as a function f describing a topographic sur-
face. Watershed lines identified on this surface are then associated to region
frontiers resulting from the segmentation process. One common way to im-
plement it, called the immersion paradigm, is to simulate the progressive
flooding of the surface starting from its local minima, and then to build
dams to avoid merging water from two different catchment basins. At the
end of the process, dams correspond to the watershed lines or, in other words,
to the region frontiers (see Fig. 1).

Most often, this approach is not directly applied on the image I to be
segmented. Before applying the segmentation, an image transform is rather
performed as a preprocessing in order to highlight values of edge pixels and
to lower pixel values in homogeneous areas. A gradient (noted ∇ hereafter)
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Figure 1: Example of a watershed in 1-D: the altitude of each pixel p is defined by its
intensity I(p) in the image to segment.
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is thus usually computed to enhance transition areas (which generally corre-
spond to object frontiers). Therefore, the function f on which the watershed
transform is applied is usually already the result of a transform of the initial
image. In practice, various gradient computation methods can be used. Its
choice is of high importance, since it will directly influence the segmentation
result produced by the watershed method.

As noted by Vincent and Soille (1991), although the watershed concept
is simple, its formalization is more complex and may take many forms. We
reuse here the notations from Roerdink and Meijster (2001). The watershed
relies on the notion of topographical distance; for a continuous function f
defined over a domain D, the topographical distance between points p and q
of D is defined as

Tf (p, q) = inf
γ

∫
γ

‖∇f(γ(s))‖ds (1)

that is, the infimum over all paths (smooth curves) γ inside D with γ(0) = p
and γ(1) = q. The path of steepest slope between p and q is the one with
the shortest Tf -distance.

Let us now consider the minima of f , noted {mk}k∈I . The catchment
basin CB(mi) of a minimum mi is defined as the set of points x ∈ D which
are topographically closer to mi than any other minimum mj, that is:

CB(mi) = {x ∈ D|∀j ∈ I \ i, f(mi) + Tf (x,mi) < f(mj) + Tf (x,mj)} (2)
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Finally, the watersheds of f are defined by the set of points which do not
belong to any catchment basin:

WS(f) = D \ (∪i∈ICB(mi)) (3)

In the case of digital images, this general definition has given birth to
many implementations to deal with discrete data (i.e. pixels are defined as
positive integers taking values in Nd or most often as subset of it, e.g., [0, 255]
for greyscale images). In this paper, we adopt the algorithmic approach by
immersion proposed by Vincent and Soille (1991), which relies on a recursive
definition of the building of the basins (see below for the adaptation of this
algorithm in our case). More approaches as well as other definitions and an in-
depth discussion of their respective advantages and drawbacks are discussed
in (Roerdink and Meijster, 2001).

3.2. From image to text

The analogy between image and text segmentation can be drawn very
simply. The pixel is the base element in the image and is described by its
greylevel or color/multispectral values. Its equivalent in texts is the sentence
(or sometimes the paragraph) which is described by the words it contains.
In our framework of multimedia information retrieval, our texts are obtained
from automatic transcription. Thus, the transcribed utterances are the min-
imal units of the text (i.e., they are equivalent to image pixels) and topic
breaks will be sought between them. In both case (pixels and texts), elemen-
tary units take their coordinates in a discrete space (grid or line).

Besides, our texts are flows of utterances. They are then represented
as 1-D signals, while images are most often 2- or 3-dimensional. However,
nothing prevents the watershed technique to be applied on a single dimension
as shown in Fig. 1. Thus our approach relies on a gradient computed on the
sequence of utterances, and topic breaks are identified using the watershed
transform (Claveau and Lefèvre, 2011). Gradient computation, which is a
key step of the segmentation process, is detailled in Sec. 4. The watershed
technique used here follows the immersion paradigm described previously,
but simplified as we handle a 1-D signal. While the utterance indices are
discrete, their associates values computed with the vectorization process are
here continuous.

More precisely, let f : D → R be this signal, defined on the stream
of utterances D, with hmin and hmax the minimum and maximum values
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observed in f . In this case, the immersion algorithm of Vincent and Soille
(1991) is a simple recursion on the “altitude” h increasing from hmin to
hmax. The basins associated with the minima of f are successively expanded.
Let Xh denote the union of the set of basins computed at level h. Any
point of D at level h′ � h (with � defining the successive operator, i.e.
h′ � h ⇔ @k, h < k < h′) can be either 1) a new minimum, or 2) an
extension of a basin in Xh if p is adjacent (previous or next utterance) to one
and only one point in a basin of Xh, or 3) a watershed point if it is adjacent
to two different basins of Xh. In the first case, a new basin is added and in
the second case, the point is included in the existing basin, resulting in an
updated set Xh′ . Finally, the watershed of f is the complement of Xhmax in
D, that is, the points labeled as watershed.

