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Aix Marseille Université, CNRS, Centrale Marseille, LATP, UMR 7353, 13453 Marseille France

Abstract

In this paper we propose a greedy method combined with the

Moreau-Yosida regularization of the Poisson likelihood in or-

der to restore images corrupted by Poisson noise. The regu-

larization provides us with a data fidelity term with nice prop-

erties which we minimize under sparsity constraints. To do

so, we use a greedy method based on a generalization of the

well-known CoSaMP algorithm. We introduce a new conver-

gence analysis of the algorithm which extends it use outside

of the usual scope of convex functions. We provide numerical

experiments which show the soundness of the method com-

pared to the convex ℓ1-norm relaxation of the problem.

Keywords Sparsity, greedy methods, Poisson noise, Moreau-

Yosida regularization, proximal calculus.

1 Introduction

In this paper, we tackle the problem of denoising an image

y corrupted by Poisson noise, under the assumption that the

underlying object x can be well modeled by a sparse decom-

position on a dictionary Φ, i.e. x = Φα with α containing

only a few non-zero coefficients.

Poisson denoising without sparsity constraints has been

tackled quite extensively [1, 2, 3]. The main difficulty is to be

accurate at low photon counts (i.e. for very low signal to noise

ratios), which is an important issue in e.g. astrophysical and

biological imaging. Indeed in these cases, the classical meth-

ods (such as Variance Stabilizing Transforms) that attempt to

transform the Poisson noise to a Gaussian noise fail. Adding

the sparsity assumption alleviates this problem by treating di-

rectly the Poisson noise case and thus allows for denoising

images with very low photon counts [4, 5].

The literature on sparsity, from theory to applications and

including algorithms, is vast and abundant. However it mostly

concerns the case when the observed data is corrupted by a

∗This work is partially supported by the French GIP ANR under contract

ANR GRETA 12-BS02-004-01 Greediness: theory and algorithms.
†Preprint of the article published in 2013 IEEE International Workshop

on Machine Learning for Signal Processing.

Gaussian noise (i.e. a quadratic data-fidelity term). Our aim

is to tackle the Poisson noise case in this context.

One can distinguish mainly two types of algorithms seek-

ing for sparsity : 1) those directly minimizing the ℓ0-pseudo-

norm that counts the non-zero coefficients and 2) the ones

considering instead a relaxation such as the ℓ1-norm. The

former consider the original NP-hard problem while the lat-

ter lead to convex optimization problems [6] which are more

tractable. In this paper, we consider a greedy method such as

Matching Pursuit [7] to solve the original ℓ0 minimization.

While initially designed to tackle a quadratic data fi-

delity term, Matching Pursuit and its variants were recently

extended [8, 9, 4, 5]. Among these, [4, 5] tackle the Pois-

son noise problem, but their algorithms are not theoretically

grounded, while the reverse holds for [8, 9]. Let us note

that handling the Poisson case is hard because it leads to a

data fidelity term that is both not differentiable and strongly

constrained (as we will explain in Section 2).

Here, we propose a greedy procedure that is theoretically

grounded together with a solution to handle the Poisson noise

case. Our contributions are thus twofold: i) we propose and

analyze a generic greedy approach, that works for generic

non-convex data-fidelity terms; ii) we propose and experi-

ment a regularization of the the Poisson denoising problem

in this context.

The paper is organized as follows. Section 2 is devoted

to Poisson corrupted data, their compliance with sparsity and

the proposed regularization. Then in Section 3, we proposed a

novel analysis, using new conditions, of the greedy algorithm

first proposed in [9]. In Section 4, we discuss the application

of the algorithm to the regularized Poisson data and the bias

introduced by it. Our numerical experiments (Section 3) con-

firm that i) the regularization does not add to much bias and

ii) we recover the good properties of the ℓ0 pseudo-norm like

the preservation of the photometry.
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2 Denoising a Poisson noise corrupted

image under sparsity constraint

2.1 Sparse image representation

The true image x and observed image y containing n pixels

are considered as vectors in the real Hilbert space H = R
n.

