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HYPERSPECTRAL IMAGE REPRESENTATION THROUGH α-TREES

François Merciol, Laetitia Chapel and Sébastien Lefèvre
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Campus de Tohannic, BP 573, 56017 Vannes Cedex, France

ABSTRACT

α-trees provide a hierarchical representation of an image
into partitions of regions with increasing heterogeneity. This
model, inspired from the single-linkage paradigm, has re-
cently been revisited for grayscale images and has been
successfully used in the field of remote sensing. This article
shows how this representation can be adapted to more com-
plex data here hyperspectral images, according to different
strategies. We know that the measure of distance between
two neighbouring pixels is a key element for the quality of
the underlying tree, but usual metrics are not satisfying. We
show here that a relevant solution to understand hyperspectral
data relies on the prior learning of the metric to be used and
the exploitation of domain knowledge.

Index Terms— Hyperspectral Images, Metric Learning,
Hierarchical Representations, α-Trees

1. INTRODUCTION

With the continuous growth of high and very high spatial res-
olution sensors, standard pixel-based methods for image un-
derstanding are not adapted anymore. Indeed, it is mandatory
to rely on image representation of higher level, for instance
through regions produced by a segmentation process. This ap-
proach is known as object-based image analysis [1] in remote
sensing. To face the challenging issue of building a relevant
segmentation from satellite imagery, different multiscale rep-
resentations have been proposed in the literature and we focus
here on the α-tree model recently revisited by Ouzounis and
Soille [2, 3], inspired by the well-known principle of single
linkage in pattern recognition [4]. Describing a panchromatic
(greyscale) image through its α-tree is useful to identify dam-
aged buildings after natural hazards [2] or to select interest
zones in an image (or a feature space) [5], while dealing with
multispectral images (e.g. [6]) remains mainly unexplored.

In this article, we propose to extend α-trees to deal with
more complex data, and particularly hyperspectral images.
This issue has been tackled recently in [7] where the authors
have proposed to use a mutual information criterion. We sug-
gest here another strategy using prior knowledge, brought by
an expert through labeling of learning samples. We show how,
in an unsupervised context, metric learning can help to elabo-

rate a more relevant dissimilarity measure and then to improve
the quality of the subsequent hierarchical representation.

This paper is organized as follows. We recall in section
2 the concept of α-tree through introducing required nota-
tions. Section 3 deals specifically with extending α-trees to
hyperspectral images. The interest of the proposed method
is illustrated through experimental results in section 4 before
concluding and suggesting directions for future work.

2. α-TREES AND HIERARCHIES

We recall here the definition of an α-tree, which is a multi-
scale representation of an image through its α-zones, using
notations from [2]. Let I be an image defined on a domain E.
The segmentation of an image is a partition P ofE, or projec-
tion x → P(x) of E in P(E) such as ∀x ∈ E ⇒ x ∈ P(x)
and ∀x, y ∈ E ⇒ P(x) = P(y) or P(x) ∩ P(y) = ∅ with
P(x) representing a cell of P containing a point x ∈ E. We
have thus

⋃
x∈E P(x) = E.

We also write π(x  y) a path of length N between two
elements x, y ∈ E, i.e. a chain of adjacent elements 〈x =
x0, x1, . . . , xN−1 = y〉. Π 6= ∅ is the set of all paths linking
x to y. Minimal dissimilarity between x and y is defined by

d̂(x, y) =
∧
π∈Π

 ∨
i∈[0,...,N−1]

{
d(xi, xi+1) | xi, xi+1 ∈ Π

}
where d(x, y) is a measure of dissimilarity between attributes
from pixels x and y (e.g. their intensities or grey values). For
a given pixel x, its α-zone written α-Z(x) is composed of all
pixels linked to x by a path with local steps not higher than α:

α-Z(x) = {x} ∪ {y | ∃π(x y) : ∀xi ∈ π(x y)

∧ xi 6= y ⇒ d(xi, xi+1) ≤ α}

α-tree is then a pyramid of partitions of E into α-zones,
or projections ∆A : E → ΠA(E) defined by

∀α, α′ ∈ A, α′ < α,

∆A =
{
Pα=0,Pα=1, . . . ,Pα=αmax

}
| Pα′

� Pα



with ΠA(E) and A = [0, 1, . . . , αmax] denoting respectively
the sets of all α partitions of E and of α values. The relation
� corresponds to the ordering w.r.t. α ∈ A:

∀x ∈ E,α′ < α⇒ α′-Z(x) ⊆ α-Z(x)⇒ Pα′
� Pα

A level of the pyramid ∆A
α ∈ ∆A is a partition Pα of E,

with α ∈ A. Let j ∈ Jα, in which Jα ⊆ Z is a set of
indices, used to access α-zones composing Pα. The hierarchy
of partitions α written ΛA is a familly of ordered projections
ΛA
α : Jα → Kα with Kα ⊆ Jα, i.e.