A known caveat of the immersion algorithm is that it tends to produce
over-segmentation. In order to prevent this, two classical strategies are used.
First, as a preprocessing, we have included a gradient smoothing step to re-
move irrelevant local minima. It is simply done by taking at each point the
median value of the function over the three preceding and following utter-
ances. Text-tiling algorithm proceeds similarly by applying a sequence
of mean filters on the signal. As a post-processing of the immersion algo-
rithm, a basin merging is performed following a strategy inspired by Najman
and Schmitt (1994). It is based on the dynamics and volumes of the basins;
the dynamic of a basin is defined by the minimum height which has to be
overcome in order to reach a basin with lower or equal minimum altitude.
Merging between the two basins occurs if the volume of water that is caught
in the first basin up to the highest in-between altitude is significantly lower
than the one in the second basin. This is illustrated on Fig. 2: on the left, the
two basins can be merged (i.e. the dam in b2 is removed), since the volume

of the left basin, defined as
∫ b1
a1
h1 ∗ f(x)dx, is small compared with the right

basin’s one, i.e.
∫ c1
b1
h1 ∗ f(x)dx. To the contrary, on the right, although the

right basin and dynamic of the left basin are identical to previous case, the
two basins are not merged. It is worth noting that text-tiling, given the
same signal, would handle the two cases in a same way (i.e. the minima of
the first basins in the two configurations would both be kept as boundaries
or both rejected depending on global characteristics of the whole signal).
This merging process is repeated until no more merging is proposed. In the
experiments proposed in this paper, the dynamics and volume thresholds are
simply the following ones: the merging of basin X with basin Y is allowed if
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Figure 2: Merging based on the dynamic and volume of basins. On the left, merging is
allowed; on the right the basins are not merged.

the dynamics and volume of X are (both) lower than Y ’s ones (see Sec. 6.4
for a discussion on this setting).

3.3. Text similarity as topic gradient

A gradient is computed between each utterance. In other words, we
compute the similarity using the vectorization principle between previous
and next utterances. Let us note that we do not compare only the previous
to the next utterance, but we also consider the n previous ones vs. the
n next ones (similarly to common approaches for topic segmentation such
as text-tiling). Computing similarities or distances between texts is a
common task in Natural Language Processing and Information Retrieval.
One of the best known technique is the TF-IDF/cosine (Salton, 1975): the
texts, considered as bags-of-words, are represented in a vector space; each
dimension represents the importance of a word in the text, given by its TF-
IDF weight (TF and IDF respectively stand for Term Frequency and Inverse
Document Frequency). More formally, the weight w of a term t in the text
d is defined by:

wTF−IDF (t, d) = tf(t, d) ∗ log(N/df(t)) (4)

where tf is the number of occurrences or frequency of term t in the con-
sidered text, df is its document frequency, that is, the number of texts in
which it appears, N is the total number of texts. The complete vector
is thus: TF-IDF(d) = [wTF−IDF (t1, d), wTF−IDF (t2, d), ..., wTF−IDF (tn, d)],
where t1, . . . , tn are the words occurring in the whole text stream to seg-
ment. Once represented as (TF-IDF weighted and possibly normalized)
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vectors, two texts can then be compared by computing a cosine similar-
ity or an L2 distance between them. Note that for normalized vectors,
cosine and L2 produce comparable results since for any vectors u and v:
δL2(u, v) =

√
2− 2 ∗ δcos(u, v).

In our experiments (Sec. 5 and 6), a more modern weighting scheme is also
tested. This similarity measure, called Okapi-BM25 (Robertson et al., 1998),
can be viewed as an improved TF-IDF while yielding usually much better
results. Due to its good results in various IR experiments, this weighting
scheme is often considered as a challenging baseline. Its definition is given
by

wBM25(t, d) = TFBM25(t, d) ∗ IDFBM25(t)

=
tf(t, d) ∗ (k1 + 1)

tf(t, d) + k1 ∗ (1− b+ b ∗ dl(d)/dlavg)
∗ log

N − df(t) + 0.5

df(t) + 0.5
,

(5)
where k1 = 2 and b = 0.75 are constants, dl is the text length, dlavg is the
average text length.

As it was announced in the introduction, a new similarity measure called
vectorization is also proposed in this paper. Its description is given in the
following section.