We denote by ‖.‖ the norm associated with the inner product

in H and by I the identity operator on H.

Our a priori is that the input image x as a sparse represen-

tation on a dictionary Φ ∈ R
n×m. This means that

x = Φα =
∑

i=1,..,m

αiϕi with ||α||0 = L ≪ n .

Here, the ℓ0-norm ||α||0 = Card{i : αi 6= 0} denotes the

number of non-zero coefficients of α aka the cardinal of its

support suppα = {i : αi 6= 0}. The ϕi are the columns of

Φ. They are called the atoms and are normalized (‖ϕi‖ = 1).

2.2 Poisson noise model

We assume we directly observe y, a version of x corrupted

by Poisson noise. I.e. for each pixel i = 1, .., n, pixel y[i]
follows a Poisson law distribution of parameter x[i], which

we write in short as:

y ∼ P(x) . (1)

Using the Poisson probability density function, the likelihood

of observing an image y knowing that the input data is x is:

p(y|x) =
∏

i

(x[i])y[i] exp (−x[i])

y[i]!
. (2)

Assuming the observed data is y, we derive the negative

log-likelihood Fy(x) = − log p(y|x):

Fy : η ∈ R
n 7→

n
∑

i=1

f i
y(η[i]), (3)

where

f
i
y(ξ) =











−y[i] log(ξ) + ξ if y[i] > 0 and ξ > 0,

ξ if y[i] = 0 and ξ ≥ 0,

+∞ otherwise.

(4)

The negative log-likelihood measures how likely is the ob-

servation y when the input is x. It thus provides us with a data

fidelity term Fy(x̂) that quantifies how well an estimated im-

age x̂ fits the observed data y.

2.3 Poisson-sparsity

Here we seek an image x that is both sparsely coded on Φ

and that explains well the data y. A natural way to do so is to

solve the following problem:

x̂ = Φα̂, where α̂ = argmin
α∈Rm s.t. ||α||0≤K

Fy(Φα) . (5)

Here, K denotes the expected sparsity of x. Note that this

problem is complicated for two reasons: i) the ||.||0 constraint

leads to a combinatorial problem, ii) the data fidelity term is

not smooth and even not defined everywhere. Greedy algo-

rithms such as Matching Pursuit give sub-optimal but good

solutions of the ||.||0 problem for quadratic data fidelity terms.

We will present and use here a greedy method that handles the

non-smooth case, which solves i) (see Section 3).

Let us now analyze ii). Fy is a lower semi-continuous

(l.s.c.) convex function. Notice that Fy(x) = +∞ not only

for images x with at least a pixel of negative value (x[i]< 0)

but also for images x with have a pixel of value 0 while it is

not the case in the observed data (i.e. if there an i such that

x[i] = 0 and y[i]> 0). This property stems from the Poisson

law and thus reflects the process generating the data, however

it yields a data fidelity term which restricts a lot the estimates

x̂ one can look for.

Imagine we look for a sparse signal in the pixel domain

(i.e. Φ = I), then whatever the level of sparsity K demanded,

a solution x̂ of Problem (5) must verify x̂[i] > 0 if y[i] >
0. It is thus impossible to find a solution of this problem for

K < Card{i : y[i]>0}. In other words, the Poisson neg-log-

likelihood does not allow for any compromise towards nullity.

It thus seems odd to look for a sparse estimate in this setting.

Of course, using another dictionary Φ than the identity

allows to transport these hard support constraints on Φα and

seek for sparsity on α and thus decouple the problems. How-

ever, the previous reasoning shows that the type of restrictions

imposed by Fy are quite different from a classical close con-

vex constraints (typically the non-negativity constraint x ∈
(R+)n), which can be dealt with using projections.

