An end-member based ordering relation for the morphological description of hyperspectral images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

An end-member based ordering relation for the morphological description of hyperspectral images

Erchan Aptoula
  • Fonction : Auteur
  • PersonId : 919050

Résumé

Despite the popularity of mathematical morphology with remote sensing image analysis, its application to hyperspectral data remains problematic. The issue stems from the need to impose a complete lattice structure on the multi-dimensional pixel value space, that requires a vector ordering. In this article , we introduce such a supervised ordering relation, which conversely to its alternatives, has been designed to be image-specific and exploits the spectral purity of pixels. The practical interest of the resulting multivariate morphological operators is validated through classification experiments where it achieves state-of-the-art performance.
Fichier principal
Vignette du fichier
icip2014.pdf (215.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00998256 , version 1 (13-11-2019)

Identifiants

  • HAL Id : hal-00998256 , version 1

Citer

Erchan Aptoula, Nicolas Courty, Sébastien Lefèvre. An end-member based ordering relation for the morphological description of hyperspectral images. IEEE International Conference on Image Processing (ICIP), Oct 2014, Paris, France. ⟨hal-00998256⟩
210 Consultations
100 Téléchargements

Partager

More