Whatever the similarity measure used and similarly to some image gradi-
ent computation methods, we give more importance to close utterances and
less importance to utterances which are far from the candidate edge. This is
ensured through a simple convolution with a kernel (e.g., Gaussian kernel).
Let us notice that the way the convolution is applied depends on the way
the documents are represented and on the similarity/distance model chosen.
With a TF-IDF or Okapi vector model, this convolution is very simply im-
plemented: when computing tf(t, d), the occurrence of a word counts for one
in the breath group which is the closest from the candidate edge, but counts
for less when considering an occurrence from a breath group further of the
candidate edge. In our experiments, a linear penalty is applied. From now,
we write Cprev(i) (respectively Cnext(i)) the result of the convolution operator
applied on utterance i and those which are preceding (respectively following)
it. In the experiments reported in this article, the default size of the context
is 100 breath groups or sentences; see Sec. 6.4 for experiments and discussion
on this point. Formally, the gradient, computed with TF-IDF weights for
instance, is defined by

∇(i) = δL2(TF-IDF(Cprev(i− 1)),TF-IDF(Cnext(i))) (6)
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In the experiments reported below, utterances are represented by their
starting time. For a given time index, the higher the gradient is, the more
important the dissimilarity between previous and next groups is. In other
words, significant local maxima of gradient values indicate a topic break.
Fig. 3 shows an example of gradient computed with vectorization on one
document of one of our experimental collection (see below). This document
contains 4 segments whose boundaries are indicated in plain green; the topic
limits detected by our approach are represented by dashed lines. We recall
that in our approach, we do not apply the watershed transform directly on
the input signal (in red) but rather filter it with some post-processing tech-
niques to remove local variabilities and thus ease the detection of the segment
boundaries. We then expect that topic segment boundaries correspond to the
gradient most significant maxima extracted by the watershed transform.

Figure 3: Gradient vs. starting time of utterances

4. Vectorization as a robust gradient

4.1. Vectorization principles

Vectorization is an embedding technique which aims to project any sim-
ilarity computation between two documents (or one document and one re-
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quest in the context of IR) in a vector space. It has been introduced and
experimented in a standard IR scenario (Claveau et al., 2010) where it has
shown to provide both a low complexity and accurate results. It can also be
linked to previous work that has been made in the image segmentation field
(Derivaux et al., 2010) where the watershed technique operates on a gradient
image built from fuzzy classification of pixel values. In the remaining of the
section, we recall vectorization main characteristics.

Its principle is relatively simple. For each document of the considered
collection, it consists in computing with an initial similarity measure (e.g.,
standard similarity measure used in IR), whatever it is, some proximity
scores with m pivot-documents. These m scores are then gathered into a
m-dimensional vector representing the document (cf. Fig. 4).

Comparing two documents (or a document and a request) can then be
performed in a very standard way in this vector space (e.g., using an L2
distance). Many algorithms are available to compute or approximate very
efficiently such distances.

Figure 4: Vector design from pivot-documents

similarity

Doc used
as a query

Pivot doc 1 Pivot doc 2 Pivot doc m

...

...Score Score Score

initial model

similarity
initial model

similarity
initial model

More formally, we note Vect(D,P , Sim) the vector representing the doc-
ument D built from the initial similarity measure Sim on pivot-documents
P . For instance, Vect(D, [P1, P2, P3],TF.IDF/cosine) is a 3-dimensional vec-
tor; its first component is the similarity score between the document D and
the pivot-document P1 returned by a system using TF.IDF representation
associated to the cosine distance measure (as explained in Sec. 3.3, it corre-
sponds to a very standard way to compute similarities in the IR field), and
so on for the next components.
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4.2. Properties
Several studies have suggested, for various reasons, representations dif-

ferent from standard vector model. Among these, the Generalized Vector
Space Model (GVSM) (Carbonell et al., 1997), responds to criticism that the
words are a poor basis for the vector space as they are not independent of
each other. The GVSM uses the dual space, where the documents form the
basis of this space, and can be more easily considered as independent.

The many LSI (Latent Semantic Indexing) variants (Deerwester et al.,
1990) also belong to this family. This includes techniques using pLSA (prob-
abilistic Latent Semantic Analysis) (Hofmann, 1999), principal component
analysis (PCA) (Berry and Martin, 2005), LDA (Latent Dirichlet Alloca-
tion) (Blei et al., 2003), and even random linear transforms (Vempala, 2004).
These methods all start from the classic vector model which they transform
the matrix terms × documents, noted M hereafter, with the primary effect
of reducing it. Our approach, when used on a vector system, shares many
links with these techniques. But it is more generic because it applies to any
form of IR model, provided that it outputs a score to represent the rele-
vance of a document to a query. For instance, in the LSI model, a Singular
Value Decomposition is applied to the term-document matrix M (possibly
TF-IDF weighted), resulting inM = USV T , where U is a term–latent topics
matrix, S is the diagonal matrix containing the singular values and V is a
document–latent topic matrix. The projection of the documents in the new
space defined by the topics is UTM = SV T . In our approach, it is possible
to mimic this with a particular setting: we adopt a vector representation for
the documents, resulting in the same (possibly TF-IDF weighted) matrixM,
the pivot-documents are crafted such that each pivot contains the word rep-
resentation of a topic (that is, P = U), we choose the cosine as the similarity
function; with documents and pivots being normalized, it is equivalent to a
scalar product. In that case, the document D, here considered as a vector, is
represented by Vect(D,P ,TF.IDF/cosine) = PTD, and more generally, the
whole document collection is represented in the new vector space by PTM,
exactly as for LSI. Of course, LSI provides a way to build the orthogonal
base U , while vectorization does not for P , but as it is suggested by Random
indexing results, this property is not necessary for achieving good results. In
our task of story segmentation, building P from random segments of the text
stream seems to ensure a good representation of the different topics.

