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RESTRICTION ESTIMATES, SHARP SPECTRAL MULTIPLIERS AND ENDPOINT
ESTIMATES FOR BOCHNER-RIESZ MEANS

PENG CHEN, EL MAATI OUHABAZ, ADAM SIKORA, AND LIXIN YAN

Abstract. We consider abstract non-negative self-adjoint operators on L2(X) which satisfy the finite
speed propagation property for the corresponding wave equation. For such operators we introduce
a restriction type condition which in the case of the standard Laplace operator is equivalent to (p, 2)
restriction estimate of Stein and Tomas. Next we show that in the considered abstract setting our
restriction type condition implies sharp spectral multipliers and endpoint estimates for the Bochner-
Riesz summability. We also observe that this restriction estimate holds for operators satisfying
dispersive or Strichartz estimates. We obtain new spectral multiplier results for several second
order differential operators and recover some known results. Our examples include Schrödinger
operators with inverse square potentials onRn, the harmonic oscillator, elliptic operators on compact
manifolds and Schrödinger operators on asymptotically conic manifolds.
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1. Introduction

A celebrated theorem of Hörmander [38] for radial Fourier multipliers on the Euclidean space
states that for a given bounded function F : [0,∞) → C, the operator F(−∆), initially defined by
Fourier analysis on L2(Rn), extends to a bounded operator on Lp(Rn) for all p ∈ (1,∞) provided
the function satisfies

(1.1) sup
t>0
‖η(·)F(t·)‖W s,2 < ∞

for some s > n/2. Here η ∈ C∞c (0,∞) is a non-trivial auxiliary function. This result is a sharp
version of the well known Mikhlin’s Fourier multiplier theorem [52]. These results have led to a
fruitful research activity on spectral multipliers and new perspectives in harmonic analysis. The
Hörmander-Mikhlin theorem has been extended by several authors to other operators than the
Laplacian and settings that go beyond the Euclidean case. The bibliography is so broad that it is
impossible to provide complete list here. We refer the reader to [2, 12, 14, 15, 16, 17, 21, 24, 25,
26, 27, 28, 29, 32, 35, 37, 50, 53, 54, 56, 59, 60, 62, 64, 65, 67, 69, 70] and the references therein.

Suppose that X is a measure space and that L is a non-negative self-adjoint operator on L2(X).
Such an operator admits a spectral resolution EL(λ) and for any bounded Borel function F : [0,∞)→
C, one can define the operator F(L)

(1.2) F(L) =

∫ ∞

0
F(λ) dEL(λ).

By the spectral theorem, F(L) is well defined and bounded on L2(X). Spectral multiplier theorems
give sufficient conditions on F under which the operator F(L) extends to a bounded operator
on Lp(X) for some range of p.

Most of the references mentioned before deal with the case of sub-Laplacians on some Lie
groups. The papers [24, 25, 33] deal with a rather general situation where (X, d, µ) is metric
measure space of homogeneous type (or even a domain of such space). One of the results there
is a spectral multiplier theorem under the sole assumption that the heat kernel of the operator has
a Gaussian upper bound. The condition there is however stronger than (1.1) in the sense that
the norm in W s,2 is replaced by the norm of W s,∞ where s is any constant larger than half of
homogeneous dimension. Condition (1.1) with norm W s,2 is better than the corresponding one
with norm W s,∞. This can be seen from Bochner-Riesz summability which we discuss now.

The theory of spectral multipliers is related to and motivated by the study of convergence of
Bochner-Riesz means of self-adjoint operators. For any exponent δ ≥ 0 and a parameter R > 0 we
define the the function S δ

R : R+ → R by the formula

(1.3) S δ
R(λ) =


(
1 − λ

R2

)δ
for λ ≤ R2

0 for λ > R2.

Then for any non-negative self-adjoint operator L we define the operator S δ
R(L) using (1.2). We

call S δ
R(L) the Riesz or the Bochner-Riesz means of order δ corresponding to the operator L. The

basic question in the theory of Bochner-Riesz means is to establish the critical exponent for the
uniform continuity with respect to R and convergence of the Riesz means on Lp spaces for various
p with 1 ≤ p ≤ ∞.

For δ = 0, this is the spectral projector E√L[0,R], while for δ > 0, S δ
R(L) can be seen as

a smoothed version of this spectral projector. Bochner-Riesz summability describes the range
of δ for which the above operators are bounded on Lp, uniformly in R. If one proves a spectral
multiplier result which states that F(L) is bounded on Lp(X) for all p ∈ (1,∞) whenever F satisfies
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(1.1), then the Bochner-Riesz mean S δ
1(L) is bounded on all Lp spaces provided δ > n−1

2 . In
the case where L is the Euclidean Laplacian and δ > n−1

2 , the kernel of S δ
R(L) is L1 and hence

Bochner-Riesz means are bounded on Lp for 1 ≤ p ≤ ∞. In this setting more is known. Indeed for
δ > max{n|12 −

1
p |−

1
2 , 0}, it was known for a long time that as a consequence of restriction estimates

for the Fourier transform, Bochner-Riesz summability holds on Lp for all p ≤ 2n+2
n+3 , and by duality

for p ≥ 2n+2
n−1 . See Stein [67], p. 420. This was extended by Lee [46] to the case p < 2n+4

n+4 (or
p > 2n+4

n ) and recent improvements are proved by Bourgain and Guth [9]. The question whether
Bochner-Riesz summability holds on Lp(Rn) for all p and all δ > max{n| 1p −

1
2 | −

1
2 , 0} is a long-

standing open problem (except for n = 2, see Carleson and Sjölin [12] and Hörmander [36]).
For all this, see Stein [67], p. 420 and the review paper of Tao [68]. The latter contains many
other information and relation of the Bochner-Riesz problem to other open problems in harmonic
analysis.

If L is a second order elliptic operator on a compact Riemannian manifold M with dimension
n, then the Bochner-Riesz means

∑
λ j≤R(1 − λ j/R)δ < ·, e j > e j are uniformly bounded on Lp(M)

provided p ≤ 2n+2
n+3 or by duality for p ≥ 2n+2

n−1 for δ > max{n|12 −
1
p |−

1
2 , 0}. Here λ0 ≤ λ j ≤ λ j+1 ≤ . . .

and e j are the corresponding eigenvalues and normalized L2 eigenvectors, respectively. See Sogge
[62].

The theory of Fourier multipliers and Bochner-Riesz analysis in the setting of the standard
Laplace operator on Rn is related to the so-called sphere restriction problem for the Fourier trans-
form: find the pairs (p, q) for which Rλ ∈ L(Lp(Rn), Lq(Sn−1)) where Rλ is defined by

Rλ f (ω) = f̂ (λω), ω ∈ Sn−1, λ > 0.

See for example [26, 28, 65, 67, 68]. For q = 2 the full description of possible range of p is due to
Stein and Tomas. The theorem of Tomas [71], extended by Stein to the endpoint, states that (p, 2)
restriction estimates hold if and only if 1 ≤ p ≤ 2(n + 1)/(n + 3). The case q , 2 is not relevant to
our discussion so we refer the interested reader to Tao [68] on the subject.

Note that on Rn, the Schwartz kernel of the spectral measure dE√
−∆(λ) of

√
−∆ is given by

dE√
−∆(λ; z, z′) =

λn−1

(2π)n

∫
S n−1

ei(z−z′)·λωdω, z, z′ ∈ Rn,

therefore dE√
−∆(λ) = λn−1

(2π)n R∗λRλ and the restriction theorem for q = 2 is equivalent to

(1.4) ‖dE√
−∆(λ)‖p→p′ ≤ Cλn(1/p−1/p′)−1

for all p ∈ [1, 2n+2
n+3 ]. In the sequel, we refer to (1.4) as (p, 2) restriction estimate of Stein-Tomas.

In this paper we follow the line of research described above. We deal with the problem of sharp
spectral multipliers and Bochner-Riesz summability for other operators than the Euclidean Lapla-
cian and elliptic operators on compact manifolds. Our aim is to build a theory which applies in
a general setting of self-adjoint operators on spaces of homogeneous type (i.e., metric measure
spaces which satisfy the volume doubling property). Our approach allows us to prove sharp mul-
tiplier results and Bochner-Riesz summability in new settings and also unifies several previously
known results. In order to do so we introduce a restriction type estimate which in the case of the
Laplacian on Rn turns to be equivalent to the (p, 2) restriction estimate of Stein-Tomas.

Our setting will be the following. We consider a non-negative self-adjoint operator L on L2(X)
where (X, d, µ) is a metric measure space which satisfies the volume doubling condition

V(x, λr) ≤ CλnV(x, r) ∀x ∈ X, λ ≥ 1, r > 0,
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where C and n are positive constants and V(x, r) denotes the volume of the open ball B(x, r)
of centre x and radius r. We assume that L satisfies the finite speed propagation property for
the corresponding wave equation. We introduce the condition that for any R > 0 and all Borel
functions F supported in [0,R],

(STq
p,s)

∥∥∥F(
√

L)PB(x,r)

∥∥∥
p→s
≤ CV(x, r)

1
s−

1
p
(
Rr

)n( 1
p−

1
s )∥∥∥F(R·)

∥∥∥
q

for all x ∈ X and all r ≥ 1/R.
We will see that if the volume is polynomial, i.e. V(x, r) ∼ rn, then (ST2

p,2) is equivalent to (p, 2)
restriction estimate of Stein-Tomas. For this reason, we call (STq

p,s) a Stein-Tomas restriction type
condition. One of our main results on sharp spectral multipliers can be stated as follows.

Theorem A. Assume that X satisfies the volume doubling condition. Suppose that L is a non-
negative self-adjoint operator which satisfies the finite speed propagation property and condition
(STq

p,s) for some p, s, q such that 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞.
(i) Compactly supported multipliers: Let F be an even function such that supp F ⊆ [−1, 1]

and F ∈ Wβ,q(R) for some β > n(1/p − 1/s). Then F(
√

L) is bounded on Lp(X), and

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,q .

(ii) General multipliers: Suppose s = 2 and F is a bounded Borel function such that es-
timates supt>0 ‖η(·)F(t·)‖Wβ,q < ∞ hold for some β > max{n(1/p − 1/2), 1/q} and some
non-trivial function η ∈ C∞c (0,∞). Then F(

√
L) is bounded on Lr(X) for all p < r < p′. In

addition,

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η(·)F(t·)‖Wβ,q + |F(0)|

)
.

Assertion (i) of the theorem is inspired by Guillarmou, Hassell and Sikora [29] where a related
result is proved under the assumption that the volume is polynomial. Assertion (ii) is in the spirit
of Hörmander’s multiplier theorem for the Euclidean Laplacian. Here, if p > 1, the order of
differentiability required on F is smaller since we do not search for boundedness of F(

√
L) on Lr

for all r ∈ (1,∞).
The proof of assertion (i) makes heavy use of the finite speed propagation property. This prop-

erty together with the classical dyadic decomposition of F allow to reduce the problem of bound-
edness of F(

√
L) on Lp to boundedness of certain compactly supported operators. The Stein-

Tomas restriction type condition will be used to obtain an Lp−Ls estimate of these operators from
which we recover the boundedness of F(

√
L) on Lp.

Assertion (ii) appeals as expected to singular integral theory. We shall also make use of the
estimate from assertion (i) since F(

√
L) can be written as the sum

∑
F j(
√

L) with compactly
supported functions F j. However the operators F j(

√
L) do not act independently of each other

and hence Lp estimate for F(
√

L) does not hold in a trivial way from the corresponding estimates
for F j(

√
L). As explained by Littman, McCarthy and Rivière [48], we may have F j(

√
−∆) to be

uniformly bounded on L1(Rn) but F(
√
−∆) fails to be a multiplier of any Lp other than L2. This

problem of recovering Lp bounds for F(
√
−∆) from those for F j(

√
−∆) is discussed by Carbery,

Seeger and Sogge in [11, 58, 59]. We shall follow closely Carbery [11] and adapt some ideas there
to our abstract setting.

Our restriction type estimate does not hold when the point spectrum of the operator is not empty.
In particular, it does not hold for elliptic operators on compact manifolds or for the harmonic
oscillator. In order to treat these situations as well we modify the restriction estimate as follows:
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for a fixed natural number κ and for all N ∈ N and all even Borel functions F such that supp F ⊆
[−N,N],

(SCq,κ
p,s)

∥∥∥F(
√

L)PB(x,r)

∥∥∥
p→s
≤ CV(x, r)

1
s−

1
p (Nr)n( 1

p−
1
s )
‖F(N·)‖Nκ, q,

for all x ∈ X and all r ≥ 1/N where

‖F‖N,q =

 1
2N

N∑
`=1−N

sup
λ∈[ `−1

N , `N )
|F(λ)|q


1/q

for F supported in [−1, 1]. For q = ∞, we put ‖F‖N,∞ = ‖F‖∞. The norm ‖F‖N,q was used by
Cowling and Sikora [21] and Duong, Ouhabaz and Sikora [24] in the context of spectral multipli-
ers.

