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PerTurbo manifold learning algorithm for weakly
labelled hyperspectral image classification

Laetitia Chapel, Thomas Burger, Nicolas Courty, Sébastien Lefèvre

Abstract—Hyperspectral data analysis has been given a grow-
ing attention due to the scientific challenges it raises and the wide
set of applications which can benefit from it. Classification of hy-
perspectral images has been identified as one of the hottest topics
in this context, and has been mainly addressed by discriminative
methods such as SVM. In this paper, we argue that generative
methods, and especially those based on manifold representation
of classes in the hyperspectral space, are relevant alternatives to
SVM. To illustrate our point, we focus on the recently published
PerTurbo algorithm and benchmark against SVM this generative
manifold learning algorithm in the context of hyperspectral image
classification. This choice is motivated by the fact that PerTurbo
is fitted with numerous interesting properties, such as (1) low
sensitivity to dimensionality curse, (2) high accuracy in weakly
labelled images classification context (few training samples), (3)
straightforward extension to on-line setting, (4) interpretability
for the practitioner. The promising results call for an up-to-date
interest towards generative algorithms for hyperspectral image
classification.

Index Terms—Classification, remote sensing, hyperspectral im-
ages, PerTurbo algorithm, generative method, manifold learning,
Support Vector Machines, low-sized training sets.

I. INTRODUCTION

A. Context
The classification of hyperspectral images had been a subject

of interest for the remote sensing community for the last decade,
due to the generalisation of hyperspectral sensors and their recent
advances. Hyperspectral data are composed of hundreds of images
corresponding to different spectral bands. Classification of such
images is still a challenging task as indicated in a recent survey
[1]. Indeed, it entails processing a potential huge amount of data
that are high dimensional, leading to significant time and memory
requirements. From a methodological viewpoint, many classifiers are
not appropriate in this context as they suffer from the dimensionality
curse: the classification accuracy decreases with the dimension of
the data when the number of available pixels for training is fixed.
Moreover, training samples are usually limited, costly and quite
difficult to obtain in remote sensing scenarios, which makes the
Hughes phenomenon even more critical [2]. As an example, we can
cite the under-achievements of Gaussian classifiers or neural networks
techniques [3], [4]. More recently, Support Vector Machines (SVM)
[5] have received particular attention in the context of hyperspectral
image classification [6] as they alleviate the dimensionality curse (as
most of the methods based on the kernel trick). Since then, some
adaptations have been developed, e.g. kernel functions that take into
account the spatial neighborhood information [7], [8].

B. Motivations
Although hyperspectral data live in a high dimensional space, the

spectral correlation between bands is high and it is very unlikely that
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they occupy the whole space in an anisotropic manner: a manifold
assumption then makes sense. Manifold learning algorithms assume
that the original high dimensional data actually lie on an embedded
lower dimensional manifold. Similarly to numerous other image
processing or computer vision classification problems, one expects
the data to live in a Riemannian [9] or statistical [10] manifold,
the geometric understanding of which will help the interpretation
of the classification model (decomposition of a class into several
sub-classes, computation of the distance between each class, etc.).
Thus, from a practitioner point of view, it appears sensible to have
a classifier built on this manifold assumption. Techniques like PCA
or Minimum Noise Fraction [11] can be applied to hyperspectral
images in order to determine their intrinsic dimension. The mapping
of the data from high to low dimensional spaces can also be learnt
thanks to learning algorithms such as ISOMAP [12] or local linear
embedding [13]. Their applications to hyperspectral image data have
been proposed recently [14], [15], [16], [17], [18] and the results
indicate that they can be efficiently represented and characterised in
low dimensional spaces. Indeed, it has been identified in [1] as a
way to deal with the geometry of hyperspectral data (complex and
dominated by nonlinear structures) and thus to further improve the
classification accuracy.

In our context, another path of interest to improve the classification
performances is to focus on generative algorithms, that naturally
entail a description of each class. Of course, a cornerstone of the sta-
tistical learning theory [5] is that learning a boundary between classes
(as it is done with discriminative classifiers) is a simpler problem
than training a model for each of them. As a direct consequence, one
expects a classifier based on generative models to be less efficient
than an optimal margin classifier such as SVM. However, from a
theoretical point of view, generative learning is often more efficient
than discriminative learning when the number of features is large
compared to the number of training samples [19] while discriminative
models are often better asymptotically. One reason is that the latter
tends to overfit when the number of training examples is low (more
practically, achieving an appropriate regularisation or tuning of SVM
becomes difficult with few data). Ideal classifier is therefore likely
to change when the number of training samples increases, and some
attempts have been done to determine the threshold above which
the classifiers should be switched in an on-line setting [20]. In the
context of hyperspectral image classification, generative classifiers
are particularly interesting since, as pointed out in [1], “supervised
classification faces challenges related with the unbalance between
high dimensionality and limited availability of training samples”.
Nevertheless, comparison of the two models is a perennial topic as
the superiority of generative classifiers may not be systematically
observed, depending on the data and model specification [21]. Indeed,
the first attempts in this direction in the remote sensing community
were not successful so far, as illustrated in [22] where SVM still
outperform kernel Fisher discriminant analysis when the training set
size is low.