It is also important to notice that vectorization results in a change of rep-
resentation space, contrary to existing works consisting rather of a dimension
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reduction or a distance approximation (e.g., Abraham et al., 2006). This
space transform offers several nice properties which will be discussed here.

The first interest of this embedding is to reduce complexity when the
initial similarity computation may be computationally expensive (e.g., some
graph comparison computations used in complex IR systems). In an IR
context, vectors associated with each document may be built offline, and
when a request has to be processed, we only need to compute its similarity
with the m pivot-documents rather than with all documents in the collection.
This property is nevertheless not useful in the context of a segmentation task.

The second nice property comes from the fact that two documents will
be considered as similar if they are similar to the same pivot-documents.
This indirect comparison, or second-order affinity, let us compare two textual
documents which do not share any common word. This property will be
helpful in our segmentation task. Indeed, it will solve the problem brought
by the lack of repetition between utterances. This problem is particularly
noticeable when the segments to be compared are of short duration (i.e., they
will contain less words, and thus will share only a few words in common in
the best case, and no common word in the worst case).

4.3. About complexity

Techniques for rapid calculation of distances in vector spaces have also
been studied. These techniques can allow our approach to dramatically re-
duce its complexity. To save processing time, these techniques address either
the completeness of the search or the accuracy of distance calculation. In-
deed, the hashing-based techniques, used for retrieving similar documents
or detecting plagiarism (Stein, 2007) tackle the completeness: the space is
divided into portions, and the research is conducted on a subset of these
portions. In this family, the LSH (locally-sensitive-hashing) approach (Datar
et al., 2004) uses hash functions to restrict the search space to an hyper-ball
centered on the approximate query point with a radius set by the user. An
exact L2 distance is then calculated with every element of this ball.

The NV-tree (Lejsek et al., 2008) pushes this approach further: it builds
portions from the concatenation of multiple random projections of points in
space, analyze one portion for each query, which portion size is calculated to
generate a single disk access. In addition, the NV-tree computes approximate
L2 distances, which further reduces the cost of the matches. Finally, it
provides results in O(1) (constant time corresponding to a single disk access),
whatever the number of points in the space.
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4.4. Vectorization for segmentation

In experiments described in the following section, the initial similarity
measure used in the vectorization process is an L2 distance associated with
a weighting of utterances by

√
TF . It means that we first represent each

breath group by a sparse vector in which each dimension represents a word;
the value for this dimension is the square root of the number of occurrences of
the word in the breath group. The same is done for the pivot-document. The
distance between the breath group vector and the pivot vector is computed
with an L2 distance; the resulting value forms one of the dimensions of the
new vector.

As explained in the previous section, in our segmentation system, we give
a greater importance to utterances close to the candidate edge (and lower
importance to distant utterances) with a simple convolution whose results
are noted Cprev(i) and Cnext(i). With these notations, the gradient computed
with vectorization is thus formally defined by:

∇(i) = δL2(Vect(Cprev(i− 1),P ,
√
TF/L2),Vect(Cnext(i),P ,

√
TF/L2)) (7)

In the experiments reported below, the pivot-documents that we are using
are sequences of sentences (respectively, utterances when dealing with tran-
scribed texts) built from random splits of the considered document (resp.,
broadcast). More precisely, several random splits are generated providing
overlapping segments of different sizes as illustrated in Fig. 5. The only pa-
rameter given is an approximate number of pivots expected; the size of each
pivot is randomly selected but cannot be lower than two sentences (to prevent
too specific pivots) or greater than half the document (to prevent too broad
and uninformative pivots). It is obvious that the number of pivots must be
greater than the number of segments to ensure good results. But it worth
noting that the number of pivots, if above this minimal threshold, does not
impact the results: indeed, additional pivots add redundancy in the repre-
sentation which is not harmful to the relevance of the distance computation
(however, it adds computational complexity). In the experiments presented
below, we have set this number to 5 000, that is expected to be far greater
than the number of segments.

5. Preliminary experiments

In this section, we provide a first comparison between different variants
of our segmentation technique and state-of-the-art systems on well-formed
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Figure 5: Pivot-documents randomly generated from the document to be segmented

written texts. To do so, we use the benchmark developed by Sitbon and
Bellot (2004) that we present hereafter before introducing the evaluation
measures and discussing the obtained results.

5.1. Experimental data

As it was previously mentioned, the different existing segmentation al-
gorithms have been tested and compared with specially crafted evaluation
data. Such test sets have been developed for many languages, including
English (Choi, 2000) or French (Sitbon and Bellot, 2004), and are usually
artificially generated by concatenating segments from different sources into
one text stream.