A way around this problem could be to use a variance sta-

bilizing function [1, 2]. But such methods can still be delicate

to use because they involve a square-root and are not efficient

for low intensity regimes. Here, we rather propose a differ-

ent view that sticks more to the original Poisson data fidelity

term. We propose to use a regularized version of it, namely

its Moreau-Yosida regularization.

2.4 Moreau-Yosida regularization

Definition 1 (Moreau-Yosida regularization [10]). f : Rd →
R ∪ {+∞} is a proper lower semi-continuous (l.s.c.) convex

function. Its Moreau-Yosida regularization for λ > 0 is:

Mλ,f : Rd → R,

s 7→ inf
x∈Rd

[

1
2λ ||s− x||2 + f(x)

]

. (6)



The Moreau-Yosida regularization is a C1 function with a

Lipschitz continuous gradient. It converges pointwise to f as

λ tends to 0. Its gradient is related to the proximity mapping:

Definition 2 (proximity mapping). f : Rd → R∪{+∞} is a

proper l.s.c. convex function. The proximity mapping of f is:

proxf : Rd → R
d,

s 7→ argmin
x∈Rd

[

1
2 ||s− x||2 + f(x)

]

. (7)

The proximity mapping is a well-known convex analysis

tool. Closed-form solutions exist for numerous simple func-

tions (see [11]).

The gradient of the Moreau-Yosida regularization is [10]:

∇Mλ,f (x) =
1

λ

(

I− proxλf
)

(x) . (8)

Let us return to Problem (5), we shall replace the mini-

mization of the neg-log-likelihood by its Moreau-Yosida reg-

ularization and thus solve

x̂ = Φα̂, where α̂ = argmin
α∈Rm s.t. ||α||0≤K

Mλ,Fy◦Φ(α) , (9)

with ◦ the composition. (The influence of λ will be discussed

in Section 4.) To do so, the greedy algorithm we present in the

next section requires the gradient of the regularized function.

Proposition 3 (Gradient of the Moreau-Yosida regularization

of the Poisson neg-log-likelihood [6].). If Φ is a tight frame

(i.e. ∃ ν > 0, s. t. Φ ◦ Φ
∗ = νI), then the gradient of the

Moreau-Yosida enveloppe of Fy ◦Φ is:

∇Mλ,Fy◦Φ(x) =
1
νλ

Φ
∗ ◦ (I− proxνλFy

) ◦Φ (10)

with

proxνλFy
(x)[i] =

x[i]− νλ+
√

|x[i]− νλ|2 + 4νλy[i]

2
. (11)

Let us now propose a greedy approach to solve Prob-

lem (9).

3 Greedy Minimization Algorithms

In this Section, we consider the general problem of minimiz-

ing a function under sparsity constraints. We wish to solve,

min
a∈H

f(a) s. t. ‖a‖0 6 K , (12)

where K is the maximal sparsity of the estimate a and f :
H → R is a smooth but not necessarily convex function. We

denote by a⋆ a solution of (12).

Greedy procedures look for a sub-optimal solution since

such a problem is combinatorial and NP-complete even in

simple cases. Here, we use (the greedy) Algorithm 1 (also

known as GRASP [9]), which generalizes CoSaMP [12]. Just

like the latter, this algorithm seeks the support of the optimal

solution, iteratively updating it through five steps. The first

three aim at updating the extended guess support of size 3K
(S) using both gradient information and the support of the

current estimate. (wk denotes the version of w truncated to

its k largest coefficients in magnitude.) One then minimizes

the function f over the new support (step four) and restricts

the solution its K largest coefficient (step five). Notice that

the forth step may require to solve an optimization problem

of small size (if f is differentiable, a gradient descent can be

sufficient).

Algorithm 1: Find a greedy solution to the non-convex

optimization Problem (12).

Initialization: â0 = 0 .