In addition, generative classifiers have appealing properties that
make them adapted to interactive image data mining. For instance,
when a class is split in two or when a hierarchical classification is
sought, only a part of the models needs to be re-learnt; only the new
class that could be added to the initial set of classes needs a specific
training, the other models remaining unaltered (this last property can
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rarely be found in discriminative methods, see for instance [23]). For
all these reasons, we believe that the use of generative models for
hyperspectral image classification should be further investigated.

C. Contributions
In this article, we focus on the recently published PerTurbo

algorithm [24] for hyperspectral image classification. The rationale
for testing PerTurbo in this context is due to its following appealing
properties: it belongs to the family of generative classifiers (and
hence we may expect that it performs well with low training set
sizes) and is based on manifold assumptions (and then performs
well in high dimensional spaces). Description of the algorithm is
given in section II: the main idea behind it is to describe each class
by an intrinsic representation based on a Laplace-Beltrami operator
approximation [25] that can be interpreted in terms of kernel space.
This characterisation allows the association of a topologic piece of
information to each class that describes its spatial distribution in the
input space. This geometric characterisation is computed for each
class, before and after the addition of the test sample that is to
be classified. The extent to which the geometric characterisation is
perturbed by the test sample is a good evidence on its similarity to
the class. Thus, this sample is classified into the class that was the
least perturbed by its addition. The geometric description can also be
used to describe classes and to derive some additional information,
e.g. measure of how classes are well-separated. We also address a
particular challenge raised in [1], i.e. computational complexity of
hyperspectral data classification. To do so, we discuss the algorithm
complexity, as well as a step towards a fast version of the algorithm.
In section III, we benchmark the algorithm against SVM in the low
training set size setting and show how the geometric characterisation
gives an insight into the separability of classes. Finally, we draw
some conclusions and give some perspectives.

This article extends a preliminary work which was presented at
IGARSS conference [26]. The contributions of this paper are the
following: i) we give some theoretical arguments about the situations
in which PerTurbo could be an interesting alternative to state-of-
the-art discriminative algorithms like SVM; ii) we report the results
of rigourous experiments that show that, as stated by the theory,
PerTurbo outperforms SVM in weakly labelled image classification
context; iii) we discuss a fast version of the algorithm in order to
mitigate the limitations due to its high computational complexity; iv)
we provide a similarity measure between pairs of classes based on
their geometric characterisation that allows one to obtain beforehand
an insight into the separability of the classes, and hence into the
expected performances of the classification algorithm.

II. PERTURBO

A. Manifold class description and classification algorithm
PerTurbo was initially introduced in a pure machine learning

context. Here, we simply summarise its most important features, and
the interested reader should refer to [24].

We consider a classical machine learning problem, where one
seeks for a function that best labels a set of unlabelled examples.
We denote

S = {(x1, y1), (x2, y2), ..., (xN , yN )} ∈ Rd × {u1, ..., uL} (1)

the training set of N training samples xi of label yi, and S` ⊂ S is
the set of all the N` training examples with label u`. The idea behind
PerTurbo is to build the predictive function in an implicit manner,
within two steps. In the first step, the geometry of the set of training
examples for each class S` is characterised. Then, a similarity metric
adapted to these sets of geometric models is derived, so that the
predictive function reads as the minimum distance of a test sample
η to those models.

More formally, each set S` is assumed to be embedded in a
dedicated Riemannian manifold M`, whose geometric structure can
be expressed in terms of the Laplace-Beltrami operator. As the

manifolds corresponding to the classes are unknown (only the training
examples they embed are accessible), it is generally not possible to
find an analytical expression of this operator. However, it has been
established in [27] that this operator can be efficiently approximated
by the heat kernel (modeling the propagation of a variation of
temperature along a manifold), this latter being in turn approximated
by the spectrum of the Gaussian kernel K(S`), the Gram matrix of
the training set S`, whose (ith, jth) term is given by:

Kij(S`) = k(xi,xj) = φ(xi)
T · φ(xj) = exp

(
−γ ‖xi − xj‖2

)
,

(2)
where k(·, ·) is a kernel function, xi and xj ∈ S`, ·T being the
transpose of a matrix or a vector, φ is the mapping from the original
space into the Hilbert space reproducing the Gaussian kernel (also
called feature space, Reproducing Kernel Hilbert Space or RKHS),
‖·‖ is the Euclidean norm and γ ∈ R∗

+ accounts for the variance of
the Gaussian kernel.

