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ABSTRACT

Mapping of remote sensing data is usually done through im-
age classification. For hyperspectral images, the classification
process often relies only on the spectral signature of each sin-
gle pixel. Nevertheless, combining spatial and spectral fea-
tures has been a promising way for accuracy improvement.
We address here this problem by computing spectral features
from spatially identified regions, sampled from a hierarchical
image representation, namely α-tree, built with prior knowl-
edge. The sampling of the tree nodes (i.e., regions) is based
on the paradigm of constrained connectivity and the global
range criterion. In this paper, we extend this criterion to hy-
perspectral data and apply it to our knowledge-based α-tree.
Our results show an improvement of pixelwise classification
accuracy over spectral features only.

Index Terms— Hyperspectral Image, Metric Learning,
Constrained Connectivity, Hierarchical Representation, α-
Tree, (α, ω)-Connected Components.

1. INTRODUCTION

Thanks to the continuous growth of high and very high spatial
resolution sensors, remote sensing images contain great de-
tails that can be exploited successfully in various tasks such as
object extraction or classification. At the same time, standard
pixel-based methods for image understanding are not adapted
anymore as they can not deal with the amount of information
and with the heterogeneity of the scene. It is then manda-
tory to rely on image representation of higher level, for in-
stance through regions produced by a segmentation process.
To face the challenging issue of building a relevant segmen-
tation from satellite imagery, different multiscale representa-
tions have been proposed in the literature and we focus here
on the α-tree model [1], inspired by the well-known principle
of single linkage in pattern recognition.

In a previous work [2], we have explored how to build
this model from hyperspectral data, and shown the benefit of
using metric learning to measure local dissimilarity between
neighboring pixels. Nevertheless, the α-tree is limited by the
chaining effect (as any single linkage procedure). Constrained

connectivity has been proposed to solve this issue [3], leading
to the definition of (α, ω)-connected components. However,
the existing computation schemes are not able to deal with
high dimension spaces such as hyperspectral images. In this
article, we first address this issue and introduce a method for
extracting (α, ω)-connected components from an hyperspec-
tral image through its α-tree. We then extract spatial-spectral
features by sampling the hierarchical representation at differ-
ent (α, ω) values, which allows to model the spatial context
of each pixel. These extracted features are then the inputs of a
SVM classifier [4]. We illustrate the interest of our approach
by some improvement in pixelwise classification.

This paper is organized as follows. We recall in Sec. 2 the
concept of α-tree, and in particular its extension to hyperspec-
tral images using metric learning. Sec. 3 deals specifically
with the drawback of the chaining effect, that is solved with
constrained connectivity through a global range constraint.
We propose an efficient approximation of this measure for
hyperspectral images. The interest of the proposed method is
illustrated through experimental results in Sec. 4 before con-
cluding and suggesting directions for future work.

2. KNOWLEDGE-BASED α-TREES

2.1. α-trees

An α-tree is a multiscale representation of an image through
its α-connected components (or α-CCs). While it finds roots
in early work in computer vision, it has been revisited only
recently by Soille and Ouzounis [5, 1]. This paradigm is very
related to the single linkage procedure used in data clustering.

The concept of α-CC is an extension of the connected
component (or CC). We recall that the latter is defined as a set
of adjacent pixels that share the same value (either scalar for
panchromatic images, or vectorial for multi- or hyperspectral
ones). Representing an image by its CCs allows for higher-
level analysis (similarly to computer vision techniques rely-
ing on superpixels). However, the possibly great number of
CCs in an image prevents their practical use. Indeed, adjacent
pixels may belong to the same structure but have slightly dif-
ferent values, thus belonging to different CCs. The concept



of α-CC has been introduced to allow such slight variations,
leading to the following definition: an α-CC is a set of adja-
cent pixels that share similar values i.e., values with a differ-
ence lower or equal to a threshold α. The α-CC of a pixel p
will thus contain all pixels q that can be reached with a path
over neighboring pixels pi 〈p1 = p, . . . , pn = q〉 from p to q
such as d(pi, pi+1) ≤ α.

The complexity and number of α-CCs are directly related
to α. It allows one to build a hierarchical representation of an
image, and to perform subsequent multiscale analysis (e.g., in
an object-oriented strategy). This representation is called an
α-tree. Each level of the tree is indexed by an α value, and
its nodes are the corresponding α-CCs. A leaf in the tree is a
0-CC i.e., a standard CC in the image. Increasing α leads to
the connection of α-CCs, resulting in the creation of higher
nodes in the tree, until the root that contains the whole image.

2.2. Extension to hyperspectral data

Constructing an α-tree requires to define a similarity (or dis-
similarity) measure between values of any pair of adjacent
pixels. While such a dissimilarity can be simply written as
a difference of grey levels in the panchromatic case, there is
no universal solution for multidimensional spaces. Among
the most usual choices, we can cite Lq norms (with q =
1, 2 or even∞) as well as SAM (Spectral Angle Mapper).