In some situations, (SC2,1
p,2) is equivalent to the following condition introduced by Sogge (see

[62, 63, 64])

(Sp)
∥∥∥E√L[λ, λ + 1)

∥∥∥
p→p′
≤ C(1 + λ)n( 1

p−
1
p′ )−1.

We call (SCq,κ
p,s) Sogge’s spectral cluster condition. In this context we shall prove the following

result (see Theorems 3.6 and 4.2 for precise statements).

Theorem B. Suppose that X has finite measure and satisfies the volume doubling condition. Let L
be a non-negative self-adjoint operator which satisfies the finite speed propagation property and
Sogge’s spectral cluster condition (SCq,1

p,s ) for some p, s, q such that 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞.
Then both assertions of Theorem A hold provided β > max{n(1/p − 1/s), 1/q}.

The same conclusion holds in the case where µ(X) = ∞ provided (SCq,κ
p,s) and an a priori esti-

mate for ‖F(
√

L)‖p→p are satisfied.

As for Theorem A, an appropriate decomposition of F(
√

L) as the sum of operators with com-
pact supports is the backbone of our arguments in proving boundedness of F(

√
L) on Lp for

compactly supported F. Passing from compactly supported multipliers to the general case will
be done in the same way as for Theorem A. The proof of this part does not make explicit use of
(STq

p,2) or (SCq,κ
p,2) but the rather weaker condition∥∥∥(I + t

√
L)−N PB(x,r)

∥∥∥
p→2
≤ CV(x, r)

1
2−

1
p

(r
t

)n( 1
p−

1
2 )
, x ∈ X, r ≥ t > 0.

Starting now from Theorem A or Theorem B with s = 2 and choosing the function F = S δ
R

yields Bochner-Riesz summability on Lp(X) for δ > δq(p) where

δq(p) = max
{
0, n

∣∣∣∣1p − 1
2

∣∣∣∣ − 1
q

}
.

Now we address the question of endpoint estimates, i.e., estimate for S δq(p)
R (L). It turns out that

our Stein-Tomas restriction type condition or Sogge’s cluster condition imply that Bochner-Riesz
means are weak-type (p, p) operators for δ = δq(p). More precisely we obtain

Theorem C. Assume that X satisfies the doubling condition and operator L satisfies the finite
speed propagation property.

(i) If the restriction condition (STq
p,2) holds for some p, q satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞

then S δq(p)
R (L) is of weak-type (p, p) uniformly in R.

(ii) The same conclusion as in (i) holds if µ(X) < ∞ and (SCq,1
p,2) is satisfied for some p, q

satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞.
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In the Euclidean case, it is known that S δ2(p)
R (−∆) is not bounded on Lp(Rn) for p , 2. This was

observed by Christ and Sogge [17] who also proved weak-type (1, 1) for S δ2(1)
R (−∆). Weak-type

(p, p) estimates of S δ2(p)
R (−∆) are proved by Christ [14, 15] when p < 2n+2

n+3 . The corresponding
result on compact manifolds is proved by Seeger [57]. The endpoint estimates for p = 2n+2

n+3 are
proved by Tao [69] both for Rn and compact manifolds.

Our approach for endpoint estimates is inspired by Christ and Tao [14, 15, 69]. It is based
on L2 Calderón-Zygmund techniques (as used in Fefferman [26]), a spacial decomposition of the
Bochner-Riesz multiplier and the fact that if F has its inverse Fourier transform supported on a
set of width R, then by the finite speed propagation property the operator F(

√
L) is supported in a

CR− neighbourhood of the diagonal. It is worth to note that our proof of endpoint estimates does
not require any cancellation argument. This allows us to consider applications to operators with
non-smooth kernels.

The previous theorems are proved in Part 1 of this paper. In Part 2, we investigate the relation
of (ST2

p,2) to dispersive or Strichartz estimates for the corresponding Schrödinger equation

(1.5) ∂tu + iLu = 0, u(0) = f ∈ L2.

In the setting of Euclidean Laplacian, Strichartz’s original proof for Lp(R × Rn) estimates of the
solution u of (1.5) uses restriction estimates of the Fourier transform. In some sense we want to
do the converse here, we want to take advantage of known dispersive or Strichartz estimates for
(1.5) to prove a Stein-Tomas restriction type condition and then obtain sharp spectral multipliers
by Theorem A. We are able do this either using directly dispersive estimates for eitL or endpoint
Strichartz estimates. We prove the following result.

Theorem D.
(i) Suppose that L satisfies the Strichartz estimate∫

R

‖eitL f ‖22n
n−2

dt ≤ C‖ f ‖22, f ∈ L2

for some n > 2. Assume also that the smoothing property

‖ exp(−tL)‖p→ 2n
n+2
≤ Kt−

n
2 ( 1

p−
n+2
2n ),

holds for all p ∈ [1, 2n
n+2 ]. Then for all λ ≥ 0

‖dE√L(λ)‖p→p′ ≤ Cλn( 1
p−

1
p′ )−1.

(ii) Fix p ∈ [1, 2n
n+2 ]. Suppose that X satisfies the doubling condition and that there exists a

positive constants C > 0 such that V(x, r) ≤ Crn for every x ∈ X and r > 0. Assume that
L satisfies the finite speed propagation property together with Strichartz and smoothing
estimates as in (i). Then for every even compactly supported bounded function F such that
‖F‖Wβ,2 < ∞ for some β > n( 1

p −
1
2 ), the operator F(

√
L) is bounded on Lp and

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,2 .

(iii) Suppose that the conditions of (ii) are satisfied. Then for any bounded Borel function F
such that supt>0 ‖η(.)F(t·)‖Wβ,2 < ∞ for some β > max{n(1/p − 1/2), 1/2} and some non-
trivial function η ∈ C∞c (0,∞), the operator F(

√
L) is bounded on Lr(X) for all r ∈ (p, p′).
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The main assertion here is (i). Indeed, once (i) is proved we obtain a Stein-Tomas restriction
type estimate and then appeal to Theorem A to prove assertions (ii) and (iii). We can also replace
the Strichartz estimates by dispersive estimates

‖eitL‖1→∞ ≤ C|t|−n/2, t ∈ R, t , 0.

Note that by a result of Keel and Tao [42], endpoint Strichartz estimates follow from these disper-
sive estimates.

Strichartz estimates have been studied by several authors. For example, Burq, Planchon, Stalker
and A. Tahvildar-Zadeh [10] proved such estimates for Schrödinger operators with inverse square
potentials, i.e. L = −∆+ c

|x|2 on Rn. Therefore we obtain sharp multiplier results as well as endpoint
Bochner-Riesz estimates for these operators. It is worth to mention that if −(n − 2)2/4 < c < 0,
the semigroup exp(−tL) acts on Lp(Rn) only for p ∈ (p′c, pc) with pc < ∞. In particular, the
corresponding heat kernel does not enjoy any good upper bounds such as Gaussian upper bounds.
Nevertheless we obtain sharp spectral multipliers for L on Lp for p ∈ (p′c, 2n/(n + 2)]. We discuss
in Part 3 several other examples to which Theorems A, B, C and D apply. This includes radial
Schrödinger operators with inverse square potentials, the harmonic oscillator, elliptic operators on
compact manifolds, Laplacian on asymptotically conic manifolds.

While this paper was finished we learned that in the recent PhD Thesis of M. Uhl [73] and
later in [45] a condition similar to our restriction type condition was introduced and a spectral
multiplier result similar to our Theorems 4.1 and 4.2 is proved. The order of differentiability
required in Uhl’s Thesis is β > n/2 and hence it is less sharp than our Theorems 4.1 and 4.2. The
result from [73] was improved in [45].

Part 1. Restriction estimates imply sharp spectral multipliers

2. Restriction type condition

We start by fixing some notation and assumptions. Throughout this paper, unless we mention
the contrary, (X, d, µ) is a metric measure space, that is, µ is a Borel measure with respect to the
topology defined by the metric d. We denote by B(x, r) = {y ∈ X, d(x, y) < r} the open ball
with centre x ∈ X and radius r > 0. We often just use B instead of B(x, r). Given λ > 0, we
write λB for the λ-dilated ball which is the ball with the same centre as B and radius λr. We set
V(x, r) = µ(B(x, r)) the volume of B(x, r) and we say that (X, d, µ) satisfies the doubling property
(see Chapter 3, [18]) if there exists a constant C > 0 such that

V(x, 2r) ≤ CV(x, r) ∀ r > 0, x ∈ X.(2.1)

If this is the case, there exist C, n such that for all λ ≥ 1 and x ∈ X

(2.2) V(x, λr) ≤ CλnV(x, r).

In the sequel we want to consider n as small as possible. Note that in general one cannot take
infimum over such exponents n in (2.2). In the Euclidean space with Lebesgue measure, n cor-
responds to the dimension of the space. Observe that if X satisfies (2.1) and has finite measure
then it has finite diameter (see, e.g., [3]). Therefore if µ(X) is finite, then we may assume that
X = B(x0, 1) for some x0 ∈ X.

For 1 ≤ p ≤ +∞, we denote the norm of a function f ∈ Lp(X, dµ) by ‖ f ‖p, by 〈., .〉 the
scalar product of L2(X, dµ), and if T is a bounded linear operator from Lp(X, dµ) to Lq(X, dµ),
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1 ≤ p, q ≤ +∞, we write ‖T‖p→q for the operator norm of T . Given a subset E ⊆ X, we denote by
χE the characteristic function of E and set

PE f (x) = χE(x) f (x).

For a given function F : R → C and R > 0, we define the function δRF : R → C by putting
δRF(x) = F(Rx). For F ∈ L2(R), the Fourier transform of F is given by

F̂(t) =
1

2π

∫ +∞

−∞

F(λ)e−itλ dλ.

Finally, C denotes a generic constant, not necessarily the same at each occurrence, which, in the
course of a proof, may be taken to depend on any of the quantities assumed to be bounded.

2.1. Finite speed propagation for the wave equation. Set

Dρ = {(x, y) ∈ X × X : d(x, y) ≤ ρ}.

Given an operator T from Lp(X) to Lq(X), we write

(2.3) supp KT ⊆ Dρ

if 〈T f1, f2〉 = 0 whenever fk is in C(X) and has support supp fk ⊆ B(xk, ρk) when k = 1, 2, and
ρ1 + ρ2 + ρ < d(x1, x2). Note that if T is an integral operator with a kernel KT , then (2.3) coincides
with the standard meaning of supp KT ⊆ Dρ, that is KT (x, y) = 0 for all (x, y) < Dρ.

Given a non-negative self-adjoint operator L on L2(X). We say that L satisfies the finite speed
propagation property if

(FS) supp Kcos(t
√

L) ⊆ Dt ∀t > 0 .

Property (FS) holds for most of second order self-adjoint operators and is equivalent to Davies-
Gaffney estimates. See, for example [13], [61] and [19].

We recall the following well-known simple lemma.

Lemma 2.1. Assume that L satisfies (FS) and that F is an even bounded Borel function with
Fourier transform F̂ ∈ L1(R) and that suppF̂ ⊆ [−ρ, ρ]. Then

suppKF(
√

L) ⊆ Dρ.

Proof. If F is an even function, then by the Fourier inversion formula,

F(
√

L) =
1

2π

∫ +∞

−∞

F̂(t) cos(t
√

L) dt.

But supp F̂ ⊆ [−ρ, ρ], and the lemma follows then from (FS). �

2.2. The Stein-Tomas restriction type condition. Assume that (X, d, µ) satisfies the doubling
condition, that is (2.2). Consider a non-negative self-adjoint operator L and numbers p, s and q
such that 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞. We say that L satisfies the Stein-Tomas restriction type
condition if: for any R > 0 and all Borel functions F such that supp F ⊂ [0,R],

(STq
p,s)

∥∥∥F(
√

L)PB(x,r)

∥∥∥
p→s
≤ CV(x, r)

1
s−

1
p
(
Rr

)n( 1
p−

1
s )∥∥∥δRF

∥∥∥
q

for all x ∈ X and all r ≥ 1/R.

Remark 2.2. Note that if condition (STq
p,s) holds for some q ∈ [1,∞), then (STq̃

p,s) holds for all
q̃ ≥ q including the case q̃ = ∞.

Proposition 2.3. Suppose that (X, d, µ) satisfies property (2.2). Let 1 ≤ p < 2 and N > n(1/p −
1/2). Then (ST∞p,2) is equivalent to each of the following conditions:
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(a) For all x ∈ X and r ≥ t > 0 we have

(Gp,2)
∥∥∥e−t2LPB(x,r)

∥∥∥
p→2
≤ CV(x, r)

1
2−

1
p
(r

t

)n( 1
p−

1
2 )
.

(b) For all x ∈ X and r ≥ t > 0 we have

(Ep,2)
∥∥∥(I + t

√
L)−N PB(x,r)

∥∥∥
p→2
≤ CV(x, r)

1
2−

1
p

(r
t

)n( 1
p−

1
2 )
.

Proof. We shall show that (Ep,2)⇒ (ST∞p,2)⇒ (Gp,2)⇒ (Ep,2).
Suppose that F is a Borel function with supp F ⊂ [0,R]. Let 1 ≤ p < 2 and N > n(1/p − 1/2).