When a test sample η ∈ Rd is considered, a similarity measure
between a class and η can be derived from the extent to which its
inclusion to the class changes the geometric characterisation of the
associated manifold M`. More formally, the projection of sample η
onto the subspace spanned by φ(S`) is given by:

r(η →M`) = K(S`)−1/2 · k(S`,η) (3)

where the ith term of k(S`,η) is k(xi,η), with xi ∈ S`. The
perturbation measure of class u` by sample η then reads:

τ(η,M`) = ‖φ(η)‖2 − ‖r(η →M`)‖2

= 1− k(S`,η)T ·K(S`)−1 · k(S`,η),
(4)

and it quantifies the perturbation of the manifold M` when η is
added to class u`. Test sample η is then classified into the class that
provides the smallest perturbation, i.e.

argmin
`
τ(η,M`). (5)

Thus, in order to account for non-linear data processing, PerTurbo
can be seen either as a subspace classifier where vector subspaces
are replaced by Riemannian manifolds, or as a classical subspace
classifier which operates in a kernelised space. As such, the ideas
underlying PerTurbo are somehow related to that of a host of
other classification methods based on subspace projections, such as,
for instance, [28]. Interestingly enough, these two complementary
interpretations justify the appealing properties of PerTurbo: as a
generative model based on the manifold geometry of the datasets,
it helps interpretability of the models, while, as a classifier working
in the feature space, distances in the high dimensional input space
are replaced by similarity measures independent of the input space.
This makes the algorithm less sensitive to the dimensionality curse,
a necessary property for hyperspectral image classification.

Naturally, PerTurbo works as long as the perturbation measure
τ(η,M`) is defined, hence as long as K(S`) is invertible ∀` ≤ L,
which is the case since it is a symmetric positive definite matrix.
However, for numerical analysis issues, K(S`) might not be invert-
ible. Yet, it is always possible to compute its pseudo-inverse or to
consider regularisation techniques that find a close invertible matrix.
In addition, the regularisation of the models can also be used in
order to avoid overfitting and high sensitivity to features noise. In
this paper, we consider the case of Tikhonov regularisation where a
regularised version of K(S`) is used:

K̃(S`) = K(S`) + λ · IN` (6)

where λ > 0 is the Tikhonov factor. The main interest of such a
regularisation is that it makes the Gram matrix (the spectrum of which
is equivalent to that of the covariance matrix class u`) less sensitive
to outliers. Hence, even in the case where K(S`) is invertible, it
is possible to boost performances by tuning λ to a value which is
adapted to the inner-class covariance matrices of the dataset.

In addition, there is another way to improve the general frame of
PerTurbo in the presence of noisy spectral channels. In a PCA-like
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way, we can perform an implicit regularisation via the reduction of
the noise classically associated to the less expressive dimensions. To
do so, the spectrum of the Gram matrix can be truncated, so that
its smallest eigenvalues below a given threshold are gotten rid of.
The regularisation parameter λ is then the percentage of the sum
of the total eigenvalues kept. Mainly because it relates PerTurbo to
the well-known Graph Laplacian Eigenmaps framework [29], this
regularisation is appealing from a theoretical point of view. Those two
regularised versions of PerTurbo imply the setting of one additional
parameter λ, related to the magnitude of the regularisation.

B. Interpretability of the model: similarity between classes
The geometric characterisation of each class by the kernel matrix

K(S`) carries extra information that can be used to describe classes.
Here, we illustrate the advantage of having such a representation by
deriving a measure of similarity between pairs of class models that
allows one to give beforehand an insight into the separability of the
classes, and hence into the expected performances of the classification
algorithm that can be used on the data.

The projection of sample η on manifold M` defined in Eq. (3)
can be generalised in order to project all the samples S`1 of a given
class u`1 into the subspace spanned by φ(S`2):

r(S`1 →M`2) = K(S`2)
−1/2 · k(S`2 ,S`1) (7)

Hence, the Gram matrix associated to this projection is

K(S`1 →M`2) = r(S`1 →M`2)
T · r(S`1 →M`2)

= k(S`2 ,S`1)
T ·K(S`2)

−1 · k(S`2 ,S`1).
(8)

K(S`1 →M`2) is a surrogate kernel of K(S`1) [30]: both kernels
are constructed on the same set of eigenvectors and eigenvalues,
but they are evaluated on different sets. Its definition can then be
used to compare Gram matrices K(S`1 → M`2) and K(S`1) as
they are both constructed on the same set of points: classes with
similar geometry will have “similar” kernel matrices while those
with manifolds lying in different spaces will have “different” kernel
matrices. The similarity between pairs of kernel matrices is hence an
indicator of the performances of the classification method and is a
proxy of how classes are well-separated. The degree of agreement
between two matrices can be evaluated thanks to the empirical
alignment of the kernel matrix K(S`1 → M`2) with the kernel
matrix K(S`1) [31] with respect to the sample S`1 :

A(S`1 ,K(S`1 →M`2),K(S`1)) =
〈K(S`1 →M`2),K(S`1)〉F√

〈K(S`1 →M`2),K(S`1 →M`2)〉F 〈K(S`1),K(S`1)〉F
(9)

where 〈C,D〉F stands for the inner product between matrices C and
D, i.e. 〈C,D〉F =

∑
i,j CijDij .