Main iteration:

For t = 0 to N − 1,

1) Compute the local directions: g = ∇f(ât) ,

2) Identify the next directions: G = supp(g2K) ,

3) Merge the supports: S = G ∪ supp(ât) ,

4) Minimize over the support:

z ∈ argmin
a:supp(a)⊂S

f(a)

5) Prune estimate: ât+1 = zK .

End main iteration

Output: An approximated solution of (12): âN .

To show the convergence of Algorithm 1, we introduce

the two following definitions.

Definition 4 (Restricted Lipschitz gradient). A function f is

said to have a Lipschitz gradient of order K if there exists

βK > 0 such that,

∀a, b ∈ H, s. t. Card{supp(a) ∪ supp(b)} 6 K ,

‖∇f(a)−∇f(b)‖ 6 βK ‖a− b‖ .
(13)

Of course βK exists if f has a Lipschitz gradient. This vari-

able is used to scale the gradient in the next definition.

Definition 5 (Restricted Lipschitz dual gradient). If f has a

βK restricted Lipschitz gradient, we define its dual gradient

upper local bound of order K as:

δK = sup
a,b∈H

{

1
‖a−b‖

∥

∥

∥
(I− 1

βK
∇f)(a)− (I− 1

βK
∇f)(b)

∥

∥

∥

∣

∣

∣

a 6= b,Card{supp(a) ∪ supp(b)} 6 K

}

. (14)

Notice that by definition δK 6 2. Furthermore, if we

replace ∇f by a matrix A (the Compressed sensing case with



Gaussian noise [12]), Eq. (14) leads directly to the famous

Restricted Isometry Property. In fact, δK is linked with the

generalization of the power spectra for non-linear operators.

Using this bound allows to prove the following theorem1:

Theorem 6. Suppose that ∇f satisfies the restricted Lip-

schitz dual gradient condition (Definition 5) with δ4K 6

(2
√
3 − 3)/3, then the distance between (âi) the estimate at

the i-th iteration of Algorithm 1 and an optimal solution a⋆

of Problem (12) verifies,

∥

∥âi+1 − a⋆
∥

∥ 6

∥

∥âi − a⋆
∥

∥

2i
+

8 ‖[∇f(a⋆)]3K‖
(1− δ4K)2

. (15)

The right part of Equation (15) can be split in two, on the

left we have the exponentially decreasing convergence term,

on the right an approximation term. This last term depends

on the optimal solution and the gradient. It is easy to prove

that in the Gaussian noise case, this term only depends of the

variance of the noise (see [12]). More generally, the quality

of the solution is function of the noise and the properties of

the gradient (for example its smoothness).

Let us also note that the algorithm was first proposed and

analyzed in [9]. Their analysis relies strongly on the convex-

ity of f (via either the Hessian or the Bregman divergence) at

least on sparse directions. By contrast, the conditions required

for Theorem 6 can be easily generalized to operators and not

just gradients, and do not require convexity. We believe that

such results open the field of application of Algorithm 1.

4 Discussion

Let us now discuss the application of Algorithm 1 to the prob-

lem of Poisson denoising via the Moreau-Yosida regulariza-

tion of the Poisson neg-log-likelihood.

The gradient Mλ,Fy◦Φ is Lipschitz with a Lipschitz con-

stant of 1
λ

. Therefore it has a Restricted Lipschitz gradient as

defined in Eq.(13). Since Mλ,Fy◦Φ is convex its dual gra-

dient upper local bounds of order K verifies δK 6 1 (using

the Baillon-Haddad theorem [13]). We have not been able to

prove that in this case δ4K 6 (2
√
3 − 3)/3 as required by

Theorem 6, however the smoothness properties of Mλ,Fy◦Φ

and its derivative let us think that this is the case for a large

range of λ. Notice that these values are located away from 0
where Mλ,Fy◦Φ acts as the Poisson neg-log-likelihood, and

also away from +∞ where Mλ,Fy◦Φ tends to the constant

value infα{Fy ◦Φ(α)}. This is supported by the experiments

we display in the following section.