It follows from (Ep,2) that for every x ∈ X and r ≥ 1/R,∥∥∥F(
√

L)PB(x,r)‖p→2 =
∥∥∥F(
√

L)
(
I +

√
L

R
)N(

I +

√
L

R
)−N PB(x,r)

∥∥∥
p→2

≤ sup
λ

∣∣∣F(λ)
(
1 +

λ

R
)N ∣∣∣ · ∥∥∥(I +

√
L

R
)−N PB(x,r)

∥∥∥
p→2

≤ C2NV(x, r)
1
2−

1
p
(
Rr)n( 1

p−
1
2 )
‖δRF‖∞.

This gives condition (ST∞p,2).
Next assume (ST∞p,2). Then∥∥∥∥e−t2LPB(x,r)

∥∥∥∥
p→2

=

∥∥∥∥∥∫ ∞

0
e−t2λdEL(λ)PB(x,r)

∥∥∥∥∥
p→2

=

∥∥∥∥∥∫ ∞

0
t2e−t2λEL[0, λ]PB(x,r)dλ

∥∥∥∥∥
p→2

≤

∫ ∞

0
t2e−t2λ

∥∥∥∥χ[0,
√
λ](
√

L)PB(x,r)

∥∥∥∥
p→2

dλ.

Now if 0 < λ ≤ 1/r2, then B(x, r) ⊆ B(x, λ−1/2). Therefore, by (ST∞p,2)

‖χ[0,
√
λ](
√

L)PB(x,r)‖p→2 ≤ ‖χ[0,
√
λ](
√

L)PB(x,λ−1/2)‖p→2

≤ CV(x, λ−1/2)
1
2−

1
p ≤ CV(x, r)

1
2−

1
p .

If λ > 1/r2, then by (ST∞p,2)

‖χ[0,
√
λ](
√

L)PB(x,r)‖p→2 ≤ CV(x, r)
1
2−

1
p (rλ1/2)n( 1

p−
1
2 ).

This proves (Gp,2).
To finish the proof assume that (Gp,2) holds. Then∥∥∥(I + t

√
L)−N PB(x,r)‖p→2 ≤

∥∥∥(I + t2L)N/2(I + t
√

L)−N(
I + t2L

)−N/2PB(x,r)

∥∥∥
p→2

≤ sup
λ

∣∣∣(1 + t2λ2)N/2(1 + tλ)−N
∣∣∣ · ∥∥∥(I + t2L

)− N
2 PB(x,r)

∥∥∥
p→2

≤ C
∥∥∥(I + t2L

)−N/2PB(x,r)

∥∥∥
p→2

.

Next note that for t > 0∥∥∥(I + t2L)−N/2PB(x,r)

∥∥∥
p→2

=

∥∥∥∥∥CN

∫ ∞

0
e−ssN/2−1e−st2LPB(x,r)ds

∥∥∥∥∥
p→2
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≤ CN

∫ ∞

0
e−ssN/2−1

∥∥∥∥e−st2LPB(x,r)

∥∥∥∥
p→2

ds.(2.4)

Hence if s ≤ r2/t2, then by (Gp,2)

‖e−st2LPB(x,r)‖p→2 ≤ CV(x, r)
1
2−

1
p
( r
ts1/2

)n( 1
p−

1
2 )
.

If s > r2/t2, then B(x, r) ⊆ B(x, ts1/2) and (Gp,2) implies that

‖e−st2LPB(x,r)‖p→2 ≤ ‖e−st2LPB(x,ts1/2)‖p→2 ≤ CV(x, ts1/2)
1
2−

1
p ≤ CV(x, r)

1
2−

1
p .

Using these estimates in (2.4) yields (Ep,2) for N > n(1/p − 1/2). This ends the proof. �

It is natural to generalise condition (1.4) to abstract self-adjoint operators in the following way
(see [29]). One says that L satisfies Lp to Lp′ restriction estimates if the spectral measure dE√L(λ)
maps Lp(X) to Lp′(X) for some p < 2, with an operator norm estimate

(Rp)
∥∥∥dE√L(λ)

∥∥∥
p→p′
≤ Cλn( 1

p−
1
p′ )−1

for all λ ≥ 0, where n is as in condition (2.2) and p′ is conjugate of p, i.e., 1/p + 1/p′ = 1.

Proposition 2.4. Fix 1 ≤ p < 2n/(n + 1). Suppose that there exists a constant C > 0 such that
C−1rn ≤ V(x, r) ≤ Crn for all x ∈ X and r > 0. Then conditions (Rp), (ST2

p,2) and (ST1
p,p′) are

equivalent.

Proof. The proof is inspired by estimates (2.12) of [29]. We first show the implication (Rp) ⇒
(ST1

p,p′). Suppose that F is a Borel function such that supp F ⊂ [0,R] for some R > 0. Then by
(Rp) ∥∥∥F(

√
L)PB(x,r)

∥∥∥
p→p′

≤

∫ ∞

0
|F(λ)|‖dE√L(λ)‖p→p′dλ

≤ C
∫ R

0
|F(λ)|λn( 1

p−
1
p′ )−1dλ

≤ CRn( 1
p−

1
p′ )−1

∫ R

0
|F(λ)|dλ

≤ CV(x, r)
1
p′ −

1
p (rR)n( 1

p−
1
p′ )‖δRF‖1,

where in the last inequality we used the assumption that V(x, r) ≤ Crn.
Next we prove that (ST1

p,p′)⇒ (ST2
p,2). Note that V(x, r) ∼ rn for every x ∈ X and r > 0. Letting

r → ∞ we obtain from (ST1
p,p′) ∥∥∥F(

√
L)

∥∥∥
p→p′
≤ CRn( 1

p−
1
p′ )‖δRF‖1.

By T ∗T argument ∥∥∥F(
√

L)
∥∥∥2

p→2
=

∥∥∥|F|2(
√

L)
∥∥∥

p→p′
≤ CR2n( 1

p−
1
2 )
‖δRF‖22.

Hence ∥∥∥F(
√

L)PB(x,r)

∥∥∥
p→2
≤

∥∥∥F(
√

L)
∥∥∥

p→2
≤ CV(x, r)

1
2−

1
p (Rr)n( 1

p−
1
2 )
‖δRF‖2.

This gives (ST2
p,2).
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Now, we prove the remaining implication (ST2
p,2) ⇒ (Rp). By volume estimate V(x, r) ≥ C−1rn

and condition (ST2
p,2) ∥∥∥F(

√
L)PB(x,r)

∥∥∥
p→2
≤ CRn( 1

p−
1
2 )
∥∥∥δRF

∥∥∥
2

(2.5)

for any R > 0, all Borel functions F such that supp F ⊂ [0,R], all x ∈ X and r ≥ 1/R. Taking the
limit r → ∞ gives ∥∥∥F(

√
L)

∥∥∥
p→2
≤ CRn( 1

p−
1
2 )
∥∥∥δRF

∥∥∥
2
.(2.6)

For F = χ(λ−ε,λ+ε] and R = λ + ε in (2.6) yields∥∥∥∥ε−1E√L(λ − ε, λ + ε]
∥∥∥∥

p→p′
= ε−1

∥∥∥∥E√L(λ − ε, λ + ε]
∥∥∥∥2

p→2

≤ Cε−1(λ + ε)2n( 1
p−

1
2 )
∥∥∥χ( λ−ελ+ε , 1]

∥∥∥2

2

≤ C(λ + ε)n( 1
p−

1
p′ )−1.

Taking ε→ 0 yields condition (Rp) (see Proposition 1, Section 5, Chapter XI, [74]). �

3. Sharp spectral multipliers - compactly supported functions

In this section we show that the restriction type condition which we introduce in the previous
section can be used to obtain sharp spectral multiplier results in the abstract setting of self-adjoint
operators acting on homogeneous spaces. We first consider the case of compactly supported func-
tions. We assume here that (X, d, µ) is a metric measure space satisfying the doubling property and
recall that n is the doubling dimension from condition (2.2). We use the standard notation Wβ,q(R)
for the Sobolev space ‖F‖Wβ,q = ‖(I − d2/dx2)β/2F‖q. The first result and its proof are inspired by
Theorem 1.1 of [29].

Theorem 3.1. Suppose that operator L satisfies property (FS) and condition (STq
p,s) for some

p, s, q such that 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞. Next assume that F is an even function such that
supp F ⊆ [−1, 1] and F ∈ Wβ,q(R) for some β > n(1/p − 1/s). Then F(t

√
L) is bounded on Lp(X)

for all t > 0. In addition,

(3.1) sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,q .

We describe the proof of Theorem 3.1 at the end of this section.
A standard application of spectral multiplier theorems is Bochner-Riesz means. Such appli-

cation is also a good test to check if the considered multiplier result is sharp. Let us recall that
Bochner-Riesz means of order δ for a non-negative self-adjoint operator L are defined by the
formula

(3.2) S δ
R(L) =

(
I −

L
R2

)δ
+
, R > 0.

The case δ = 0 corresponds to the spectral projector E√L[0,R]. For δ > 0 we think of (3.2) as
a smoothed version of this spectral projector; the larger δ, the more smoothing. Bochner-Riesz
summability on Lp describes the range of δ for which S δ

R(L) are bounded on Lp, uniformly in R.
In Theorem 3.1, if one chooses F(λ) = (1 − λ2)δ+ then F ∈ Wβ,q if and only if δ > β − 1/q.

Therefore, we obtain
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Corollary 3.2. Suppose that the operator L satisfies the finite speed propagation property (FS)
and condition (STq

p,s) with some 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞. Then for all δ > n(1/p−1/s)−1/q,
we have ∥∥∥∥(I − L

R2

)δ
+

∥∥∥∥
p→p
≤ C(3.3)

uniformly in R > 0.

As a consequence, we obtain the following necessary condition for the restriction condition
(STq

p,s) (see also Kenig, Stanton and Tomas [43]).

Corollary 3.3. Suppose that 1/q > n(1/p − 1/s) for some q ≥ 1 and 1 ≤ p < s ≤ ∞. Then
condition (STq

p,s) implies that L = 0.

Proof. Note that if 1/q > n(1/p − 1/s) for some q ≥ 1 and 1 ≤ p < s ≤ ∞, then there exist
δ < 0 and ε > 0 such that S δ

1(λ2) = (1− λ2)δ+ ∈ Wn( 1
p−

1
s )+ε,q. By Theorem 3.1, the operator S δ

R(L) is
bounded on Lp(X) uniformly in R, i.e., ‖S δ

R(L)‖p→p ≤ C < ∞ for some constant C > 0 independent
of R. However, S δ

R(L) is a self-adjoint operator, so ‖S δ
R(L)‖p′→p′ < ∞, and by interpolation,

‖S δ
R(L)‖2→2 < ∞. Set M = 1 + ‖S δ

R(L)‖2→2. Next note that if λ ∈ (R2(1 − M1/δ), R2] then
S δ

R(λ) > M so by spectral theorem EL(R2(1 − M1/δ), R2] = 0. Because R is arbitrary positive
number, this implies that L = 0. �

Remark 3.4. Note that condition (STq
p,s) allows to define the operator S δ

R(L) even when δ < 0 in
which case the function λ→ S δ

1(λ2) is unbounded.

We return to the discussion of Bochner-Riesz analysis in Section 5 and we now discuss a dis-
crete version of Theorem 3.1.

It is not difficult to see that condition (STq
p,s) with some q < ∞ implies that the point spectrum

of L is empty. Indeed, one has for all 0 ≤ a < R and x ∈ X,∥∥∥11{a}(
√

L)PB(x,r)

∥∥∥
p→s
≤ CV(x, r)

1
s−

1
p (rR)n( 1

p−
1
s )
∥∥∥11{a}(R·)

∥∥∥
q

= 0, Rr ≥ 1

and therefore 11{a}(
√

L) = 0. Due to σ(L) ⊆ [0,∞), it follows that the point spectrum of L is empty.
In particular, (STq

p,s) cannot hold for any q < ∞ for elliptic operators on compact manifolds or for
the harmonic oscillator. To be able to study these operators as well, we introduce a variation of
condition (STq

p,s). Following [21, 24], for an even Borel function F with supp F ⊆ [−1, 1] we
define the norm ‖F‖N,q by

‖F‖N,q =

 1
2N

N∑
`=1−N

sup
λ∈[ `−1

N , `N )
|F(λ)|q


1/q

,

where q ∈ [1,∞) and N ∈ N. For q = ∞, we put ‖F‖N,∞ = ‖F‖∞. It is obvious that ‖F‖N,q increases
monotonically in q.

Consider a non-negative self-adjoint operator L and numbers p, s and q such that 1 ≤ p < s ≤ ∞
and 1 ≤ q ≤ ∞. We shall say that L satisfies the Sogge spectral cluster condition if: for a fixed
natural number κ and for all N ∈ N and all even Borel functions F such that supp F ⊆ [−N,N],

(SCq,κ
p,s)

∥∥∥F(
√

L)PB(x,r)

∥∥∥
p→s
≤ CV(x, r)

1
s−

1
p (Nr)n( 1

p−
1
s )
‖δN F‖Nκ, q

for all x ∈ X and r ≥ 1/N. For q = ∞, (SC∞,κp,s ) is independent of κ so we write it as (SC∞p,s).
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Remark 3.5. It is easy to check that for κ ≥ 1, (SCq,κ
p,s) implies (SCq,1

p,s ).