For these preliminary experiments, we use the test set developed by Sit-
bon and Bellot (2004). This test set is in French (as the TV transcripts used
in our main experiments) and has already been used to compare standard
segmentation algorithms (after their adaptation to French)3. It is composed
of different subsets obtained by concatenating parts of articles of the news-
paper Le Monde. The articles are chosen within a same category (sports,
arts, politics...) and are of variable lengths. Another test subset is built the
same way by concatenating verses of the Bible.

5.2. Evaluation

Different scores have been proposed to evaluate the quality of segmenta-
tion systems. Beeferman et al. (1999) have shown that computing Recall and

3We thank L. Sitbon and P. Bellot for making this test set available for our experiments
as well as the French versions of the state-of-the-art segmentation algorithms.
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Precision without any preprocessing may lead to inconsistencies and propose
the Pk-score, which has been widely used. Yet, Pevzner and Hearst (2002)
advocate that Pk-score, even if it is better than Recall and Precision, presents
some failures, especially for the following conditions:

• missing boundaries are more penalized than false alarms;

• near-miss errors are heavily penalized compared with false alarms and
missing boundaries;

• when a boundary is added implying new segments of size smaller than
k, it is not detected and thus not added to the score;

• the fixed-length window on which the score is based is not suited for
great variations of the segment sizes;

• the meaning of the score is not clear since it cannot be interpreted as
an error percentage as it may seem.

Based on that, Pevzner and Hearst (2002) have proposed a variant of the Pk-
score called WindowDiff, which is usually preferred for evaluating segmen-
tation systems, and can be seen as an error rate. Thus, lower WindowDiff
scores indicate better segmentation accuracy. It is defined as:

WD(ref, hyp) =
1

N − k
∑
i

|b(refi, refi+k)− b(hypi, hypi+k)| > 0 (8)

where b(xi, xj) is the number of boundaries between ith and jth sentences (or
any other minimal units, depending on the segmentation task considered) in
the stream x, which contains N sentences. Different k values can be set, but
it is standard to define it as:

k =
N

2 ∗ number of segments
(9)

This is the definition that we adopt in the experiments reported below.

5.3. Results

Fig. 6 presents the results obtained by our segmentation system with
several variants in the way the similarity between potential segments is com-
puted: TF-IDF, Okapi and Vectorization. For comparison purposes, several
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state-of-the art systems were tested on this dataset: DotPlot (Reynar,
2000), text-tiling (Hearst, 1997) and C99 (Choi, 2000) algorithms, as
implemented by Choi (2000) and adapted to French by Sitbon and Bellot
(2004). We indicate in the table the best-performing system for each test
subset along with its score. Since most of these state-of-the-art systems rely
on different parameters, the results reported here are the best ones obtained
with the optimal parameter settings found.

Figure 6: Performance (measured with the WindowDiff error rate) of segmentation systems
on the test set of Sitbon and Bellot (2004)

These results clearly shed light on the importance of the similarity func-
tion. Indeed, a TF-IDF based system yields results significantly lower than
the state-of-art’s ones, but its more modern variant, Okapi, allows us to ob-
tain a WindowDiff score slightly better than these ones. Last, computing
similarities with our vectorization approach makes it possible to gain further
accuracy. These experiments on this artificial dataset with clean, well-formed
texts, validate the interest of the watershed approach, as well as the similarity
computation through Vectorization.

6. Experiments

Based on the good results yielded by our system on the written dataset,
we examine in this section its use on a real-life application using speech tran-
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scripts. These data are described in the next subsection and the experimental
setting and results are then presented.

6.1. Experimental data

Our experiments are performed on two French TV broadcast corpora for
which the topic segmentation is of high interest. The first corpus is a set of
60 TV news of the France 2 channel (called News further). Each of these
sample has been broadcasted in the beginning of 2007 and is 40 minutes long.
The second corpus is made from TV reports: 12 samples of Envoyé spécial
(2008, 2 hours long each), and 16 Sept à huit (2008, 1 hour long each). This
corpus is called Reports in the following experiments.

These corpora (Guinaudeau et al., 2010) have different properties in terms
of number and duration of topic segments. Thus, it allows us to evaluate
robustness of topic segmentation methods. The News corpus contains 1180
segments while the Reports corpus only contains 140 segments.

The reference segmentation (i.e., ground truth) has been independently
built by a user who was not involved in the design of a topic segmentation
system. Since there is no consensus on the topic definition in the IR or NLP
fields, it has been considered here that a topic change occurs for each report
change. Despite this assumption being not always valid (in particular in
the News corpus in which several successive reports may be considered as
related to the same topic), it is relevant since it corresponds to an actual and
well-defined applicative need.