C. Computational complexity: towards a fast version of Per-
Turbo

First, we note that the algorithm can be straightforwardly extended
to the on-line setting. When a new sample (xN+1, yN+1) is added to
training set S`, the inverse of the updated Gram matrix K(S`∪xN+1)
can easily be computed iteratively, using the Schur complement [32],
which is here equal to 1/τ(xN+1,M`), denoted τ−1 in the following
equation:

K(S` ∪ xN+1)
−1 =

[
K(S`) k(S`,xN+1)

k(S`,xN+1)
T 1

]−1

=

[
−K−1k IN`

1 0TN`

][
τ−1 0TN`

0N` K(S`)−1

][
−(K−1k)T 1

IN` 0N`

]
(10)

where K−1k = K(S`)−1 · k(S`,xN+1), IN` is the identity matrix
of size N` and 0N` is a vector of N` zeros. This formulation involves
matrix-vector products of already computed terms instead of inverting
a complete matrix (complexity O(n3)). The computation works as
long as τ(xn+1,M`) is different from 0, that is to say that the new
point xn+1 should not belong to S`. In that case, we drop the point
as its inclusion does not change the geometry of the manifold.

In its original form, PerTurbo algorithm requires as a learning stage
to evaluate the Gram matrix corresponding to each learning set S` and
then to invert it, which leads to an O(n(n− 1)/2+n3) complexity.
This operation has to be conducted for every class. Then at run
time, computing the perturbation measure requires the evaluation
of the kernel function for every test sample, and then conduct as
many matrix-vector products as there are classes. While we can both
note that: i) the number of learning samples N` for each class is
significantly lower than the total number of learning samples N ; ii)
the method has particular advantages when the number of learning
samples is low, it is still possible to develop strategies in order to
alleviate the complexity burden. First, it is interesting to note that,
due to the particular shape of the Gaussian kernel, the perturbation
measure is a local measure, in the sense that distant samples will
only bring small modifications to the perturbation measure. This
leads to a fast yet accurate version of the algorithm, where only
local perturbations are computed instead of global ones. In this new
setting, there is no learning phase: no global Gram matrix is evaluated
nor inversed. At testing phase, the learning samples can be sorted
with respect to their distances to each test point. Then only a subset
of t elements for each class can be used to form a local Gram
matrix which is inverted and then used to measure the perturbation.
In Figure 1, it is interesting to see that the perturbation measure is
stabilising for small number t. How to set this parameter is crucially
dependent of the kernel γ parameter. For a given γ, this parameter
can be set empirically, with speed issues in mind (to the detriment
of classification accuracy), or set by cross-validation.

This strategy has two consequences: since no learning phase is
needed, the procedure can be really efficient for on-line or active
learning problems (since no model of the class has to be updated
when new samples arrive). This is a major advantage over SVM,
which are not adapted to such problem configurations. Also, the
complexity of the testing phase can be slightly raised since a sorting
operation has to be conducted. This sorting operation dominates the
complexity of the test, and can be efficiently carried in O(n log(n))
operations, but we note that multidimensional spatial grid structures
can be used to accelerate it in a classical fashion.

III. EXPERIMENTAL RESULTS ON LOW-SIZED TRAINING
SETS

SVM are state-of-the-art techniques to perform hyperspectral im-
age classification, and they have been shown to outperform other ker-
nel techniques, even generative ones like Kernel fisher discriminant
analysis, with low-sized training sets [22]. Hence, we focus only on
SVM in our experiments. In order to have a fair comparison between
PerTurbo and SVM, four standard hyperspectral scenes were used to
carry out the experiments with different contexts (three urban areas
and one agricultural scene).

A. Hyperspectral datasets
The first hyperspectral image used in our experiments is the Indian

Pines scene, gathered by AVIRIS sensor over the agricultural Indian
Pines test site in north-western Indiana. It represents a vegetation
classification scenario, with two main crops of soybean and corn
which are very early in their growth cycle. Indeed, the spectral
information comes from crop mixtures, soil variation and crop
residues remaining. Data are available through Purdue’s university
MultiSpec site1, which made this scene widely benchmarked over

1https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 1. Evolution of the perturbation measure τ(η,M`) for a test point η chosen randomly in the Indian Pines dataset for different t values and for 3 values
of γ. Each line of each graph correspond to one class u`.
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(a) γ = 2−8
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(b) γ = 2−4
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(c) γ = 2

Fig. 2. Indian Pines dataset. The colour code is the following: Corn-notill, Corn-mintill, Grass-pasture, Grass-trees, Hay-windrowed, Soybean-notill, Soybean-
mintill, Soybean-clean, Woods.