Theorem 3.6. Suppose the operator L satisfies property (FS) and condition (SCq,κ
p,s) for a fixed

κ ∈ N and some p, s, q such that 1 ≤ p < s ≤ ∞ and 1 ≤ q ≤ ∞. In addition, we assume that for
any ε > 0 there exists a constant Cε such that for all N ∈ N and all even Borel functions H such
that supp H ⊂ [−N,N],

(ABq,κ
p ) ‖H(

√
L)‖p→p ≤ CεNκn( 1

p−
1
s )+ε
‖δN H‖Nκ,q.

Then for any even function F such that supp F ⊆ [−1, 1] and ‖F‖Wβ,q < ∞ for some β > max{n(1/p−
1/s), 1/q}, the operator F(t

√
L) is bounded on Lp(X) for all t > 0. In addition

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,q .

Note that condition (SCq,κ
p,s) is weaker than (STq

p,s) and we need a priori estimate (ABq,κ
p ) in

Theorem 3.6. See also [21, Theorem 3.6] and [24, Theorem 3.2] for related results. Once (SCq,κ
p,s)

is proved, a priori estimate (ABq,κ
p ) is not difficult to check in general, see for example the section

on the harmonic oscillator.
Following [24], we prove the following result.

Proposition 3.7. Suppose that µ(X) < ∞ and (SCq,1
p,s ) for some p, s, q such that 1 ≤ p < s ≤ ∞

and 1 ≤ q ≤ ∞. Then

‖F(
√

L)‖p→p ≤ CNn( 1
p−

1
s )
‖δN F‖N,q

for all N ∈ N and all Borel functions F such that supp F ⊆ [−N,N]. Therefore, for any even
function F such that supp F ⊆ [−1, 1] and ‖F‖Wβ,q < ∞ for some β > max{n(1/p − 1/s), 1/q}, the
operator F(t

√
L) is bounded on Lp(X) for all t > 0 and

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,q .

Proof. Since µ(X) < ∞, we may assume that X = B(x0, 1) for some x0 ∈ X (see [3]). It follows
from Hölder’s inequality and condition (SCq,1

p,s ) that

‖F(
√

L)‖p→p ≤ µ(X)
1
p−

1
s ‖F(

√
L)PB(x0,1)‖p→s

≤ Cµ(X)
1
p−

1
sµ(X)

1
s−

1
p Nn( 1

p−
1
s )
‖δN F‖N, q

≤ CNn( 1
p−

1
s )
‖δN F‖N,q.

This means that (ABq,1
p ) is satisfied and thus the last assertion follows from Theorem 3.6. This

proves Proposition 3.7. �

The proof of Theorems 3.1 and 3.6 uses the following lemma. In the case where the volume is
polynomial this lemma is proved in [29] using a similar argument.

Lemma 3.8. Suppose that T is a linear map such that for all x ∈ X and r > 0 the operator T PB(x,r)

is bounded from Lp(X) to Ls(X) for some 1 ≤ p < s ≤ ∞. Assume also that

supp KT ⊆ Dρ

for some ρ > 0. Then there exists a constant C = Cp,s such that

‖T‖p→p ≤ C sup
x∈X

{
V(x, ρ)

1
p−

1
s ‖T PB(x,ρ)‖p→s

}
.
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Proof. We fix ρ > 0. Then we choose a sequence (xn) ∈ X such that d(xi, x j) > ρ/10 for i , j
and supx∈X infi d(x, xi) ≤ ρ/10. Such sequence exists because X is separable. Second we let
Bi = B(xi, ρ) and define B̃i by the formula

B̃i = B̄
(
xi,

ρ

10

)
\
⋃
j<i

B̄
(
x j,

ρ

10

)
,

where B̄ (x, ρ) = {y ∈ X : d(x, y) ≤ ρ}. Third we put χi = χB̃i
, where χB̃i

is the characteristic
function of the set B̃i. Note that for i , j B(xi,

ρ

20 ) ∩ B(x j,
ρ

20 ) = ∅. Hence

K = sup
i

#{ j : d(xi, x j) ≤ 2ρ} ≤ sup
x

V(x, (2 + 1
20 )ρ)

V(x, ρ

20 )
< C41n < ∞.

It is not difficult to see that
Dρ ⊂

⋃
{i, j: d(xi,x j)<2ρ}

B̃i × B̃ j ⊂ D4ρ

so
T f =

∑
i, j: d(xi,x j)<2ρ

PB̃i
T PB̃ j

f .

Hence by Hölder’s inequality

‖T f ‖p
p = ‖

∑
i, j: d(xi,x j)<2ρ

PB̃i
T PB̃ j

f ‖p
p =

∑
i

‖
∑

j: d(xi,x j)<2ρ

PB̃i
T PB̃ j

f ‖p
p

≤ CK p−1
∑

i

∑
j: d(xi,x j)<2ρ

‖PB̃i
T PB̃ j

f ‖p
p

≤ CK p−1
∑

i

∑
j: d(xi,x j)<2ρ

µ(B̃i)p( 1
p−

1
s )
‖PB̃i

T PB̃ j
f ‖p

s

≤ CK p
∑

j

µ(B j)p( 1
p−

1
s )
‖T PB̃ j

f ‖p
s

≤ CK p
∑

j

µ(B j)p( 1
p−

1
s )
‖T PB̃ j

‖
p
p→s‖PB̃ j

f ‖p
p

≤ CK p sup
x∈X

{
V(x, ρ)p( 1

p−
1
s )
‖T PB(x,ρ)‖

p
p→s

}∑
j

‖PB̃ j
f ‖p

p

= CK p sup
x∈X

{
V(x, ρ)p( 1

p−
1
s )
‖T PB(x,ρ)‖

p
p→s

}
‖ f ‖p

p.

This finishes the proof of Lemma 3.8. �

Proof of Theorem 3.1. Let η ∈ C∞c (R) be even and such that suppη ⊆ {ξ : 1/4 ≤ |ξ| ≤ 1} and∑
`∈Z

η(2−`λ) = 1 ∀λ > 0.

Then we set η0(λ) = 1 −
∑
`>0 η(2−`λ),

F(0)(λ) =
1

2π

∫ +∞

−∞

η0(t)F̂(t) cos(tλ) dt(3.4)

and

F(`)(λ) =
1

2π

∫ +∞

−∞

η(2−`t)F̂(t) cos(tλ) dt.(3.5)
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Note that in virtue of the Fourier inversion formula

F(λ) =
∑
`≥0

F(`)(λ)

and by Lemma 2.1
supp KF(`)(t

√
L) ⊂ D2`t.

Now by Lemma 3.8∥∥∥F(t
√

L)
∥∥∥

p→p
≤

∑
`≥0

∥∥∥F(`)(t
√

L)
∥∥∥

p→p

≤ C
∑
`≥0

sup
x∈X

{
V(x, 2`t)

1
p−

1
s
∥∥∥F(`)(t

√
L)PB(x,2`t)

∥∥∥
p→s

}
.(3.6)

Since F(`) is not compactly supported we choose a function ψ ∈ C∞c (−4, 4) such that ψ(λ) = 1 for
λ ∈ (−2, 2) and note that∥∥∥F(`)(t

√
L)PB(x,2`t)

∥∥∥
p→s

≤
∥∥∥(ψF(`))(t√L)PB(x,2`t)

∥∥∥
p→s

+
∥∥∥((1 − ψ)F(`))(t√L)PB(x,2`t)

∥∥∥
p→s

.(3.7)

To estimate the norm ‖
(
ψF(`))(t√L)PB(x,2`t)‖p→s, we use condition (STq

p,s) and the fact that ψ ∈
Cc(−4, 4) to obtain∥∥∥(ψF(`))(t√L)PB(x,2`t)

∥∥∥
p→s
≤ CV(x, 2`t)

1
s−

1
p 2`n( 1

p−
1
s )
∥∥∥δ4t−1

(
ψF(`))(t·)∥∥∥

q

for all t > 0. Hence∑
`≥0

sup
x∈X

{
V(x, 2`t)

1
p−

1
s
∥∥∥(ψF(`))(t√L)PB(x,2`t)

∥∥∥
p→s

}
≤ C

∑
`≥0

2`n( 1
p−

1
s )
∥∥∥δ4t−1

(
ψF(`))(t·)∥∥∥

q

≤ C
∑
`≥0

2`n( 1
p−

1
s )
‖F(`)‖q(3.8)

= C‖F‖
B

n( 1
p −

1
s )

q, 1

,

where the last equality follows from definition of Besov space. See, e.g., [5, Chap. VI ]. Recall
also that if β > n(1/p − 1/s) then Wβ,q ⊆ Bn(1/p−1/s)

q, 1 and ‖F‖Bn(1/p−1/s)
q, 1

≤ Cβ‖F‖Wβ,q , see again [5].
Hence the forgoing estimates give∑

`≥0

sup
x∈X

{
V(x, 2`t)

1
p−

1
s
∥∥∥(ψF(`))(t√L)PB(x,2`t)

∥∥∥
p→s

}
≤ C‖F‖Wβ,q .(3.9)

Next we show bounds for
∥∥∥((1−ψ)F(`))(t√L)PB(x,2`t)

∥∥∥
p→s

. Since the function 1−ψ is supported
outside the interval (−2, 2), we can choose a function φ ∈ C∞c (2, 8) such that

1 = ψ(λ) +
∑
k≥0

φ(2−kλ) = ψ(λ) +
∑
k≥0

φk(λ) ∀λ > 0.

Hence (
(1 − ψ)F(`))(λ) =

∑
k≥0

(
φkF(`))(λ) ∀λ > 0.

It follows from the implication (STq
p,s)⇒ (ST∞p,s) that∥∥∥((1 − ψ)F(`))(t√L)PB(x,2`t)

∥∥∥
p→s

≤
∑
k≥0

∥∥∥(φkF(`))(t√L)PB(x,2`t)

∥∥∥
p→s
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≤ C
∑
k≥0

V(x, 2`t)
1
s−

1
p 2n(`+k)( 1

p−
1
s )
∥∥∥δ2k+3t−1

(
φkF(`))(t·)

∥∥∥
∞
.

Note that supp F ∈ [−1, 1], suppφ ⊂ [2, 8] and η̌ is in the Schwartz class so∥∥∥φkF(`)
∥∥∥
∞

= 2`
∥∥∥φk(F ∗ δ2` η̌)

∥∥∥
∞
≤ C2−M(`+k)‖F‖q

and similarly,
∥∥∥φkF(0)

∥∥∥
∞
≤ C2−Mk‖F‖q. Therefore∥∥∥((1 − ψ)F(`))(t√L)PB(x,2`t)

∥∥∥
p→s

≤ C
∑
k≥0

V(x, 2`t)
1
s−

1
p 2n(`+k)( 1

p−
1
s )2−M(`+k)‖F‖q

≤ CV(x, 2`t)
1
s−

1
p 2`(n( 1

p−
1
s )−M)
‖F‖q.(3.10)

Hence ∑
`≥0

sup
x∈X

{
V(x, 2`t)

1
p−

1
s
∥∥∥((1 − ψ)F(`))(t√L)PB(x,2`t)

∥∥∥
p→s

}
≤ C

∑
`≥0

2`(n( 1
p−

1
s )−M)
‖F‖q

≤ C‖F‖q.(3.11)

Now estimate (3.1) follows from (3.11), (3.6), (3.7) and (3.9). This completes the proof of Theo-
rem 3.1. �

Proof of Theorem 3.6.
Case (1). t ≥ 1/4.

If t ≥ 1/4 then suppδtF ⊂ [−4, 4]. By (ABq,κ
p ),

‖F(t
√

L)‖p→p ≤ C4κn( 1
p−

1
s )+ε
‖δ4(F(t·))‖4κ,q ≤ C‖F‖∞.

Recall that if β > 1/q, then Wβ,q(R) ⊆ L∞(R) ∩C(R) and ‖F‖∞ ≤ C‖F‖Wβ,q . Hence

sup
t≥1/4
‖F(t
√

L)‖p→p ≤ C‖F‖∞ ≤ C‖F‖Wβ,q .

Case (2). t ≤ 1/4.
Let ξ ∈ C∞c be an even function such that suppξ ⊂ [−1, 1], ξ̂(0) = 1 and ξ̂(k)(0) = 0 for all

1 ≤ k ≤ [β] + 2. Write ξNκ−1 = Nκ−1ξ(Nκ−1·) where N = 8[t−1] + 1 and [t−1] denotes the integer part
of t−1. Following [21] we write

F(t
√

L) =
(
δtF − ξNκ−1 ∗ δtF

)
(
√

L) + (ξNκ−1 ∗ δtF)(
√

L).