Audio tracks of these two corpora have been automatically transcribed
using the speech recognition system irene (Huet et al., 2010). This system
has been initially designed for transcribing radio broadcasts, including news,
and is thus well-suited for our corpora. For these data, its Word Error Rate
is about 20%, but this rate highly varies among the documents (e.g., anchor
person speech vs. noisy outdoor speech). Transcriptions are finally part-of-
speech tagged using TreeTagger4, and only names, verbs, and adjectives are
kept and stemmed.

6.2. Evaluation and comparison

For the evaluation on these new data, we use the same measure than in
the previous section. Yet, in order to compare our results with existing ones,

4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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we also implement Recall (R), precision (P), and F1-score (F1) to evaluate
the quality of the methods tested. These measures were preferred by Guin-
audeau et al. (2010); in order to prevent the biases reported in the literature
(Beeferman et al., 1999), an alignment between the tested segmentation and
the reference one is first performed before computing R, P and F1. Also,
as stated by Guinaudeau et al. (2010), a segment frontier is considered as
correct when it is located at less than 10 seconds of a reference frontier.
This flexibility is needed for these transcription-based techniques to compen-
sate the difference between the end of breath groups and the actual end of
segments.

In order to show the relevance of our contribution, we compare the results
obtained by our method to those produced by a baseline and by several ex-
isting systems on the same corpora. The baseline simply consists in dividing
the document into as many (equal length) segments as there are segments in
the reference. Concerning the existing systems, we use the DotPlot (Rey-
nar, 2000), text-tiling (Hearst, 1997) and C99 (Choi, 2000) algorithms,
as implemented by Choi (2000) and adapted to French by Sitbon and Bellot
(2004). We also report the results, when available, of the system of Utiyama
and Isahara (2001) (as implemented by Guinaudeau et al. (2010)) and the
best results obtained from the system of Guinaudeau et al. (2010). More-
over, in order to assess the impact of vectorization similarity measure, we
also provide results obtained by our watershed approach using instead stan-
dard distances, e.g., TF-IDF/L2 and Okapi-BM25. For a fair comparison,
it is worth noting that DotPlot, C99 and the baseline take as input the
number of expected segments, while the other approaches do not.

6.3. Results

As it is noted by Huet et al. (2008), the data on which we focus, tran-
scribed TV broadcasts, have different characteristics that are detrimental to
complex processing such as our topic segmentation task. First, some dif-
ficulties are related to the very nature of our data and our task. Indeed,
in the TV collections that we manipulate, the topic segments may be very
short. Moreover, they contain few repeated words, due to the journalistic
style which voluntarily prefers synonyms, paraphrases or pronominal refer-
ences in order to avoid repetition. In the corpus used for our experiments,
Guinaudeau et al. (2010) report that a word occurs 1.8 times on average
in a topically coherent segment in the news broadcast and 2.0 times in the
reports on current affairs. As it has been said in Sec. 2, this problem of
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lack of repetition is usually tackled with the addition of lexical resources.
These experiments are expected to highlight the interest of our vectorization
process as a simple and integrated way to counter this problem.

Tables 1 and 2 show results obtained by all the systems on the two cor-
pora. In both cases, we can observe that our system (Vectorization + Wa-
tershed) yields better results than existing systems, whatever the evaluation
measure considered. It is also interesting to note that the watershed ap-
proach performs well, even combined with a simple similarity measure such
as TF-IDF/cosine. As expected, the superiority of Vectorization as a similar-
ity measure is particularly observable on the News corpus, since this corpus
contains very short segments, thus making the direct computation of the
gradient as done in TF-IDF + Watershed approach unreliable. Moreover,
in order to better understand the interest of using Watershed for topic seg-
mentation, it is interesting to compare more deeply the approach introduced
in this paper and text-tiling. Indeed, the text-tiling approach aims at
finding topic breaks where lexical coherence between previous and next text
blocks is linked to a significant local minimum. As explained previously, this
seminal approach can be seen as a particular case of ours, but the similar-
ity is computed based on a TF or TF-IDF/cosine measure, and the minima
identified as those below a threshold based on the mean similarity. In order
to identify the influence of each component, we also use our vectorization
score within text-tiling, that is, we use the text-tiling boundary de-
tection process (implementation of Sitbon and Bellot (2004)), instead of the
watershed transform. Since text-tiling expects a cohesion score, the score
actually used is f(x) = maxi(∇(i))−∇(x). But as it appears in both exper-
iments, the results are far below the ones of the watershed, and even below
the original score of text-tiling on the News corpus. A close examina-
tion of the results seems to indicate that text-tiling fails due to a wrong
strategy for detecting the number of boundaries to be kept. It is based on
the average and standard deviation of the signal, and is not suited to the
form of the vectorization signal, which shows large variations, thus resulting
in keeping too few boundaries.