(a) false colour composition (b) available reference data (c) PerTurbo classification results
(5 points by class for training)

(d) PerTurbo classification results
(56 points by class for training)

the last few years. It consists of a 145× 145 pixels image, in which
10, 249 pixels are labelled, and contains 200 spectral bands after
discarding water absorption bands. From the initial sixteen classes
of interest, we discard seven of them because their low number of
pixels does not allow designing complete and fair experiments with a
class-balanced set up (test set sizes should be great enough to allow
randomisation). The reference map finally contains 9, 234 pixels. It
is well-known that this dataset contains troublesome classes that are
often misrecognised because of mislabelled and unclearly defined
classes (see for instance [22]). For illustrative purpose, Figure 2 shows
(a) a false colour composition of the scene and (b) the associated
ground truth.

We also considered hyperspectral scenes of two urban areas, the
University of Pavia, a 610 × 340 pixels image, and the Center of
Pavia, a 1096 × 715 pixels image, both acquired by the ROSIS
sensor. After removing some channels due to noise, the first scene
contains 102 spectral bands and the second 103. Both images contain
9 reference classes that comprise urban, soil and vegetation features.
Pavia University and Center of Pavia datasets contain respectively
46, 697 and 148, 166 labelled pixels.

The last dataset we used is the HYDICE image of Washington DC
mall that comes along with the MultiSpec site. It is a 1280 × 307
pixels image, described initially by 210 spectral bands, whose opaque
ones have been removed, leading to 191 bands. In order to remove
noise on the data, we clipped 2% of the two-sided extreme values.

8, 079 pixels have been labelled among the 7 following references
classes: roof, street, path, grass, tree, water and shadow.

B. Experimental setup

Each band of each original dataset has been scaled to the range
[0, 1]. In all experiments, we restrict ourselves to Gaussian radial
basis (RBF) kernels and parameter γ, that controls the spread of
the kernel, has been set by trying exponentially growing sequences
γ =

{
2−15, 2−14, ..., 22, 23

}
. We make here the assumption that

classes have similar manifold geometry: it allows us to set a parameter
γ constant between classes (we then choose a class-balanced set up in
the experiments). Note that an unbalanced class scenario could also
be considered, but at the price of setting an expensive grid search
over γ` parameters (one distinct parameter per class, that would lead
to pL different values to test, where p is the number of γ` values
and L the total number of classes). We made some preliminary
experiments (not reported here) and the little improvement on the
classification accuracies is not worth the exponential explosion of
the cross-validation complexity.

The regularisation parameter λ needs to be set for Per-
Turbo classification method. In the case of the Tikhonov reg-
ularisation, we set λ =

{
10e−6, 5e−5, · · · , 0

}
or λ =

{1, 0.999, 0.995, 0.99, 0.975, 0.95, 0.9, 0.75, 0.5} in the truncated
spectrum version of the algorithm. For SVM, the regularisation
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parameter C, that controls the effect of errors on the classi-
fier in order to regularise the separating surface, takes values{
2−5, 2−4, ..., 214, 215

}
with exponential steps. We use the one-

against-one approach (see for instance [6]), in which k(k − 1)/2
binary classifiers are trained; the appropriate class is then determined
thanks to a voting scheme. We use R software for all our experiments:
Kernlab implementation [33] to test SVM and pRoloc2 for PerTurbo.

In order to compare the results of PerTurbo and SVM, we run a
series of tests by varying the training set size from approximately 5 to
250 points per class (we choose a sequence of rounded numbers that
roughly doubles the training set size at each increment), the maximi-
mum values depending on the considered dataset: we stop increasing
the size whether i) SVM significantly outperforms PerTurbo ii) the
corresponding size does not allow the design of a fair and complete
experiment. The size is defined as a proportion of the initial labelled
set of the image, and the training set is formed as a randomly chosen
class-balanced subset.

For each set of parameters, we compute two statistics:
• the overall accuracy (OA), which is the proportion of correctly

classified pixels in the test set. Significance of the differences
between the overall accuracies of SVM and the best regularised
version of PerTurbo has been tested using the McNemar test
[34]:

zOA =
fp−svm − fsvm−p√
fp−svm + fsvm−p

(11)

in which fp−svm indicates the number of pixels correctly
classified by PerTurbo and wrongly classified by SVM. A
positive value of zOA indicates that PerTurbo is more accurate
than SVM. The difference between the overall accuracies of the
two classifiers is statistically significant at 5% if |zOA| > 1.96,
at 1% if |zOA| > 2.58 and at 0.1% if |zOA| > 3.29.

• the kappa coefficient κ, which measures the agreement between
predicted and actual class labels in the test set, corrected by
agreement that could be expected by chance. Significance of
the differences between the SVM kappa coefficient κsvm and
the best version of PerTurbo κp are tested using [34]:

zκ =
κp − κsvm√
σ2
κp

+ σ2
κsvm

(12)

where σ2
κp

and σ2
κsvm

are the variance of the coefficients. The
difference between the two coefficients is said significant at a
5% level if |zκ| > 1.96.