We first prove that

‖
(
δtF − ξNκ−1 ∗ δtF

)
(
√

L)‖p→p ≤ C‖F‖Wβ,q .(3.12)

Observe that supp(δtF − ξNκ−1 ∗ δtF) ⊆ [−N,N]. We apply (ABq,κ
p ) to obtain

‖
(
δtF − ξNκ−1 ∗ δtF

)
(
√

L)‖p→p ≤ CNκn( 1
p−

1
s )+ε

∥∥∥δN
(
δtF − ξNκ−1 ∗ δtF

)∥∥∥
Nκ,q

.(3.13)

Everything then boils down to estimating ‖ · ‖Nκ,q norm of δN
(
δtF − ξNκ−1 ∗ δtF

)
. We make the

following claim. For its proof, see [21, (3.29)] or [24, Propostion 4.6].

Lemma 3.9. Suppose that ξ ∈ C∞c is an even function such that suppξ ⊂ [−1, 1], ξ̂(0) = 1 and
ξ̂(k)(0) = 0 for all 1 ≤ k ≤ [β] + 2. Next assume that supp H ⊂ [−1, 1]. Then

‖H − ξN ∗ H‖N,q ≤ CN−β‖H‖Wβ,q(3.14)

for all β > 1/q and any N ∈ N.



RESTRICTION ESTIMATES AND SHARP SPECTRAL MULTIPLIERS 17

Note that δN
(
δtF − ξNκ−1 ∗ δtF

)
= δNtF − ξNκ ∗ δNtF. Now, if β > max{n(1/p − 1/s), 1/q} then

(3.12) follows from Lemma 3.9 and estimate (3.13).

It remains to show that

‖(ξNκ−1 ∗ δtF)(
√

L)‖p→p ≤ C‖F‖Wβ,q .(3.15)

Let F(`) be functions defined in (3.4) and (3.5). Following the proof of Theorem 3.1, we write

(ξNκ−1 ∗ δtF)(λ) =
∑
`≥0

(
ξNκ−1 ∗ δtF(`))(λ),

and by Lemma 2.1, supp K(ξNκ−1∗δtF(`))(
√

L) ⊂ D2`t. Now by Lemma 3.8∥∥∥(ξNκ−1 ∗ δtF
)
(
√

L)
∥∥∥

p→p
≤

∑
`≥0

∥∥∥(ξNκ−1 ∗ δtF(`))(√L)
∥∥∥

p→p

≤ C
∑
`≥0

sup
x∈X

{
V(x, 2`t)

1
p−

1
s
∥∥∥(ξNκ−1 ∗ δtF(`))(√L)PB(x,2`t)

∥∥∥
p→s

}
.(3.16)

Take a function ψ ∈ C∞c (−4, 4) such that ψ(λ) = 1 for λ ∈ (−2, 2). Then∥∥∥(ξNκ−1 ∗ δtF(`))(√L)PB(x,2`t)

∥∥∥
p→s

≤
∥∥∥(δtψ(ξNκ−1 ∗ δtF(`))

)
(
√

L)PB(x,2`t)

∥∥∥
p→s

+
∥∥∥((1 − δtψ)(ξNκ−1 ∗ δtF(`))

)
(
√

L)PB(x,2`t)

∥∥∥
p→s

= I` + II`.(3.17)

Note that (SCq,κ
p,s) ⇒ (SC∞p,s) and t ≤ 1/4. Using (SC∞p,s) instead of (ST∞p,s), we show as in the proof

of (3.10) that II` ≤ CV(x, 2`t)
1
s−

1
p 2`(n( 1

p−
1
s )−M)
‖F‖q for some large M > n(1/p − 1/s) + 1.

Next we estimate the term I`. We assume that ψ ∈ Cc(−4, 4) so by (SCq,κ
p,s)

I` ≤ CV(x, 2`t)
1
s−

1
p 2`n( 1

p−
1
s )
∥∥∥δN

(
δtψ(ξNκ−1 ∗ δtF(`))

)∥∥∥
Nκ,q

.

Observe that (see also [21, (3.19)])∣∣∣(ξ ∗ δtF(`))(λ)
∣∣∣ ≤ ‖ξ‖Lq′

( ∫ λ+1

λ−1
|F(`)(tu)|qdu

)1/q

so ∥∥∥δN
(
δtψ(ξNκ−1 ∗ δtF(`))

)∥∥∥
Nκ,q

=
( 1
2Nκ

Nκ∑
i=1−Nκ

sup
λ∈[ i−1

Nκ ,
i

Nκ )
|ψ(tNλ)(ξNκ−1 ∗ δtF(`))(Nλ)|q

)1/q

≤ C
( 1
Nκ

Nκ∑
i=1−Nκ

sup
λ∈[i−1,i)

∣∣∣(ξ ∗ δtN1−κF(`))(λ)|q
)1/q

≤ C‖ξ‖q′
( 1
Nκ

Nκ∑
i=1−Nκ

sup
λ∈[i−1,i)

∫ λ+1

λ−1
|F(`)(tN1−κu)|qdu

)1/q

≤ C
( 1
Nκ

Nκ∑
i=1−Nκ

∫ i+1

i−2
|F(`)(tN1−κu)|qdu

)1/q

≤ C
( 1
Nt

∫ ∞

−∞

|F(`)(u)|qdu
)1/q
≤ C‖F(`)‖q.

This shows that I` ≤ CV(x, 2`t)
1
s−

1
p 2`n( 1

p−
1
s )
‖F(`)‖q. Using the above estimates of I` and II`, together

with (3.16) and (3.17), we can argue as in (3.9) and (3.11) to obtain estimate (3.15). This proves
Theorem 3.6. �
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Now we discuss another condition introduced by C.D. Sogge (see [62, 63, 64]). We say that
L satisfies (p, p′) spectral cluster estimate (Sp) for some 1 ≤ p < 2 and its conjugate p′ if the
spectral projection E√L[k, k + 1) maps Lp(X) to Lp′(X) and

(Sp)
∥∥∥E√L[k, k + 1)

∥∥∥
p→p′
≤ C(1 + k)n( 1

p−
1
p′ )−1

for all k ≥ 0.

Proposition 3.10. Suppose that 1 ≤ p ≤ 2n/(n + 1), µ(X) < ∞ and V(x, r) ≤ C min
(
rn, 1

)
for

every x ∈ X and r > 0. Then conditions (Sp) and (SC2,1
p,2) are equivalent.

Proof. We first prove the implication (Sp) ⇒ (SC2,1
p,2). Note that for every even Borel function F

such that supp F ⊂ [−N,N],∥∥∥F(
√

L) f
∥∥∥2

2
=

N∑
k=0

〈
E√L[k, k + 1)F(

√
L) f , E√L[k, k + 1)F(

√
L) f

〉
≤

N∑
k=0

∥∥∥E√L[k, k + 1)F(
√

L)
∥∥∥2

p→2
‖ f ‖2p.

Using a T ∗T argument and condition (Sp) we obtain∥∥∥F(
√

L)PB(x,r)

∥∥∥2

p→2
≤ C

∥∥∥F(
√

L)
∥∥∥2

p→2

≤ C
N∑

k=0

∥∥∥E√L[k, k + 1)F(
√

L)
∥∥∥2

p→2

≤ C
N∑

k=0

sup
λ∈[k,k+1)

∣∣∣F(λ)
∣∣∣2(1 + k)n( 1

p−
1
p′ )−1

≤ CNn( 1
p−

1
p′ )

1
N

N∑
k=0

sup
λ∈[k,k+1)

∣∣∣F(λ)
∣∣∣2

≤ CV(x, r)2( 1
2−

1
p )(Nr)2n( 1

p−
1
2 )
∥∥∥δN F

∥∥∥2

N,2
,

and hence condition (SC2,1
p,2) is satisfied.

Next we prove the implication (SC2,1
p,2)⇒ (Sp). By (SC2,1

p,2)∥∥∥χ[k,k+1)(
√

L)
∥∥∥

p→2
≤ C(1 + k)n( 1

p−
1
2 )
‖δ(1+k) χ[k,k+1)‖1+k, 2.(3.18)

Hence ∥∥∥E√L[k, k + 1)
∥∥∥

p→p′
=

∥∥∥E√L[k, k + 1)
∥∥∥2

p→2

≤ C(1 + k)2n( 1
p−

1
2 )
∥∥∥δ(1+k) χ[k,k+1)

∥∥∥2

1+k, 2

≤ C(k + 1)n( 1
p−

1
p′ )−1,

which shows (Sp). �

Proposition 3.11. Assume that µ(X) < ∞. Then conditions (SC∞p,2) and (ST∞p,2) are equivalent.
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Proof. Since µ(X) < ∞, we may assume that X = B(x0, 1) for some x0 ∈ X. Observing
that ‖F‖N,∞ = ‖F‖∞, we have the implication (ST∞p,2) ⇒ (SC∞p,2). Let us show the implication
(SC∞p,2) ⇒ (ST∞p,2). Assume that supp F ⊆ [0,R]. If R ≥ 1, then we let N = [R] + 1 and (ST∞p,2)
follows readily. Now for 0 < R < 1, from condition (SC∞p,2) we can take N = 1 and the ball B(x0, 1)
to obtain

‖F(
√

L)‖p→2 ≤ C‖F‖∞.

Now for any x ∈ X and r > 0, we note that conditions 1/2 − 1/p < 0 and µ(X) < ∞ give that
V(x, r)1/2−1/p ≥ C. Hence for any r ≥ 1/R∥∥∥F(

√
L)PB(x,r)

∥∥∥
p→2
≤ C‖F‖∞ ≤ CV(x, r)

1
2−

1
p (rR)n( 1

p−
1
2 )
‖δRF‖∞,

that is (ST∞p,2). This ends the proof of Proposition 3.11. �

4. Sharp spectral multipliers - singular integral case

4.1. Statements. As in Section 3 we discuss two type of results corresponding to estimates
(STq

p,2) or (SCq,κ
p,2). The aim of this section is to prove singular integral versions of Theorems 3.1

and 3.6. We use the same assumptions and notation as in Section 3. Recall that n is a homogeneous
dimension from (2.2). Fix a non-trivial auxiliary function η ∈ C∞c (0,∞).

Theorem 4.1. Assume that operator L satisfies property (FS) and condition (STq
p,2) for some

p, q satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞. Then for any bounded Borel function F such that
supt>0 ‖η δtF‖Wβ,q < ∞ for some β > max{n(1/p − 1/2), 1/q} the operator F(

√
L) is bounded on

Lr(X) for all p < r < p′. In addition,

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,q + |F(0)|

)
.

Note that if q < ∞ then condition (STq
p,2) implies that EL({0}) = 0 (and in fact EL({λ}) = 0) so

the term F(0) can be omitted in the above statement.
The next theorem is a variation of Theorem 4.1 suitable for the operators satisfying condition

(SCq,κ
p,2). It is a singular integral version of Theorem 3.6 above.

Theorem 4.2. Suppose the operator L satisfies property (FS), conditions (Ep,2) and (SCq,κ
p,2) for

some p, q such that 1 ≤ p < 2 and 1 ≤ q ≤ ∞, and a fixed natural number κ. In addition, we
assume that for any ε > 0 there exists a constant Cε such that for all N ∈ N and all even Borel
functions H such that supp H ⊂ [−N,N],

(ABq,κ
p ) ‖H(

√
L)‖p→p ≤ CεNκn( 1

p−
1
2 )+ε
‖δN H‖Nκ,q.

Then for any bounded Borel function F such that supt>0 ‖η δtF‖Wβ,q < ∞ for some β > max{n(1/p−
1/2), 1/q} the operator F(

√
L) is bounded on Lr(X) for all p < r < p′. In addition,

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,q + |F(0)|

)
.

Remark 4.3. Suppose that µ(X) < ∞ and (SCq,κ
p,2) holds for some κ ≥ 1. Then (SC∞p,2) and (Ep,2)

are satisfied by Remark 3.5 and Proposition 3.11. In addition, (ABq,κ
p ) holds by Proposition 3.7.

Therefore, Theorem 4.2 holds in this case without assumptions (Ep,2) and (ABq,κ
p ).
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By a classical dyadic decomposition of F, we can write F(
√

L) as the sum
∑

F j(
√

L). Then we
apply Theorems 3.1 and 3.6 to estimate ‖F j(

√
L)‖r→r. However, as mentioned in the introduction,

this does not automatically imply that the operator F(
√

L) acts boundedly on Lr. See [11, 58, 59]
where this problem is discussed in the Euclidean case. Our proof is almost identical to one in [11].
Nevertheless we give full details because the changes which are required to adapt the arguments
to the general setting are not trivial.

Note that condition (STq
p,2) implies (Ep,2) (see Proposition 2.3). Therefore Theorems 4.1 and 4.2

follow from Theorems 3.1 and 3.6 (with s = 2) and the next result.