∀α, α′ ∈ A, α′ < α,

ΛA =
{
ΛA
α=0,Λ

A
α=1, . . . ,Λ

A
α=αmax

}
|ΛA

α′ ≺ ΛA
α

and

∀α ∈ A \ 0,∀j ∈ Jα,
ΛA
α =

{
αj-Z|(αj-Z ∈ ∆A

α ) ∧ (αj-Z 6∈ ∆A
α−1)

}
Different hierarchical models for image representation

have been proposed in the literature [8], e.g. min-/max-tree or
binary partition tree. The former requires to impose an order-
ing relation on the input data, which is a serious issue when
dealing with vectorial data such as multi- or hyperspectral
images [9]. The latter, while offering a richer representation
than α-trees, requires a much higher computation time and
assumes the existence of predefined criteria to merge nodes
[10, 11]. Wavelets and Gaussian pyramids belong to another
set of multiscale representations which do not intrinsically
provide image partitions at different scales.

Thanks to their simplicity, α-trees also offer the advantage
of being possibly built efficiently with adapted algorithms
(ca. one minute for a satellite image of 20 millions pixels)
[12]. Once these representations have been built, it is pos-
sible to analyse the underlying image in an interactive (i.e.
real-time) framework. Interactive segmentation of color video
sequences have been addressed with this model in [13]. How-
ever, extending these tree models to complex data is still an
open problem. We propose here to address this issue by re-
lying on a machine learning technique recently introduced in
image processing but in a different context [14].

3. EXTENSION TO THE HYPERSPECTRAL CASE

Computing an α-tree requires to define a similarity measure
between attributes of any pair of adjacent pixels x and y. This
dissimilarity can be simply written as a difference of grey lev-
els in the panchromatic case, or more generally as any norm
Lq (with q = 1, 2 or even∞). Let us note however that such
a measure is very sensible to the chaining effect observed with
edge discretization in digital images [15]: it is then possible
to enrich this measure by taking into account correlations be-
tween values of neighbouring pixels [7].

Relying on more complex metrics is necessary as soon as
multi- or hyperspectral images are considered, since pixels
are then embedded in high and even very high dimensional
spaces. Thus, it has been proposed in [13] to use the Cheby-
shev distance (or L∞ norm) to build the α-tree, in order to
deal with color video sequences. In the hyperspectral case,
it has been however shown in [16] that angular distance or
spectral angle mapper (SAM)

d(a,b) = arccos

(
a · b
‖a‖ ‖b‖

)
with ‖·‖ the Euclidean norm and · the scalar product, provides
better results than Euclidean distance.

The various distances discussed previously are computed
without relying on any prior knowledge provided with the
data. In the case of hyperspectral satellite images, it is possi-
ble to exploit learning sets provided by an expert as training
samples (pixels). This correspond to the general setting of
supervised classification very commonly addressed in remote
sensing. We can then rely on a distance built from a learning
process, or in other words driven by prior knowledge, such as
for instance the Euclidean norm using a Mahalanobis metric
learnt from data [17], i.e.

d(a,b) =
(

(a− b)
t
M (a− b)

)0.5

Learning theM = WWT metric is here driven by data labels,
and more particularly by a set S of must-link constraints and
a set D of cannot-link constraints:

S = {(a,b) | a and b belong to the same class}
D = {(a,b) | a and b belong to different classes}

Matrix W is then built such as the sum of squared distances
of points from S is minimal, and the sum of points from D is
maximal. In other words, we have the following problem:

W ∗ = arg max
WTW=I

trace(WT ŜSW )

trace(WT ŜDW )
,

where ŜS and ŜD are covariance matrices of sets S and D,
solved here using [14]. The final Mahalanobis metric is then
built such as M = W ∗(W ∗)T .