Parameter γ depends on the geometry of the dataset and λ is
related to the noise in the data: they are thus expected to differ
between settings and datasets (note that a rule of thumb for γ has
been given in [26] and can be used as a first try). We then use grid
search methods to assess the generalisation ability of the algorithm.
As the setting we consider is a low number of training samples, we
cannot use classical cross-validation schemes to set the parameters.
Instead, we use a repeated random sub-sampling scheme, by running
50 experiments on each couple (γ, λ) or (γ,C), and we report the
results for parameters that lead to the best overall accuracies.

C. Results
We compare the two methods regarding their ability to deal with

a low number of training samples, which is a crucial problem in
hyperspectral image classification as the labelling cost can be im-
portant. We then particularly focus on ill-posed problems, where the
input dimension is higher than the number of training samples. Table I
gives, for different small training set sizes, the best overall accuracies,
the associated kappa coefficient and zOA values of the McNemar test.
Performances are given for SVM, the truncated spectrum version
of PerTurbo and PerTurbo with Tikhonov regularisation. We first
note that PerTurbo with the Tikhonov regularisation outperforms the

2http://www.bioconductor.org/packages/2.12/bioc/html/pRoloc.html

truncated spectrum version of the algorithm, for all experiments but
one. Following conclusions are then done by considering only the
Tikhonov regularisation version of PerTurbo. For illustration purpose,
Table II gives the computational times obtained for the reported
experiments: training phase of PerTurbo is from 2 to 7 times faster
than SVM while PerTurbo’s testing time is lower than SVM for the
lowest training set sizes but SVM have advantage when the training
set size increases. This is mainly due to the fact that SVM only
require the computation of the similarities between the test data and
the support vectors, whereas PerTurbo testing step involves all the
similarities if the policy described in Section II-C is not applied.

We observe that PerTurbo yields the best overall accuracies for
the lowest training set sizes. For Indian Pines dataset, conclusions
have to be mitigated: only the lowest training set size gives advantage
to PerTurbo over SVM. Figure 2 illustrates the classification results
obtained with (c) the lowest and (d) the highest training set sizes
that have been considered. We also run additional experiments for
the lowest training set sizes that include all the classes (not reported
here for the sake of concision), and the same conclusions can be
raised, except that PerTurbo significantly outperforms SVM for the
lowest training set size. In our opinion, the results are mainly due
to the high proportion of mislabelled data among the few training
samples available: the ground truth map labels entire fields with
a single class reference, even though the ground cover of corn or
soybean varies inside. We then assess the separability of the manifold
of each class following Eq. (9). Calculating the similarity matrix
between each class and its surrogates gives a table layout; a function
of the obtained values, as well as a function of the intensity of the
values of the confusion matrix, are represented in Figure 3. One can
notice the structural similarity of the two matrices, confirming the
idea that an a priori on the classification results can be obtained
from the computation of the similarity matrix. More specifically, we
note that classes representing corn and soybean are badly separated
by PerTurbo as they have similar geometric characterisation. On the
contrary, class Grass-Trees is well predicted as its manifold lies in
different space than those of the other classes.

For Pavia datasets, classification accuracies between PerTurbo
and SVM are different at a 5% level of significance: PerTurbo
outperforms SVM when the training set sizes are the lowest (less
or equal than N` = 52 per class for Pavia University, N` = 41
per class for Pavia Center). Regarding the kappa coefficient, the
same conclusion can be drawn, except that the differences between
coefficients are hardly significant. As the rate of training samples
increases, SVM take advantage over PerTurbo, both in terms of
overall accuracy and kappa coefficient.

Regarding the Washington DC mall dataset, experiments show
again that PerTurbo gives significant higher accuracy rates when the
training set size is low. In this particular case and with the tested
training set sizes, we do not observe the expected higher asymptotic
accuracy rate of SVM over PerTurbo.

IV. CONCLUSION

As indicated in a recent survey [1], hyperspectral data classi-
fication offers new perspectives to remote sensing but also raises
fundamental challenges: (i) unbalance between high dimensionality
and limited availability of training samples, (ii) complex geometry of
hyperspectral data dominated by non-linear structures, (iii) very high
computational complexity of classification techniques in presence of
hyperspectral data of very large dimensionality and complexity.

In this paper, we have addressed all these challenges by focusing
on generative techniques, and especially those representing hyper-
spectral data as manifolds. To do so, we have considered PerTurbo,
a recent representative algorithm of the field, and benchmarked it
against traditional SVM. The results observed on standard datasets are
appealing and demonstrate the interest of such tools when the number
of samples is very low, which is often the case with hyperspectral
images. Indeed, PerTurbo exhibits better performances on smallest
training set sizes, in comparison to SVM that are expected to have an
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TABLE I
MEAN ± STANDARD DEVIATION OF OVERALL ACCURACIES (OA), KAPPA (κ) STATISTICS AND MC NEMAR TEST VALUES zOA COMPUTED OVER 50

REPETITIONS FOR Indian Pines, Pavia University, Pavia Center AND Washington DC mall DATASETS. TRAINING SET SIZE % GIVES THE PROPORTION OF
THE DATASET THAT IS USED FOR TRAINING WHILE # GIVES THE NUMBER OF POINTS PER CLASS THAT COMPOSE THE TRAINING SET. FOR EACH

TRAINING SET SIZE, BEST RESULTS ARE REPORTED IN BOLD FACE. RESULTS BEING STATISTICALLY BETTER (BETWEEN SVM AND THE BEST VERSION
OF PERTURBO) AT A 5% LEVEL ARE UNDERLINED. zOA VALUES ARE CALCULATED CONSIDERING SVM AND THE THIKHONOV VERSION OF PERTURBO:

POSITIVE VALUES INDICATE THAT PERTURBO OUTPERFORMS SVM.