Theorem 4.4. Assume that L satisfies the finite speed propagation property (FS) and condition
(Ep0,2) for some 1 ≤ p0 < 2. Next assume that for all even Borel functions H such that supp H ⊆
[−1, 1] and ‖H‖Wβ,q < ∞ for some β and q satisfying β > max{n(1/p0 − 1/2), 1/q} and 1 ≤ q ≤ ∞,

sup
t>0
‖H(t

√
L)‖p→p ≤ C‖H‖Wβ,q , p0 ≤ p ≤ p′0.(4.1)

Then for any bounded Borel function F such that

sup
t>0
‖ηδtF‖Wβ,q < ∞(4.2)

for some β > max{n(1/p0−1/2), 1/q}, the operator F(
√

L) is bounded on Lr(X) for all p0 < r < p′0.

4.2. Singular integrals. This subsection is devoted to the proof of Theorem 4.4. We start with
the following lemma.

Lemma 4.5. Suppose that operator L satisfies property (FS) and condition (Ep0,2) for some 1 ≤
p0 < 2.

(a) Assume in addition that F is a bounded Borel function such that

sup
t>0
‖ηδtF‖Ck < ∞

for some integer k > n/2 + 1 and some non-trivial function η ∈ C∞c (0,∞). Then the oper-
ator F(

√
L) is bounded on Lp(X) for all p0 < p < p′0.

(b) Assume in addition that ψ be an even function in S (R) such that ψ(0) = 0. Define the
quadratic functional for f ∈ L2(X)

GL( f )(x) =
(∑

j∈Z

|ψ(2 j
√

L) f (x)|2
)1/2

.

Then GL is bounded on Lp(X) for all p0 < p < p′0.

Proof. The finite speed propagation property implies L2 − L2 off-diagonal estimate

‖PX\B(x,2 jr)e−r2LPB(x,r)‖2→2 ≤ Ce−c22 j
,

see [19, 61]. It follows from (Ep0,2) that

‖PX\B(x,2 jr)e−r2LPB(x,r)‖p0→2 ≤ CV(x, r)
1
2−

1
p0 .

Now the Riesz-Thorin interpolation theorem gives for p ∈ (p0, 2) the following Lp−L2 off-diagonal
estimate

‖PX\B(x,2 jr)e−r2LPB(x,r)‖p→2 ≤ CV(x, r)
1
2−

1
p e−c′22 j

.
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Now assertion (a) follows from [6]. The latter off-diagonal estimate implies that L has a bounded
holomorphic functional calculus on Lp for p0 < p < p′0 (see [7]). It is known that the holomorphic
functional calculus implies the quadratic estimate of assertion (b) (see [20, 51]). �

Throughout the rest of this section, Φ denotes an even function, Φ ∈ S (R) such that Φ(0) = 1
and whose Fourier transform Φ̂ is supported in [−1, 1]. We take η ∈ C∞c (R) even and such that

suppη ⊆ {ξ : 1/2 ≤ |ξ| ≤ 2} and
∑
`∈Z

η(2−`λ) = 1, ∀λ > 0.(4.3)

Set η`(λ) = η(2`λ) and

F̂(`) = η−`F̂, ` ∈ Z.(4.4)

Put Q`(λ) =
∑

k≥0 ηk+`(λ). Then we have the following result.

Proposition 4.6. Suppose that operator L satisfies property (FS) and condition (Ep0,2) for 1 ≤
p0 < 2 and let p0 < p < 2. Assume in addition that for a bounded Borel function F the following
estimates hold ∑

k<0

sup
j

∥∥∥∑
`≥0

F( j+`)(
√

L)η j+k(
√

L)
∥∥∥

p→p
< ∞(4.5)

and

sup
j

∥∥∥∑
`≥0

F( j+`)(
√

L)(I − Φ(2 j
√

L))Q j(
√

L)
∥∥∥

p→p
< ∞.(4.6)

Then F(
√

L) is of weak-type (p, p).

Proof. Let f ∈ Lp(X) and α > µ(X)−1/p‖ f ‖p. A simple variation of the Calderón-Zygmund
decomposition of | f |p at height α shows that there exist constants C and K such that f = g + b =

g +
∑

i bi so that ‖g‖p ≤ C‖ f ‖p, ‖g‖∞ ≤ Cα, each bi is supported on ball Bi of radius 2 j(i), and
#{i : x ∈ 8Bi} ≤ K for all x ∈ X,

∫
X
|bi|

pdµ ≤ Cαpµ(Bi), and
∑

i µ(Bi) ≤ Cα−p‖ f ‖p
p. As a

consequence, αp−2‖g‖22 ≤ C‖ f ‖p
p. As in [11], we choose 2 j(i) rather than r(i) to be able to sum in j.

We define the “nearly good” and “very bad” functions g̃ and b̃ by

g̃ = g +
∑

i

2Φ(2 j(i)
√

L)bi −
∑

i

Φ2(2 j(i)
√

L)bi and b̃ =
∑

i

(I − Φ(2 j(i)
√

L))2bi.

By Lemma 2.1, suppΦ(2 j(i)
√

L)bi ⊂ 4Bi, and by the Calderón-Zygmund decomposition, every
x ∈ X belongs to no more than K balls 4Bi. Let N > n(1/p − 1/2). Now by condition (Ep0,2)∥∥∥∑

i

Φ(2 j(i)
√

L)bi

∥∥∥2

2
≤ K

∑
i

∥∥∥Φ(2 j(i)
√

L)bi

∥∥∥2

2

≤ C
∑

i

sup
λ

∣∣∣Φ(2 j(i)λ)(1 + 2 j(i)λ)N
∣∣∣2∥∥∥(1 + 2 j(i)

√
L)−Nbi

∥∥∥2

2

≤ C
∑

i

µ(Bi)
1− 2

p0 ‖bi‖
2
p0

≤ C
∑

i

µ(Bi)
1− 2

p0 ‖bi‖
2
pµ(Bi)

2
p0
− 2

p

≤ Cα2
∑

i

µ(Bi) ≤ Cα2−p‖ f ‖p
p.



22 PENG CHEN, EL MAATI OUHABAZ, ADAM SIKORA, AND LIXIN YAN

Replacing Φ by Φ2 yields
∥∥∥∑

i Φ2(2 j(i)
√

L)bi

∥∥∥2

2
≤ Cα2−p‖ f ‖p

p. By the standard L2 argument

µ
(
{x : F(

√
L)(g̃)(x) > α}

)
≤ Cα−p‖ f ‖p

p.

It remains to treat

F(
√

L)
(∑

i

(I − Φ(2 j(i)
√

L))2bi

)
=

∑
i

∑
`≥0

F( j(i)+`)(
√

L)(I − Φ(2 j(i)
√

L))2bi

+
∑

i

∑
`<0

F( j(i)+`)(
√

L)(I − Φ(2 j(i)
√

L))2bi.(4.7)

By Lemma 2.1

supp F( j(i)+`)(
√

L)(I − Φ(2 j(i)
√

L))2bi ⊆ B(xi, 2 j(i)+`+1 + 3 · 2 j(i)) ⊆ 8Bi, ∀` < 0.

Thus the second term of (4.7) is supported in ∪8Bi and
∑
µ(8Bi) ≤ C

∑
µ(Bi) ≤ Cα−p‖ f ‖p

p.
To treat the first term we show that∥∥∥∑

j

∑
`≥0

F( j+`)(
√

L)(I − Φ(2 j
√

L))2 f j

∥∥∥
p
≤ C

∥∥∥∑
j

| f j|
∥∥∥

p
.(4.8)

If we apply (4.8) with
f j =

∑
i: j(i)= j

bi,

we see that∥∥∥∑
i

∑
`≥0

F( j(i)+`)(
√

L)(I − Φ(2 j(i)
√

L))2bi

∥∥∥
p

=
∥∥∥∑

j

∑
`≥0

F( j+`)(
√

L)(I − Φ(2 j
√

L))2 f j

∥∥∥
p

≤ C
∥∥∥∑

j

|
∑

i: j(i)= j

bi|
∥∥∥

p

≤ C
∥∥∥∑

i

|bi|
∥∥∥

p

≤ C
(∑

i

∥∥∥bi

∥∥∥p

p

)1/p
≤ C‖ f ‖p,

which completes the proof.
As in [11] we argue that by duality, (4.8) is equivalent to∥∥∥ sup

j
|
∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2h|
∥∥∥

p′
≤ C‖h‖p′ .(4.9)

Write ∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2 =
∑
k<0

∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2η j+k(
√

L)

+
∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2Q j(
√

L).(4.10)

Let η̃ ∈ C∞c (0,∞) be a non-negative function satisfying supp η̃ ⊆ [1/4, 4] and η̃ = 1 on [1/2, 2],
and let η̃ j denote the function η̃(2 j·). By Lemma 4.5 point (b) with ψ = η̃ there exists a constant
C > 0 independent of k < 0 such that for 2 < p′ < p′0,(∑

j

∥∥∥η̃ j+k(
√

L)h
∥∥∥p′

p′

)1/p′

≤

∥∥∥∥(∑
j

∣∣∣η̃ j+k(
√

L)h
∣∣∣2)1/2∥∥∥∥

p′
≤ C‖h‖p′ ,
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and by Lemma 4.5 point (a), it follows that for 2 < p′ < p′0, ‖(I − Φ(2 j
√

L))2‖p′→p′ ≤ C for some
constant C > 0 independent of j ∈ Z. Hence∥∥∥∥ sup

j

∣∣∣∑
k<0

∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2η j+k(
√

L)h
∣∣∣∥∥∥∥

p′

≤
∑
k<0

(∑
j

∥∥∥∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2η j+k(
√

L)η̃ j+k(
√

L)h
∥∥∥p′

p′

)1/p′

≤ C
∑
k<0

sup
j

{
‖(I − Φ(2 j

√
L))2‖p′→p′

∥∥∥∥∑
`≥0

F̄( j+`)(
√

L)η j+k(
√

L)
∥∥∥∥

p′→p′

}
×
(∑

j

∥∥∥η̃ j+k(
√

L)h
∥∥∥p′

p′

)1/p′

≤ C
∑
k<0

sup
j

∥∥∥∑
`≥0

F̄( j+`)(
√

L)η j+k(
√

L)
∥∥∥

p′→p′
‖h‖p′ ≤ C‖h‖p′ .(4.11)

The last inequality follows from assumption (4.5). Using assumption (4.6) instead of (4.5) the
similar argument as above gives the following estimate∥∥∥∥ sup

j

∣∣∣∑
`≥0

F̄( j+`)(
√

L)(I − Φ(2 j
√

L))2Q j(
√

L)h
∣∣∣∥∥∥∥

p′
≤ C‖h‖p′ .

This shows (4.9) and ends the proof of Proposition 4.6. �

Proposition 4.7. Suppose that operator L satisfies property (FS) and condition (Ep0,2) for some
1 ≤ p0 < 2 and fix p ∈ (p0, 2). Next assume that for all even Borel functions H such that
supp H ⊆ [−1, 1] and ‖H‖Wβ,∞ < ∞ for some β > n/2,

sup
t>0
‖H(t

√
L)‖p→p ≤ C‖H‖Wβ,∞ .(4.12)

Then for any bounded Borel function F such that ‖(Fηi)( j)(
√

L)‖p→p ≤ α(i − j) for all i, j ∈ Z with∑
k≤0

(|k| + 1)α(k) < ∞,

the operator F(
√

L) is of weak-type (p, p). Here ηi and (Fηi)( j) are defined in (4.3) and (4.4),
respectively.

Proof. By Proposition 4.6, it suffices to verify (4.5) and (4.6). Note that we may assume F(0) = 0
since F = F − F(0) + F(0).

Firstly we show (4.5). Fix k ≤ 0, ` ≥ 0 and j ∈ Z and write

F( j+`)(
√

L)η j+k(
√

L) =
∑
i∈Z

(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)

=
∑

i<k−2

+

k+2∑
i=k−2

+
∑

i>k+2

· · · = I jk` + II jk` + III jk`.

The main term is II jk`; I jk` and III jk` are error terms. By (4.12), ‖η j+k(
√

L)‖p→p ≤ C so

‖II jk`‖p→p ≤ C
k+2∑

i=k−2

‖(Fηi+ j)( j+`)(
√

L)‖p→p ≤ C
2∑

i=−2

α(k + i − `).
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Thus ∑
k≤0

∑
`≥0

sup
j
‖II jk`‖p→p ≤ C

∑
m≤2

(|m| + 1)α(m) < ∞.(4.13)

To estimate ‖I jk`‖p→p set
G(λ) =

∑
i<k−2

(Fηi+ j)( j+`)(2− j−kλ)η(λ).

Observe that
dγ

dλγ
( ∑

i<k−2

(Fηi+ j)( j+`)(2− j−kλ)
)

=

∫
|s|≥2−k− j+2

∑
i<k−2

F(s)ηi+ j(s)2 j+`2(`−k)γ(η̌)(γ)(2`−kλ − 2 j+`s)ds.

Now 2 j+`|s| ≥ 2`−k+2 ≥ 2`−k+1|λ| for λ ∈ [1/2, 2]. We may estimate the integral for each N ∈ N by∫
|s|≥2−k− j+2

‖F‖∞2 j+`2(`−k)γ CN

(2 j+`|s|)N ds.