4. EXPERIMENTS

We evaluate here the benefit of learning the metric required to
build an α-tree when this tree is representing an hyperspectral
satellite image. In this context, the goal is to perform a semi-
supervised clustering of the image, where each region (or α-
zone) is associated with a land cover class.



Fig. 1. Pavia center dataset and results. From left to right: false color composition, ground truth, and maps of relative
F1-measure obtained with SAM and learnt metrics. For these two maps, the color code for the difference between pixel F1-
measure and the best value among all the metrics is the following: 0 (red), less than 0.01 (orange-red), less than 0.05 (orange),
less than 0.10 (yellow), higher than 0.10 (white).

4.1. Evaluation procedure

Contrary to [11], we have not introduced here any heuristic
to select an optimal segmentation or partition from the hier-
archical image representation. Defining such an heuristic is
an open and topical problem [18]. It is thus not possible to
use a quality measure based on the precision of a supervised
classification applied on regions extracted from this partition.

In order to counter the lack of an optimal segmentation
criterion, we exploit the ground truth available as in the con-
text of supervised classification, as proposed in [19]. Thus
we can perform an exhaustive evaluation of all tree nodes, by
measuring for each of the node a local quality score using F1-
measure (inspired from modified Jaccard index J ′ of [19]).
This measure is a trade-off between recall and precision, and
is given by F1 = 2×TP/(2×TP +FN +FP ) where TP ,
FN , and FP denote respectively the numbers of correctly
classified pixels, false negatives and false positives. These
quantities are evaluated through a comparison with reference
regions provided by ground truth.

Each pixel for which the reference label is known is then
assigned a best theoretical score, computed as the highest F1-
measure among all nodes it is included in. These pixel scores
are averaged over the whole image to provide a mean to assess
the tree quality w.r.t. the available ground truth.

4.2. Data and results

Dataset considered here is a part of Pavia center hyperspectral
image (Fig. 1), made of 102 spectral bands and acquired with
ROSIS sensor. Image size is 492×492 pixels and 8 classes of
interest have been defined. Ground truth is partially known:
27, 019 pixels are labelled. Metrics under evaluation are Lq
(with q = 1, 2,∞), SAM and the learnt metric. In order to
learn the distance metric from the data, 1% of pixels in each
class have been randomly integrated into sets of must-link and
cannot-link constraints. The F1-measure provided here is av-
eraged on 10 repetitions.

Tab. 1 and Fig. 1 provide an overview of the obtained re-
sults. We can make the following observations:

• benefit of using SAM angular distance over standard
metrics such as Lq is still to be demonstrated when
these distances are used to build α-trees from hyper-
spectral images. As shown in the figure, some large
areas have a rather low F1-measure in comparison to
the other metrics;

• learning a Mahalanobis metric, and more generally tak-
ing into account expert knowledge as early as possible,
is a promising approach to build α-trees adapted to hy-
perspectral image analysis and classification.

Metric Average F1 (%)
SAM 68.44
L1 83.79
L2 87.49
L∞ 84.21
Learnt metric 93.02

Table 1. Average F1-measures for trees built with different
metrics and considering a part of Pavia center dataset.

5. ACKNOWLEDGMENTS

The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR) under reference ANR-13-
JS02-0005-01 (Asterix project). They also wish to thank
Paolo Gamba from University of Pavia and the HySens
project for providing the data included in the Pavia datasets.



6. CONCLUSION

Hierarchical representation of an image through its α-zones
or α-connected components offers several advantages: com-
pact description, low computational cost, and promising ap-
plications in remote sensing (mostly for panchromatic im-
ages). Extending these representations to more complex im-
ages, such as hyperspectral images, is however not trivial.

We have here underlined the limitations of standard met-
rics, such as Lq distance [13] or angular distance [16]. We
have also shown the benefits brought by metrics driven by
prior knowledge, in a semi-supervised learning framework.
These first results, while promising, require a deeper vali-
dation on a larger dataset and considering a wider range of
metrics (especially the local information criterion used very
recently in this context [7]). Finally, a more general study of
hierarchical image representations is also needed to evaluate
the interest of α-trees over the other existing models in the
context of hyperspectral images considered in this work.
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