INDIAN PINES
Training set size SVM PerTurbo (truncated) PerTurbo (Tikhonov) zOA

(% / #) OA[%] κ[%] OA[%] κ[%] OA[%] κ[%]
0.5 / 5 51.6 ± 3.0 44.6 ± 3.2 51.7 ± 3.1 44.7 ± 3.2 51.8 ± 3.1 44.8 ± 3.2 0.5
1 / 11 59.1 ± 2.9 53.0 ± 3.2 58.4 ± 2.9 52.1 ± 3.2 58.5 ± 2.5 52.3 ± 3.2 -1.7
2.5 / 26 68.6 ± 1.8 63.7 ± 2.0 65.7 ± 1.9 60.3 ± 2.1 66.1 ± 1.6 60.7 ± 2.0 -6.1
5 / 56 75.2 ± 1.1 71.2 ± 1.3 70.8 ± 1.0 66.0 ± 1.1 71.3 ± 1.1 66.5 ± 1.2 -8.9

PAVIA UNIVERSITY
Training set size SVM PerTurbo (truncated) PerTurbo (Tikhonov) zOA

(% / #) OA[%] κ[%] OA[%] κ[%] OA[%] κ[%]
0.1 / 5 61.7 ± 5.4 53.7 ± 5.5 64.5 ± 5.4 56.4 ± 5.6 63.8 ± 4.0 55.8 ± 4.1 3.7
0.25 / 13 74.4 ± 3.5 68.1 ± 3.9 74.4 ± 2.8 68.2 ± 3.4 75.6 ± 3.2 69.6 ± 3.5 5.8
0.5 / 26 79.9 ± 2.1 74.7 ± 2.4 78.2 ± 1.7 72.7 ± 1.9 81.8 ± 1.8 77.0 ± 2.0 9.6
1 / 26 83.8 ± 1.7 79.7 ± 1.9 81.9 ± 77.2 77.2 ± 1.7 85.1 ± 1.5 81.2 ± 1.7 6.6
2.5 / 130 89.6 ± 0.7 86.6 ± 0.9 84.7 ± 1.0 80.5 ± 1.2 86.9 ± 0.8 83.3 ± 0.9 -15.8
5 / 259 91.4 ± 0.5 88.8 ± 0.6 86.7 ± 0.8 82.8 ± 0.9 88.2 ± 0.9 84.9 ± 1.0 -19.7

PAVIA CENTER
Training set size SVM PerTurbo (truncated) PerTurbo (Tikhonov) zOA

(% / #) OA[%] κ[%] OA[%] κ[%] OA[%] κ[%]
0.025 / 4 90.6 ± 2.8 86.8 ± 3.9 90.5 ± 2.8 86.7 ± 3.8 92.1 ± 1.2 89.0 ± 1.6 23.3
0.05 / 8 93.6 ± 1.2 91.1 ± 2.8 93.6 ± 1.1 90.8 ± 1.6 93.9 ± 1.1 91.6 ± 1.6 4.3
0.1 / 16 95.5 ± 0.5 93.7 ± 0.7 95.6 ± 0.6 93.8 ± 0.8 95.7 ± 0.6 93.9±0.8 4.4
0.25 / 41 96.6 ± 0.4 95.2 ± 0.5 96.7 ± 0.3 95.5 ± 0.4 97.0 ± 0.3 95.8 ± 0.6 11.3
0.5 / 82 97.5 ± 0.3 96.8 ± 0.4 96.8 ± 0.3 95.5 ± 0.4 97.1 ± 0.2 95.9 ± 0.3 -11.9
1 / 165 98.2 ± 0.2 97.4 ± 0.3 97.0 ± 0.4 95.7 ± 0.6 97.1 ± 0.1 95.9 ± 0.2 -28.6

WASHINGTON DC MALL
Training set size SVM PerTurbo (truncated) PerTurbo (Tikhonov) zOA