However, we have shown in a recent study [2] that these
norms can be advantageously replaced by some other metrics
relying on prior knowledge provided with the data. This op-
tion is particularly relevant in the case of hyperspectral satel-
lite images, where classes or labels are often provided by an
expert with some training samples (pixels).

More precisely, we have explored the use of the Euclidean
norm using a Mahalanobis metric M learned from data i.e.,

d(a,b) =
(
(a− b)T M (a− b)

)0.5

Learning theM =WWT metric is driven by data labels, and
more particularly by a set S of must-link constraints and a set
D of cannot-link constraints:

S = {(a,b) | a and b belong to the same class}
D = {(a,b) | a and b belong to different classes}

Matrix W is then built such as the sum of squared distances
of points from S is minimal, and the sum of points from D is
maximal. In other words, we have the following optimization
problem:

W ∗ = arg max
WTW=I

trace(WT ŜSW )

trace(WT ŜDW )
,

where ŜS and ŜD are covariance matrices of sets S and D,
solved here using [6]. The final Mahalanobis metric is then
built such as M =W ∗(W ∗)T .

In this paper, we build upon this previous work to pro-
pose a multiscale description scheme of hyperspectral images.
More precisely, we address the major drawback of the α-tree,
namely the chaining effect, and solve it with the paradigm of
constrained connectivity proposed by Soille [3].

3. CONSTRAINED CONNECTIVITY

The chaining effect is a well-known issue for the single-
linkage paradigm. Since the α-tree is built on this paradigm,
it is naturally affected by this problem. To explain, let us con-
sider a series of neighboring pixels with values u1, . . . , un. If
d(ui, ui+1) ≤ α for all pairs (i, i+1), these pixels will belong
to the same α-CC. This remark holds even for a small value
of α, values of neighboring pixels being then always very
similar. However, the difference between any pair of pixels
within the α-CC (e.g., d(u1, un)) might be much larger than
α. In this case, pixels with very distinct values are gathered
in a unique α-CC assumed to be of low complexity (low α
value). Such a situation is frequently observed on transition
regions between objects of different spectral signatures, due
to the discretization of edges in digital images [7].

3.1. Global range and (α, ω)-connected components

To counter this chaining effect, Soille has introduced the
paradigm of constrained connectivity [3]. It consists in im-
posing a set of constraints to be fulfilled by the α-CCs. The
most representative example is to apply a threshold ω on the
global range of the α-CC i.e., d(p, q) ≤ ω for all pairs (p, q)
of pixel values belonging to this α-CC. Such a criterion leads
to the definition of the (α, ω)-CCs. Computing this global
range is efficiently achieved in the grayscale case by storing
the minimum and maximum values of each α-CC, and up-
dating these extrema when merging two α-CCs in the α-tree
construction process.

However, defining constrained connectivity on multivari-
ate data (e.g., hyperspectral images) remains very challeng-
ing: i) it is not possible anymore to compute the global range
of a given α-CC from its minimum and maximum; ii) there
is no universal ordering for vectorial data, and thus no unique
way to determine minimum and maximum of a set of vec-
tors (i.e., spectral signatures of pixels contained in the α-
CC). The global range can only be computed using an ex-
haustive search, thus requiring to compute distances between
any pair of pixels in the α-CC. Furthermore, it has to be done
each time two α-CCs are merged in the tree. Considering the
higher bound of the tree size (i.e. number of nodes) is twice
the image size, it leads to an unfordable O(n3) complexity.

3.2. Global range for multivariate data

Only very few attempts have been made to address this is-
sue. The first solution has been proposed by Soille in [3, 8]



in the context of remote sensing. A marginal strategy was
suggested, where both α and ω criteria shall be fulfilled in all
spectral bands to build the (α, ω)-CCs. This presents several
drawbacks: i) each band is processed independently of the
others, ignoring the possible correlation among bands; ii) the
same (local or global) range is imposed on all bands of the
image, while the behavior of spectral signatures of different
materials might vary very much in the observation spectrum.

Conversely, a purely vectorial solution was recently pro-
posed [9]. Assuming a total ordering can be imposed on pixel
values, each pixel is described by its rank within the pixel
value space. The range of the multivariate set is then defined
as the range of the ranks within the set. While this approach
exhibits appealing properties, it still requires the definition of
a total ordering. To do so, the standard lexicographical order-
ing or one of its variants needs to prioritize the image chan-
nels. While this is possible for color images [10], there is no
adequate solution for hyperspectral data yet.

3.3. Efficient overestimation for hyperspectral images

Considering the computation of the global range cannot be
achieved efficiently on multivariate data such as hyperspectral
images, we suggest here to rely on an overestimation of it.
This approximation is relevant as long as the overestimated
global range is still an increasing criterion w.r.t. α.