If N is chosen sufficiently large, this is dominated by ‖F‖∞2(`−k)(1−N+γ). This yields

‖G‖Wγ,∞ ≤ C‖F‖∞2ε0(k−`)(4.14)

for some ε0 > 0 and all γ ∈ N. Then by (4.12) ‖I jk`‖p→p ≤ C‖F‖∞2ε0(k−`). Hence∑
k≤0

∑
`≥0

sup
j
‖I jk`‖p→p < ∞.

We estimate III jk` in the similar way as ‖I jk`‖p→p. This proves (4.5).

Secondly we show (4.6). Fix ` ≥ 0 and j ∈ Z. Write

F( j+`)(
√

L)(I − Φ(2 j
√

L))Q j(
√

L) =
∑
i∈Z

(Fηi+ j)( j+`)(
√

L)(I − Φ(2 j
√

L))Q j(
√

L)

=
∑
i≤0

+
∑
i>0

· · · = A j` + B j`.

We start with the term A j`. By condition (4.12) there exists a positive constant C independent
of j such that ‖(I − Φ(2 j

√
L))Q j(

√
L)‖p→p ≤ C. By assumptions of the proposition, we have

‖(Fηi+ j)( j+`)(
√

L)‖p→p ≤ α(i − `). Hence

sup
j

∥∥∥∑
`≥0

A j`

∥∥∥
p→p
≤ C

∑
`≥0

∑
i≤0

α(i − `) ≤ C
∑
m≤0

(|m| + 1)α(m) < ∞.

It remains to treat the term B j`. More precisely, we want to prove that

sup
j

∑
`≥0

‖
∑
i>0

(Fηi+ j)( j+`)(
√

L)(I − Φ(2 j
√

L))Q j(
√

L)‖p→p

= sup
j

∑
`≥0

‖
∑
i>0

∑
k∈Z

(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)(I − Φ(2 j
√

L))Q j(
√

L)‖p→p < ∞.

We write ∑
i>0

∑
k∈Z

as ∑
k≤0

∞∑
i=1

+
∑̀
k=1

k∑
i=1

+
∑̀
k=1

∑̀
i=k+1

+
∑̀
k=1

∞∑
i=`+1

+

∞∑
k=`+1

∑̀
i=1

+

∞∑
k=`+1

∞∑
i=`+1

· · ·
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= I j` + II j` + III j` + IV j` + V j` + VI j`.

Claim 1. For k ≤ 0,
‖
∑
i>0

(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)‖p→p ≤ C2−ε(`−k)

for some ε > 0.

Claim 2.
k∑

i=1

‖(Fηi+ j)( j+`)(
√

L)‖p→p ≤

k∑
i=1

α(i − `).

Claim 3. For k ≤ i, ‖(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)‖p→p ≤ C2−ε(`−k), so that∑̀
i=k+1

‖(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)‖p→p ≤ C(` − k)2−ε(`−k) ≤ C2−ε
′(`−k).

Claim 4. For ` ≥ k,

‖

∞∑
i=`+1

(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)‖p→p ≤ C2−ε
′(`−k).

Claim 5. ∑̀
i=1

‖(Fηi+ j)( j+`)(
√

L)‖p→p ≤
∑̀
i=1

α(i − `).

Claim 6. For k ≥ `,

‖

∞∑
i=`+1

(Fηi+ j)( j+`)(
√

L)η j+k(
√

L)‖p→p ≤ C.

If we agree with the claims 1-6, we can finish the proof of the proposition as follows. Let η̃ ∈
C∞c (0,∞) be a non-negative function as in (4.11). We note that by condition (4.12),

‖η̃ j+k(
√

L)(I − Φ(2 j
√

L))Q j(
√

L)‖p→p ≤ C‖η̃(1 − δ2−kΦ)‖Wn,∞

≤ C min{1, 2−k}.(4.15)

By Claim 1, ∑
`≥0

‖I j`‖p→p ≤ C
∑
`≥0

∑
k≤0

2−ε(`−k) < ∞;

by Claim 2 and (4.15),

‖II j`‖p→p ≤ C
∑̀
k=1

k∑
i=1

α(i − `)2−ε
′′k;

by Claim 3 and (4.15),

‖III j`‖p→p ≤ C
∑̀
k=1

2−ε
′(`−k)2−ε

′′k ≤ C2−ε`;

by Claim 4 and (4.15),

‖IV j`‖p→p ≤ C
∑̀
k=1

2−ε
′(`−k)2−ε

′′k ≤ C2−ε`;
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by Claim 5 and (4.15),

‖V j`‖p→p ≤ C
∞∑

k=`+1

∑̀
i=1

α(i − `)2−ε
′′k;

by Claim 6 and (4.15),

‖VI j`‖p→p ≤ C
∞∑

k=`+1

2−ε
′′k ≤ C2−ε`.

Hence ∑
`>0

‖III j` + IV j` + VI j`‖p→p ≤ C
∑
`>0

2−ε` < ∞,

and

‖II j` + V j`‖p→p ≤ C
∑̀
k=1

k∑
i=1

α(i − `)2−ε
′′k + C

∞∑
k=`+1

∑̀
i=1

α(i − `)2−ε
′′k

= C
∑̀
i=1

α(i − `)
∞∑

k=i

2−εk ≤ C
∑̀
i=1

α(i − `)2−εi.

Thus ∑
`>0

‖II j` + V j`‖p→p ≤ C
∑
`>0

∑̀
i=1

2−εiα(i − `)

≤ C
∑
m≤0

α(m)2−εm
∑
`≥−m

2−ε` ≤ C
∑
m≤0

α(m) < ∞.

Now Claims 2 and 5 follow immediately from the definition of α( j). Similarly to the proof of
(4.14), we use condition (4.12) to prove Claims 1, 3, 4 and 6. So to establish Claims 1, 3, 4 and 6
we examine

dγ

dλγ
(∑

i

(Fηi+ j)( j+`)(2− j−kλ)
)

for |λ| ∼ 1, (where the sum is over a range of i depending on which claim we are proving). In any
case, we obtain ∫ ∑

i

F(s)ηi+ j(s)2 j+`2(`−k)γ dγη̌
dλγ

(2`−kλ − 2 j+`s)ds.

For Claim 6, we just use | d
γη̌

dλγ | ≤ C and the fact that the integrand is supported in a set of measure
≤ C2−( j+`) to estimate the integral by ‖F‖∞2(`−k)γ; under the hypotheses of Claims 1, 3 and 4 we
have that (essentially) 2`−k|λ| ≥ 2 · 2 j+`|s| if |λ| ∼ 1, and thus we may estimate the integral by
‖F‖∞2 j+`2(`−k)(γ−N) multiplied by the measure of the support of the integrand, for each N ∈ N.
These measures are 2− j, 2−i− j and 2− j−` respectively, and so in each case we can dominate the
integral by C2(`−k)(γ−N+1) for all N ∈ N. �

Recall that for 0 < α < 1, Λα is the usual Lipschitz space as defined for example in [66]. As a
consequence of Proposition 4.7, we have the following result.

Corollary 4.8. Assume that operator L satisfies property (FS) and condition (Ep0,2) for some
1 ≤ p0 < 2. Next assume that for all even bounded Borel function H such that supp H ⊆ [−1, 1]
and ‖H‖Wβ,∞ < ∞ for some β > n/2,

sup
t>0
‖H(t

√
L)‖p→p ≤ C‖H‖Wβ,∞ , p0 < p < p′0.(4.16)
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Then for any bounded Borel function F such that for all i, j ∈ Z,

‖(Fηi)( j)(
√

L)‖r→r + ‖ηδ2−i F‖Λα
≤ C(4.17)

for some 0 < α < 1 and all p0 < r ≤ 2, F(
√

L) is bounded on Lr for p0 < r < p′0. Here ηi and
(Fηi)( j) are defined in (4.3) and (4.4), respectively.

Proof. First we note that by definition

(Fηi)( j)(λ) =

∫
F(2−it)η(t)η̂i− j(2iλ − t)dt = (ηδ2−i F)( j−i)(2iλ).(4.18)

Since ‖ηδ2−i F‖Λα
≤ C, we have that ‖(Fηi)( j)‖∞ ≤ C2α(i− j) and so ‖(Fηi)( j)(

√
L)‖2→2 ≤ C2α(i− j). By

interpolation, there exists some α′ > 0 such that

‖(Fηi)( j)(
√

L)‖r→r ≤ C2α
′(i− j)

for all p0 < r ≤ 2. From Proposition 4.7, F(
√

L) is of weak-type (r, r) for all p0 < r ≤ 2. By
duality and interpolation, F(

√
L) is bounded on Lr for p0 < r < p′0. �

Proof of Theorem 4.4. It is enough to verify conditions (4.17) of Corollary 4.8. First we recall
that ηi and (Fηi)( j) are functions defined in (4.3) and (4.4), respectively. From (4.18), we have that
‖(Fηi)( j)(

√
L)‖r→r = ‖(δ2−i Fη)( j−i)(2i

√
L)‖r→r. Let ψ be a C∞c even function which is supported on

[−8, 8] and ψ(λ) = 1 on [−4, 4]. Write

‖(δ2−i Fη)( j−i)(2i
√

L)‖r→r ≤ ‖(ψ(δ2−i Fη)( j−i))(2i
√

L)‖r→r + ‖((1 − ψ)(δ2−i Fη)( j−i))(2i
√

L)‖r→r.

Observe that the function ψ(δ2−i Fη)( j−i) is supported on [−8, 8] and

‖ψ(δ2−i Fη)( j−i)‖Wβ,q ≤ C‖(δ2−i Fη)( j−i)‖Wβ,q

= C‖F −1((1 + ξ2)β/2δ̂2−i Fη(ξ)ηi− j(ξ)
)
‖q

≤ C‖F −1((1 + ξ2)β/2δ̂2−i Fη(ξ)
)
‖q

= C‖F(2−iλ)η(λ)‖Wβ,q .

From condition (4.2), we have that ‖η(λ)F(2−iλ)‖Wβ,q < ∞. Therefore, we use our assumption (4.1)
to obtain

‖(ψ(δ2−i Fη)( j−i))(2i
√

L)‖r→r ≤ C(4.19)

with C > 0 independent of i and j.
We estimate the term ‖((1 − ψ)(δ2−i Fη)( j−i))(2i

√
L)‖r→r. For k ∈ N and all λ , 0, we have by

elementary calculation,∣∣∣∣(1 − ψ(λ))
dk

dλk

(
(δ2−i Fη)( j−i))(λ)

)∣∣∣∣
≤ C2( j−i)(k+1)

∣∣∣1 − ψ(λ)
∣∣∣ ∫ ∣∣∣F(2−iu)η(u)

∣∣∣(1 + 2 j−i|λ − u|
)−k−1du ≤ C|λ|−k,

where we use the fact that |λ| ≥ 4 and |u| ≤ 2. We then apply (a) of Lemma 4.5 to obtain

‖((1 − ψ)(δ2−i Fη)( j−i))(2i
√

L)‖r→r ≤ C.

This estimate in combination with (4.19) shows that

‖(Fηi)( j)(
√

L)‖r→r = ‖(δ2−i Fη)( j−i)(2i
√

L)‖r→r ≤ C(4.20)

for some constant C > 0 independent of i, j.
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Now we recall that if 1 ≤ q ≤ ∞ and β − 1/q > 0, then

Wβ,q ⊆ Bβ
q,∞ ⊆ B

β− 1
q

∞,∞ ⊆ Λmin{β− 1
q ,

1
2 }

and ‖F‖Λmin{β− 1
q ,

1
2 }
≤ C‖F‖Wβ,q . See, e.g., [5, Chap. VI ] for more details. We obtain

‖ηδ2−i F‖Λmin{β−1/q, 1/2} ≤ C‖ηδ2−i F‖Wβ,q ≤ C′.(4.21)

This estimate and (4.20) prove condition (4.17) of Corollary 4.8. The proof of Theorem 4.4 is
finished. �

5. Endpoint estimates for Bochner-Riesz means

We have seen in Corollary 3.2 that Bochner-Riesz means are bounded on Lp provided the order
δ satisfies δ > max

{
n(1/p − 1/s) − 1/q, 0

}
. In this section we prove that our restriction type

condition implies endpoint estimates for Bochner-Riesz means. Our approach is inspired by the
results of Christ and Tao [14, 15, 69]. As in the rest of the paper we assume that (X, d, µ) is a
metric measure space satisfying condition (2.2) with a homogeneous dimension n.

For any given p ∈ [1, 2) and q ∈ [1,∞] we define

δq(p) = max
{
0, n

∣∣∣∣1p − 1
2

∣∣∣∣ − 1
q

}
.

For simplicity we will write δ(p) instead of δ2(p). As in Sections 3 and 4 we discuss two type of
results corresponding to estimates (STq

p,2) or (SCq,1
p,2).

Theorem 5.1. Assume that operator L satisfies property (FS) and condition (STq
p,2) for some p, q

satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞. Then the operator S δq(p)
R (L) is of weak-type (p, p) uniformly

in R.

The next theorem is a variation of Theorem 5.1. As in Theorems 3.6 and 4.2, this variation can
be used in the case of operators with nonempty pointwise spectrum.