6.4. Segmentation parameters

As any segmentation algorithm, our approach relies on different choices
and parameters. In the general case, the segmentation is to be used in an
unsupervised way, that is, with no manually-segmented training data that
would help to optimize these parameters. Thus, it is interesting to have a
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Table 1: Performance of topic segmentation systems on News corpus

Methods P R F1 WD

Baseline 15.39 13.39 15.39 0.546
Utiyama and Isahara (2001) 57.6 61.4 59.44 -
DotPlot (Reynar, 2000) 36.42 36.42 36.42 0.4472

c99 (Choi, 2000) 50.25 50.25 50.25 0.3646
text-tiling (Hearst, 1997) 47.25 35.96 38.73 0.313
text-tiling + Vectorization 48.6 29.47 36.69 0.351

Watershed + TF-IDF 48.17 49.82 49.40 0.3421
Watershed + Okapi 64.06 56.49 60.04 0.2571

Watershed + Vectorization 72.44 66 69.07 0.2269

Table 2: Performance of topic segmentation systems on Reports corpus

Methods P R F1 WD

Baseline 1.9 1.9 1.9 0.364
Utiyama and Isahara (2001) 75.3 73.6 74.4 -
DotPlot (Reynar, 2000) 49.49 49.49 49.49 0.2125

c99 (Choi, 2000) 57.42 57.42 57.42 0.1893
text-tiling (Hearst, 1997) 25.96 21.27 23.38 0.3456
text-tiling + Vectorization 46.44 22.2 30.03 0.2611

Watershed + TF-IDF 59.32 60.93 60.12 0.1844
Watershed + Okapi 72.91 65.89 69.22 0.1428

Watershed + Vectorization 77.98 72.57 75.18 0.1181

closer look to some parameters to compare different settings to the default
ones. In Fig. 7, we examine the influence of the size of the context (number of
breath groups on the X axis) taken into account when computing Cprev(i−1)
and Cnext(i). It appears that as soon as a minimum size is considered (about
15), this parameter has little impact on the different evaluation measures
considered. The default value chosen (100) gives almost optimal results. The
same behavior with the same values is also observed on the other collections
(experiments not reported here), which tends to show that this parameter is
not critical and does not need fine tuning.

As explained in Sec. 3.2, the immersion algorithm implementing our wa-
tershed tends to produce over-segmentation. The merging strategy that we
use to prevent it is inspired by Najman and Schmitt (1994) and relies on the
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Figure 7: Effect of context size on the News corpus: Precision, Recall, F-score and Win-
dowDiff according to number of breath group used to compute Cprev(i− 1) and Cnext(i).

dynamics (which is related to the depth of basins) and volume of the basins
to decide whether or not two adjacent basins should be merged. In order to
study the importance of this merging step, we evaluate the results obtained
with different settings for these two constraints. In Fig. 8, we progressively
relax the volume and then the dynamics constraints: the X axis indicates the
minimum ratio of volumes (rV is the ratio of volume of a basin B over the
volume of basin A when considering merging A into B) and then dynamics
(rd) to allow a merging. For instance, the first setting on the left on the X
axis allows a merging of a basin A into a basin B if the dynamics of B at
least higher than A’s one and the volume of B is 100 times higher than A’s
one. Several observations can me made. First, the leftmost configuration

Figure 8: Effect of merging parameters on the News corpus: Precision, Recall, F-score
and WindowDiff according to dynamics and volume ratio thresholds.
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actually corresponds to no merging at all, and thus provides many irrelevant
boundaries. On the other side, the rightmost configuration corresponds to
many mergings, which results in long segments and too few boundaries. It
is also interesting to note that several configurations yields good results; the
default thresholds used in our experiments, symbolized by the vertical line,
are among these optimal configurations. The best setting both in WindowD-
iff and F-score is reached at rd > 1 and rV > 0.8 (that is, it allows some
more mergings than our default strategy). Last, comparing our default con-
figuration to the rV > 0 configuration illustrates the interest of adding the
volume constraints to Najman and Schmitt (1994)’s approach only based on
dynamics.

6.5. On the impact of transcription errors

In addition to the previous results, it is interesting to evaluate how the
transcription characteristics, mainly the error rate, influences the segmenta-
tion accuracy. Contradictory results exist in the literature: on the one hand,
Christensen et al. (2005) state that transcription errors have little effect on
the performance of their segmentation system. On the other hand, Huet
et al. (2008) show a large gap of performance between manual and auto-
matic transcripts on topic segmentation of radio broadcasts. This apparent
contradiction can be explained by the fact that the technique used by Chris-
tensen et al. (2005) is supervised and based on discourse markers detection,
while the approach of Huet et al. (2008), as ours, is unsupervised and based
on lexical cohesion. This latter approach thus heavily relies on the quality
of the whole transcript.

This transcript quality varies according to the ASR systems and the col-
lections considered. In our case, the word error rates are about 30% in the
good acoustic conditions of news shows, but can reach 70% for talk shows
and debates where noisy environment and overlapping speeches of multi-
ple speakers make the automatic recognition difficult. These ASR related
problems are of course not specific to the collections that we use, and some
authors have proposed different techniques to overcome the difficulties caused
by transcription errors or oral specifics. For instance, some studies suggest
to make the most of features specific to spoken documents in addition to
lexical cohesion, like speaker recognition of the anchor speaker (Amaral and
Trancoso, 2003), or prosody (Stolcke et al., 1999). Yet in practice, as Guin-
audeau et al. (2012) noted it, these indices are seldom used for the automatic
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extraction since such information is difficult to obtain and often requires
document-specific knowledge.