(% / #) OA[%] κ[%] OA[%] κ[%] OA[%] κ[%]
0.5 / 6 94.7 ± 4.7 92.3 ± 6.2 93.2 ± 5.9 90.5 ± 7.7 94.9 ± 5.9 93.0 ± 7.8 3.4
1 / 12 98.0 ± 1.3 97.1 ± 2.5 98.2 ± 1.9 97.4 ± 2.6 98.7 ± 0.8 98.2 ± 1.2 4.0
2.5 / 29 99.1 ± 0.4 98.6 ± 0.6 97.8 ± 1.1 96.8 ± 1.6 99.2 ± 0.4 98.9 ± 0.5 2.1
5 / 58 99.4 ± 0.3 99.1 ± 0.4 99.6 ± 0.3 99.4 ± 0.5 99.7 ± 0.2 99.5 ± 0.3 3.3

TABLE II
COMPUTATION TIMES (IN SECONDS, AVERAGED OVER THE 50 REPETITIONS) FOR SVM AND PERTURBO TRAINING AND TESTING PHASES. THE TWO

VERSIONS OF PERTURBO EXHIBIT A SLIGHT DIFFERENCE IN THE REPORTED EXPERIMENTS; RESULTS FOR THE TIKHONOV VERSION ARE ONLY
REPORTED HERE. LOWEST COMPUTATIONAL TIMES ARE REPORTED BOLDFACED.

INDIAN PINES WASHINGTON DC MALL
Training set size SVM PerTurbo Training set size SVM PerTurbo
(% / #) Train Test Train Test (% / #) Train Test Train Test
0.5 / 5 0.09 1.07 0.02 0.63 0.5 / 6 0.06 0.49 0.01 0.35
1 / 11 0.14 1.16 0.02 0.82 1 / 12 0.08 0.57 0.01 0.38
2.5 / 26 0.19 1.44 0.02 0.96 2.5 / 29 0.13 0.56 0.02 0.49
5 / 56 0.28 1.33 0.03 1.29 5 / 58 0.20 0.77 0.02 0.69

PAVIA UNIVERSITY PAVIA CENTER
Training set size SVM PerTurbo Training set size SVM PerTurbo
(% / #) Train Test Train Test (% / #) Train Test Train Test
0.1 / 5 0.08 2.44 0.02 2.23 0.025 / 4 0.08 8.21 0.02 7.52
0.25 / 13 0.09 2.61 0.02 2.73 0.05 / 8 0.08 8.88 0.02 7.99
0.5 / 26 0.11 2.90 0.02 3.16 0.1 / 16 0.09 9.46 0.02 8.82
1 / 52 0.17 3.28 0.03 4.84 0.25 / 41 0.17 9.90 0.03 16.17
2.5 / 130 0.41 4.20 0.10 11.94 0.5 / 82 0.23 9.64 0.06 24.93
5 / 259 0.84 5.39 0.44 28.03 1 / 165 0.43 11.63 0.16 55.78
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Fig. 3. Measures of separability of the different classes of the Indian Pines dataset. Cells represent, in Figure (a) a function of the measure of similarity
A(S`1 ,K(S`1 → M`2 ),K(S`1 )) between training set S`1 of the class in column u`1 composed of N`1 = 26 pixels, projected in the manifold of the
class in row u`2 ; in Figure (c), a function of the percentage of pixels of class in column that have been classified as the class in row. The function used is the
rank; colour intensity in Figure b) represents the rank of each cell: the most similar pairs of classes and those with highest error rates being coloured in dark
red (cells with the lowest ranks are not coloured and diagonal cells are coloured in grey in both cases). The class code is the following: C-noT: Corn-notill,
C-minT: Corn-mintill, GP: Grass-pasture, GT: Grass-trees, HW: Hay-windrowed, S-noT: Soybean-notill, S-minT: Soybean-mintill, S-C: Soybean-clean, W:
Woods.

C-noT C-minT GP GT HW S-noT S-minT S-C W
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GT
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65
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C-m inT
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C-noTC-minT GP GT HW S-noT S-minT S-C W

(c) Confusion matrix

higher asymptotic accuracy rate. In addition, the geometric characteri-
sation of each class allows one to derive a similarity measure between
each pair of classes that can then be interpreted by the practitioner,
e.g. give beforehand an insight into the class separability.

Among the other challenges which remain to be addressed [1],
the combination of spatial and spectral information as well as the
attention paid to mixed pixels in the data have to be tackled. In
addition, the required size of the training set such that SVM performs
well (and then is expected to outperform PerTurbo) depends on the
degree to which the training set contains pixels that lie at the edge of
the class distribution in the feature space: a sparse feature space will
thus require more training points to get an accurate discriminative
decision surface. It will be interesting to derive a threshold in order
to determine beforehand which method should be preferred in terms
of performances for a given training set size. These are some of the
future directions of our work.
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Ph.D. in Computer Science from the University of
Tours in 2002. In 2009, he earned his French HDR
degree in Computer Science from the University of
Strasbourg. From 2003 to 2010, he was an Associate
Professor in the Department of Computer Sciences
and the Image Sciences, Computer Sciences and
Remote Sensing Laboratory (LSIIT), University of
Strasbourg - CNRS. In 2009-2010, he was an INRIA

invited scientist within the TEXMEX team of IRISA/INRIA Rennes. In 2010,
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