Let us now analyze how far is the solution we find from

the solution of the original problem. Indeed our original prob-

lem was to find the best K − sparse signal minimizing the

Poisson neg-log-likelihood, let us denote by xo = Φαo this

1The proof is provided in http://www.latp.univ-mrs.fr/

˜anthoine/TechRep_072013.pdf

signal. Instead we consider the output of Algorithm 1 after

i iterations xi = Φαi, when minimizing the Moreau-Yosida

regularization Mλ,Fy◦Φ. To evaluate the distance from xo to

xi, we need to consider xλ = Φαλ the best K−sparse signal

minimizing the Moreau-Yosida regularization Mλ,Fy◦Φ.

Since Φ is a tight frame of constant ν, we have:

∥

∥xi − xo
∥

∥ ≤
∥

∥xi − xλ
∥

∥+
∥

∥xλ − xo
∥

∥

≤
√
ν
∥

∥αi − αλ
∥

∥+
√
ν
∥

∥αλ − αo
∥

∥ .

Thus using Eq.(15), we obtain:

∥

∥xi − xo
∥

∥ ≤
√
ν

∥

∥αi−1 − αλ
∥

∥

2i−1
+ 8

√
ν

∥

∥∇Mλ,Fy◦Φ(α
λ)|3K

∥

∥

(1− δ4K)2

+
√
ν
∥

∥αλ − αo
∥

∥ (16)

The error we commit is thus separable into three terms. The

first one quantifies the optimization error done by stopping

Algorithm 1 at a finite time, it decreases exponentially fast.

The second source of error (second term) is an approximation

error that is due to the noise in the data. This term is fully ana-

lyzed in the compressed sensing case in CoSaMP [12], and is

proportional to the variance of the noise in the Gaussian case.

In the Poisson case, it is more difficult to analyze it. The last

term, called bias, quantifies the error we make by using the

Moreau-Yosida regularization instead of the Poisson neg-log-

likelihood. Assuming we could bound beforehand the max-

imum intensities of the xi, xo and xλ, we could use a result

in [14] showing that
∥

∥αλ − αo
∥

∥ = O(
√
λ) which quantifies

this error (remember that the Moreau-Yosida regularization

converges to the original function when λ goes to 0).

5 Experiments

In this section, we evaluate the performance of our method

(aka ℓ0 method) and compare it to the classical convex re-

laxation way (aka ℓ1 method). The latter was implemented

using the Poisson model as described in [11] using a convex

optimization algorithm. The experiments will shed light on

the effects of using the ℓ0-norm instead the ℓ1 and also on the

consequences of the use of Moreau-Yosida regularization.

Two experiments are proposed using two classical images

(Cameraman and Barbara) with two different dictionaries,

the undecimated wavelet transform (with the symlet 6) and

the curvelet transform. Notice that both transforms are redun-

dant and thus well fit to the denoising task.

For all the experiments, we set the Moreau-Yosida reg-

ularization parameter to 10. This value may lead to a non-

negligible bias but allows for a better convergence rate. The

regularization parameter of both ℓ0 and ℓ1 methods have been

fixed to give comparable sparsity levels. Remark that find-

ing good (or optimal) parameters is an open problem in both

cases (see [15] for an example for the Gaussian noise case).



(a) Original (b) Noisy

(c) ℓ0 method (d) ℓ1 method

Figure 1: Denoising Cameraman with a maximal intensity of

5 with the undecimated wavelet transform.