Representing an α-CC by the set of multivariate data it
contains, the simplest scheme to overestimate its global range
is to compute the diagonal of the set. To do so, we can approx-
imate the set by its bounding box. We only need then to store
the minimum and maximum values within each band, which
could be very easily updated when merging two α-CCs.

However, the overestimation error will increase exponen-
tially with the number of dimensions. So we rather rely on the
diameter of the bounding sphere. It is known that this tech-
nique leads to much lower estimation error than the bounding
box one, when the number of dimensions is high (e.g., in the
case of hyperspectral images). Similarly to the case of the
bounding box, we can rely on efficient schemes to compute
bounding spheres. We only need to store the center of the
sphere (i.e., the center of gravity of the set of pixels contained
in the α-CC), as well as its radius (i.e., the distance between
the center and the furthest element within the α-CC, which
might not correspond to an actual observed pixel). When
merging two α-CCs, updating these attributes is trivial: the
new center of gravity is a linear combination of the centers
of gravity of the two α-CCs to be merged (we also store the
α-CCs size); its furthest element is the extreme point at the
surface of one of the two spheres from the merging α-CCs.

4. EXPERIMENTS

We consider two widely benchmarked hyperspectral images
acquired by the ROSIS sensor: a part of Pavia center (Fig. 1),

similarly to our previous work [2], and Pavia University, re-
spectively made of 102 and 103 spectral bands. The first is
a 1096 × 715 image, containing 27,019 labeled pixels. The
second contains 610 × 340 pixels, among which 42,776 are
labeled. Both contain nine reference classes of urban, soil
and vegetation features. In order to classify the pixels, we
consider two settings for pixel feature computation:

• features are directly the values in the spectral bands;

• features are derived from an α-tree: we extract (α, ω)-
CCs from the α-tree using a regular sample of ω val-
ues, and describe each of them with its size, its within-
cluster variance, and the mean spectral signature (aver-
aged over all pixels of the (α, ω)-CCs) of all its bands.
Concatenation of these descriptors for all sampled ω
values constitutes the complete set of features.

We focus on one-against-one SVM (e.g., see [11]) to perform
the classification, using the R implementation Kernlab [12].
We restrict ourselves to a Gaussian kernel, for which admis-
sible couple of parameters C, that controls the effect of mis-
classified pixels, and σ, that controls the spread of the kernel,
have been defined using a grid search. The best set of param-
eters is then chosen using a repeated random sub-sampling
scheme by running 10 experiments on each couple of param-
eters. On both cases, we use 5% of randomly chosen pixels
to learn the classifier. The α-tree has been computed using a
metric learned from the data, where the same 5% of the pix-
els have been integrated into sets of must-link and cannot-link
constraints in order to learn the distance metric. 10 values of
ω have been chosen to construct the tree-derived features.

Pavia University Pavia Center
Method OA (%) OA (%)
Spectral bands features 93.19 ± 0.19 93.37 ± 0.90
Tree-derived features 98.14 ± 0.25 97.00 ± 0.62

Table 1. Mean ± standard deviation of overall accuracies
(OA) computed over 10 repetitions for the 2 tested methods.

Tab. 1 reports the overall accuracies and Fig. 1 shows the
pixels that have been correctly or mis-classified. We note that
the tree-derived features gives the best classification results. It
allows one to implicitly take into account spatial information,
leading to less isolated pixels in the classification map.
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Fig. 1. Pavia center dataset and classification results. From left to right: false color composition, ground truth, and results
obtained using the pixelwise spectral bands dataset and those with the tree-derived features dataset: pixels correctly classified
are depicted in green while the misclassified ones are in red.

6. CONCLUSION

Representation of an image through its α-connected com-
ponents can lead to a powerful hierarchical model known as
α-tree. Furthermore, it can be improved using the constrained
connectivity paradigm, leading to (α, ω)-connected compo-
nents. These representations allow multiscale image analysis
of an image and have been successfully applied in various
applications in remote sensing, but mostly for panchromatic
images. Nevertheless, their extension to hyperspectral data
is not trivial. The two main stumbling blocks that are to be
overcome in such high dimension spaces are i) the definition
of a sensible distance, ii) the design of efficient schemes to
support constrained connectivity. While we have addressed
the first question in a recent study [2], we focus here on
the second issue and propose new approximation schemes for
computing (α, ω)-connected components and extracting them
from an α-tree. First results are promising but still require
a deeper investigation, including a comparison with other
spatial-spectral classification techniques, as well as using
such trees for other challenges raised in remote sensing.
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flat zones for color image simplification,” in Interna-
tional Symposium on Mathematical Morphology. May
2013, vol. 7883 of LNCS, pp. 231–242, Springer.
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