In the two next experiments, we aim to evaluate the influence of tran-
scription errors on our system. In particular, we measure the sensibility of
the similarity functions to these errors. As a first experiment, a subset of
the TV news collection was transcribed with another text-to-speech system
developed by LIMSI-CNRS (Gauvain et al., 2002). This transcription system
performs well on this type of document for which it has been optimized: its
word error rate evaluated on this corpus is 30.4% while the aforementioned
system irene obtains 36.1%.

As one can see in Tab. 3, this gain has a favorable effect on the segmen-
tation results, whatever the system considered. But it is interesting to note
that some systems are more dependent on the transcription quality. Indeed,
the TF-IDF based system yields a large improvement both for F1 and Win-
dowDiff criteria; the gain of Okapi is solid yet lower. In comparison, the
Vectorization results are still the best, but are only slightly improved on the
limsi transcriptions.

Table 3: Performance of topic segmentation systems on the News corpus according to the
transcription system used

irene limsi
Methods F1 WD F1 WD

Utiyama and Isahara (2001) 59.44 - 62.15 -
Guinaudeau et al. (2010) 61.7 - 63.7 -

Watershed + TF-IDF 49.40 0.3421 55.59 0.2977
Watershed + Okapi 60.04 0.2571 63.54 0.2288

Watershed + Vectorization 69.07 0.2269 71.16 0.2226

To push further this analysis, Tab. 4 presents the results obtained with a
subset of the TV news collection that were manually transcribed. Note that
since this subset is composed of only 8 of the 60 broadcasts of the collection,
the results used as comparison slightly vary from the one presented in Tab. 1.

Here again, Vectorization appears as less sensitive to transcription errors:
the gain (in F1-score or WindowDiff) is solid but less important than for the
TF-IDF or Okapi-based similarities. This result shows the same tendency
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Table 4: Performance of topic segmentation systems on a manually transcribed subset of
the News corpus

irene Manual
Methods F1 WD F1 WD

Utiyama and Isahara (2001) 65.56 - 72.96 -
Guinaudeau et al. (2010) 68.94 - 73.30 -

Watershed + TF-IDF 60.73 0.2854 71.35 0.1978
Watershed + Okapi 63.38 0.2702 70.58 0.2075

Watershed + Vectorization 69.44 0.2096 73.66 0.1851

than the previous experiments and demonstrates that the indirect similarity
computation of the vectorization makes our approach more robust to noisy
data from the automatic transcription process. Yet, this advantage is less
important when dealing with high quality transcripts.

7. Conclusion

In this paper, we have proposed a topic segmentation algorithm used to
segment transcribed TV streams. It is based on the watershed transform,
a mathematical morphology tool commonly used for image segmentation;
it may be seen as an approach superseding the seminal text-tiling tool
(Hearst, 1997). Yet, beyond this tool, we have shown that the key com-
ponent is the gradient calculus, that is, the way the similarity between ut-
terances is computed. In particular, the TF-IDF approach, still in use in
many studies, shows lower results than more modern yet standard similarity
computation techniques such as Okapi-BM25. Using our Vectorization prin-
ciple even outperforms Okapi; indeed, this way to compute indirect similarity
measures allows us to tackle the small-segment problem and the noisy data
produced by ASR. The experiments reported emphasize the interest of such
an approach, especially when the ASR system is error-prone.

Many developments can be foreseen for this study. As it was already
identified by several authors (Merlino et al., 1997; Zhai et al., 2005; Poulisse
and Moens, 2009; Guinaudeau et al., 2012; Dumont and Quénot, 2012), addi-
tional clues are available in real-life applications. Indeed, ASR systems also
provide relevant pieces of information that may be used to further improve
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the segmentation task, such as prosody marks or confidence measures. As
it was mentioned in Sec. 2, in a multimodal setting, content-based features
extracted from the video (shot detection, face recognition, overlaid texts...)
could also be exploited.

From a more technical point-of-view, the image to text (or speech) anal-
ogy can be pushed further. Many improvements of the watershed and other
approaches were proposed for image segmentation. We foresee their adap-
tation to our topic segmentation problems. In particular, hierarchical mor-
phological segmentation schemes would be of great interest in our stream
indexing framework in order to obtain a multiscale topic segmentation re-
sult.

8. Acknowledgments

This work was partially funded by OSEO, French state agency for inno-
vation, in the framework of the Quaero project (www.quaero.org), and by
Inria (www.inria.fr).

We would like to thanks our colleagues C. Guinaudeau, G. Gravier and
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