Figure 1 shows the results for the Cameraman with a max-

imal intensity of 5. To show the differences of photometry,

the images in a same figure are always displayed using the

same grayscale colormap. Assuming that the image is sparse

in the undecimated wavelet domain (which is mostly true),

we apply the ℓ0 method (Fig. 1(c)) and compare it to the ℓ1
method (Fig. 1(d)). Notice that the ℓ0-norm leads a smoother

image, while most of the details are preserved with the ℓ1-

norm (but with more noise). Because the Cameraman is not

truly sparse in the chosen domain, enforcing the sparsity for

the reconstruction is not relevant. However, the ℓ0 preserves

the photometry better: for example the coat of the Camera-

man is darker in Fig. 1(c) than in Fig. 1(d).

We repeat the experiment with a maximal intensity of 30

(thus with a higher SNR). As the noise is weaker, more de-

tails should be recovered. Figure 2 shows the results with

both methods. The ℓ0 method (Fig. 2(c)) preserves the details

as well as the ℓ1 method (Fig. 2(d)). As with the previous

experiment, the most important difference between Fig. 2(c)

and Fig. 2(d) is the photometry. For example, the camera is

brighter in Fig. 2(c) (like in the original) than in Fig. 2(d).

Maximal ℓ0 method ℓ1 method

Intensity PSNR MAE SSIM PSNR MAE SSIM

5 25.2 0.36 0.53 20.2 0.47 0.57

30 26.9 1.22 0.74 22.0 1.61 0.80

Table 1: Denoising performance for our method and the re-

laxed method for the Cameraman at two levels of noise.

To quantify our assertions, we repeat both experiments 10

times each and for each result, we compute the peak signal to

(a) Original (b) Noisy

(c) ℓ0 method (d) ℓ1 method

Figure 2: Denoising Cameraman with a maximal intensity of

30 with the undecimated wavelet transform.

noise ratio (PSNR), the mean absolute error (MAE) and the

structural similarity index (SSIM) [16]. Table 1 shows the av-

eraged numerical results for the two levels of intensity (i.e. of

noise) we tested, using the very same parameters. Notice that

for both intensity levels, the ℓ0 method gives a better PSNR

and MAE than the ℓ1 method, but not for the SSIM. These

results confirm that the ℓ0 method is better as preserving the

photometry (to which PSNR and MAE are sensitive), but ℓ1
is better at restoring the details (as reflected by the SSIM).

To show the effect of the choice of the dictionary, we

repeat the experiment at a maximal intensity of 30 (medium

level of noise). For this experiment, we use Barbara (Fig. 3(a))

because of the curve-like textures on the pants. Figure 3

shows the results for each method using two different dic-

tionaries, Fig. 3(c) and Fig. 3(d) for the curvelet transform

and Fig. 3(e) and Fig. 3(f) for undecimated wavelet trans-

form. As expected ℓ0 method shows also a better photometry.

Moreover, for both methods the curvelet transform is bet-

ter at restoring the textures. With the undecimated wavelet

transform, part of the textures is lost and the ℓ0 method is

less efficient than the ℓ1 method (see specifically the shawl).

This shows the importance of the selection of the dictionary

while using sparse method. Using the wrong one may lead to

artifacts and loss of some structures (like textures).

6 Conclusion

In this paper, we presented a new analysis of a generalization

of the CoSaMP algorithm and proposed to apply it to remove

Poisson noise under a sparsity constraint. In order to avoid the

shortcomings of a direct use of the Poisson log-likelihood, we



(a) Original (b) Noisy

(c) ℓ0 method (d) ℓ1 method

(e) ℓ0 method (f) ℓ1 method

Figure 3: Denoising Barbara with a maximal intensity of 30.

(c) and (d) using the curvelet transform. (e) and (f) using the

undecimated wavelet transform.

exploited instead its Moreau-Yosida regularization. Experi-

ments showed that the obtained method is competitive with a

convex relaxation approach. The proposed algorithm is prov-

ably convergent. Moreover, the proposed convergence condi-

tions allow to apply it to non-convex functions, which was not

the case of the original analysis. However a deeper analysis

of these conditions of convergence is still to be done. Future

works also include considering dictionary learning to adjust

the dictionary to the sparsity prior.
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