Theorem 5.2. Assume that µ(X) < ∞. Assume that operator L satisfies property (FS) and condi-
tion (SCq,1

p,2) for some p, q satisfying 1 ≤ p < 2 and 1 ≤ q ≤ ∞. Then the operator S δq(p)
R (L) is of

weak-type (p, p) uniformly in R.

The proofs of Theorem 5.1 and 5.2 require three technical lemmas which we discuss first. We
commence with the following observation.

Lemma 5.3. For each k ≤ 0 there exists a decomposition

S δq(p)
R (λ2) = ηk(λ)nk(λ) + S δq(p)

R (λ2)nk(λ)(5.1)

such that
(a) Functions nk are even and their Fourier transforms are supported in [−2k/R, 2k/R], i.e.,

supp n̂k ⊂ [−2k/R, 2k/R];
(b) Functions ηk are continuous, even and

∑0
k=−∞ |ηk(λ)|2 ≤ C with C independent of λ and R;

(c) For certain arbitrarily large N ∈ N there exists a constant C such that

|nk(λ)| ≤ C
(
1 +

2k|λ|

R

)−N
.
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Proof. Following [69] we consider the function Φ(λ) = 6λ−3(λ − sin λ). Note that Φ̂(t) = 3π(1 −
|t|)2

+. Set nk(λ) = ΦN/2(2kλ(RN)−1). We use term (RN)−1 rather than R−1 to ensure that supp n̂k ⊂

[−2k/R, 2k/R]. Next we write

S δq(p)
R (λ2) =

S δq(p)
R (λ2)

(
1 − nk(λ)

)
nk(λ)

 nk(λ) + S δq(p)
R (λ2)nk(λ)

= ηk(λ)nk(λ) + S δq(p)
R (λ2)nk(λ).

Verifying conditions (a) and (c) is straightforward. By definition of nk(λ), there exist a constant
cN , depending only on N, and another constant C such that

nk(λ) ≥ cN and |S δq(p)
R (λ2)(1 − nk(λ))| ≤ C2k

for all |λ| ≤ R and k ≤ 0. This proves condition (b) because suppS δq(p)
R (λ2) ⊂ [−R,R]. �

The original statement of the following lemma comes from [69].

Lemma 5.4. For each k > 0, there exists a decomposition S δq(p)
R (λ2) = mk(λ) + ηk(λ)nk(λ) such

that:
(a) Functions m̂k and n̂k are even and supported on [−2k/R, 2k/R];
(b) ηk are continuous and for all λ > 0,

∑∞
k=1 |ηk(λ)|2 ≤ C with C independent of λ and R;

(c) For certain arbitrarily large N ∈ N there exists a constant C such that

|nk(λ)| ≤ C2−δq(p)k
(
1 + 2k

∣∣∣∣1 − |λ|R

∣∣∣∣)−N
.

Proof. For the proof, we refer the reader to Lemma 2.1 in [69]. �

In the proofs of Theorems 5.1 and 5.2 we will also use the following lemma

Lemma 5.5. Suppose that L is a self-adjoint operator on L2(X). Assume that {Qk}k∈N is a family
of continuous real-valued functions such that

∑
k |Qk(λ)|2 ≤ C for some constant C independent of

λ. Then for any sequence of functions { fk}k∈N on X,∥∥∥∑
k

Qk(
√

L) fk

∥∥∥2

2
≤ C

∑
k

∥∥∥ fk

∥∥∥2

2
.(5.2)

Proof. Note that∥∥∥∑
k

Qk(
√

L) fk

∥∥∥2

2
=

〈∑
k

Qk(
√

L) fk,
∑

k

Qk(
√

L) fk

〉
=

∫ +∞

−∞

∑
k

∑
j

Qk(λ)Q j(λ)d
〈
E√L(λ) fk, f j

〉
.

Under the assumption of Lemma 5.5 the above integral is a limit of its Riemannian approxima-
tions, see page 310 of [74]. Therefore let us consider Riemannian partition of [α, β]

α = λ1 < λ2 < ... < λn = β, λ
′

` ∈ (λ`, λ`+1]

for some −∞ < α < β < ∞. Now to finish the proof of Lemma 5.5 it is enough to observe that∣∣∣∣∣∣∣∑
`

∑
k

∑
j

Qk(λ
′

`)Q j(λ
′

`)
〈
E√L(λ`, λ`+1] fk, f j

〉∣∣∣∣∣∣∣
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≤
∑
`

∑
k

∑
j

|Qk(λ
′

`)||Q j(λ
′

`)|
√〈

E√L(λ`, λ`+1] fk, fk
〉√〈

E√L(λ`, λ`+1] f j, f j
〉

=
∑
`

(∑
k

|Qk(λ
′

`)|
√〈

E√L(λ`, λ`+1] fk, fk
〉 )2

≤
∑
`

(∑
k

|Qk(λ
′

`)|
2
)∑

k

〈
E√L(λ`, λ`+1] fk, fk

〉
≤ C

∑
`

∑
k

〈
E√L(λ`, λ`+1] fk, fk

〉
≤ C

∑
k

‖ fk‖
2
2,

where we used the fact that
∑

k |Qk(λ)|2 ≤ C. �

Proof of Theorem 5.1. Assume that condition (STq
p,2) holds for some 1 ≤ p < 2 and 1 ≤ q ≤ ∞.

Fix a f ∈ Lp and α > µ(X)−1/p‖ f ‖p, and apply the Calderón-Zygmund decomposition at height α
to | f |p. There exist constants C and K so that

(i) f = g + b = g +
∑

j b j;
(ii) ‖g‖p ≤ C‖ f ‖p, ‖g‖∞ ≤ Cα;

(iii) b j is supported in B j and #{ j : x ∈ 4B j} ≤ K for all x ∈ X;
(iv)

∫
X
|b j|

pdµ ≤ Cαpµ(B j), and
∑

j µ(B j) ≤ Cα−p‖ f ‖p
p.

Let rB j be the radius of B j and denote by Jk =
{
j : 2k/R ≤ rB j < 2k+1/R

}
. Write

f = g +
∑

j

b j = g +
∑
k≤0

∑
j∈Jk

b j +
∑
k>0

∑
j∈Jk

b j = g + h1 + h2.

By a standard argument it is enough to show that there exists a constant C > 0 independent of R
and α such that for every α > µ(X)−1/p‖ f ‖p,

(5.3) µ
(
{x : S δq(p)

R (L)(g)(x) > α}
)
≤ Cα−p‖ f ‖p

p

and that for i = 1, 2,

(5.4) µ
({

x : S δq(p)
R (L)

(
hi
)
(x) > α

})
≤ Cα−p‖ f ‖p

p.

Note that supλ,R>0

(
1 − λ

R

)δq(p)

+
= 1 and that by (ii) αp−2‖g‖22 ≤ C‖ f ‖p

p. Hence by spectral theory

µ
(
{x : S δq(p)

R (L)(g)(x) > α}
)
≤ α−2‖S δq(p)

R (L)(g)‖22 ≤ α
−2‖g‖22

≤ Cα−p‖ f ‖p
p.(5.5)

Next we prove (5.4) for i = 1. By the spectral theorem and equality (5.1)∑
k≤0

∑
j∈Jk

S δq(p)
R (L)b j =

∑
k≤0

ηk(
√

L)
(∑

j∈Jk

nk(
√

L)b j

)
+ S δq(p)

R (L)
(∑

k≤0

∑
j∈Jk

nk(
√

L)b j

)
.

Applying the spectral theorem and Lemma 5.5 with Qk(λ) = ηk(λ) yields∥∥∥∥∑
k≤0

∑
j∈Jk

S δq(p)
R (L)b j

∥∥∥∥2

2
≤ C

∑
k≤0

∥∥∥∥∑
j∈Jk

nk(
√

L)b j

∥∥∥∥2

2
+ C

∥∥∥∥∑
k≤0

∑
j∈Jk

nk(
√

L)b j

∥∥∥∥2

2
.(5.6)
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Next supp n̂k ⊆ [−2k/R, 2k/R] so by Lemma 2.1,

supp Knk(
√

L) ⊆
{
(x, y) ∈ X × X : d(x, y) ≤ 2k/R

}
.

Hence if j ∈ Jk, then suppnk(
√

L)b j ⊆ 4B j. Thus by (iii) there exists constant C > 0 such that∑
k≤0

∥∥∥∥∑
j∈Jk

nk(
√

L)b j

∥∥∥∥2

2
+

∥∥∥∥∑
k≤0

∑
j∈Jk

nk(
√

L)b j

∥∥∥∥2

2
≤ C

∑
k≤0

∑
j∈Jk

∥∥∥∥nk(
√

L)b j

∥∥∥∥2

2
.

Next, by Proposition 2.3 and Remark 2.2,∥∥∥∥nk(
√

L)b j

∥∥∥∥
2

=
∥∥∥∥nk(
√

L)PB jb j

∥∥∥∥
2

≤

∥∥∥∥nk(
√

L)PB j

∥∥∥∥
p→2

∥∥∥b j

∥∥∥
p

≤

∥∥∥∥nk(
√

L)
(
I + 2k

√
L

R

)N∥∥∥∥
2→2

∥∥∥∥(I + 2k

√
L

R

)−N
PB j

∥∥∥∥
p→2
‖b j‖p

≤ C
∥∥∥∥(I + 2k

√
L

R

)−N
PB j

∥∥∥∥
p→2
‖b j‖p

≤ Cµ(B j)
1
2−

1
pαµ(B j)

1
p

≤ Cαµ(B j)1/2.

Hence by (iv)

µ
({

x :
∣∣∣∣S δq(p)

R (L)
(∑

k≤0

∑
j∈Jk

b j

)∣∣∣∣ > α}) ≤ Cα−2
∥∥∥∥S δq(p)

R (L)
(∑

k≤0

∑
j∈Jk

b j

)∥∥∥∥2

2

≤ Cα−p‖ f ‖p
p.(5.7)

Now, we prove (5.4) for i = 2. Let Ω∗ =
⋃

j∈N 4B j. By (2.1) that

µ(Ω∗) ≤ C
∑

j

µ(B j) ≤ Cα−p‖ f ‖p
p.

Hence it is enough to show that∥∥∥S δq(p)
R (L)

(∑
k>0

∑
j∈Jk

b j
)∥∥∥2

L2(X\Ω∗)
≤ Cα2

∑
j

µ(B j) ≤ Cα2−p‖ f ‖p
p.(5.8)

Using the decomposition from Lemma 5.4 we write

S δq(p)
R (L)

(∑
k>0

∑
j∈Jk

b j

)
=

∑
k>0

∑
j∈Jk

mk(
√

L)b j +
∑
k>0

ηk(
√

L)nk(
√

L)
(∑

j∈Jk

b j

)
.(5.9)

Recall that m̂k is even and supported in [−2k/R, 2k/R]. By Lemma 2.1

supp Kmk(
√

L) ⊂
{
(x, y) ∈ X × X : d(x, y) ≤

2k

R
}
.

This implies that if x ∈ X\Ω∗, then mk(
√

L)b j(x) = 0 for any j ∈ Jk and k > 0 so it makes no
contribution to (5.8). By (5.9) and Lemma 5.5∥∥∥S δq(p)

R (L)
(∑

k>0

∑
j∈Jk

b j
)∥∥∥2

L2(X\Ω∗)
≤ ‖

∑
k>0

ηk(
√

L)nk(
√

L)
(∑

j∈Jk

b j
)∥∥∥2

2

≤ C
∑
k>0

∥∥∥nk(
√

L)
(∑

j∈Jk

b j
)∥∥∥2

2
.(5.10)
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Next n̂k is even and supported on [−2k/R, 2k/R] so by Lemma 2.1

supp Knk(
√

L) ⊆
{
(x, y) ∈ X × X : d(x, y) ≤ 2k/R

}
.

Hence suppnk(
√

L)b j ⊆ 4B j for j ∈ Jk. By (iii) there exists a constant C > 0 such that∑
k>0

∥∥∥nk(
√

L)
(∑

j∈Jk

b j
)∥∥∥2

2
≤ C

∑
k>0

∑
j∈Jk

∥∥∥nk(
√

L)b j

∥∥∥2

2
.(5.11)

To continue, fix ψ ∈ C∞c , even and supported in [−2, 2] such that ψ(λ) = 1 for |λ| ≤ 3/2. Write

nk(
√

L) = nk(
√

L)ψ
( √L

R

)
+ nk(

√
L)

(
1 − ψ

( √L
R

))
.(5.12)

Then supp(1 − ψ(λ/R)) ⊂ (−∞,−3R/2] ∪ [3R/2,∞) so for every k > 0,∣∣∣∣nk(λ)
(
1 − ψ

(λ
R

))∣∣∣∣ ≤ C
∣∣∣∣1 − ψ(λR)∣∣∣∣2−δq(p)k

(
1 + 2k

∣∣∣∣1 − |λ|R

∣∣∣∣)−N

≤ C
(
1 +

∣∣∣∣2kλ

R

∣∣∣∣)−N
,

and we use a similar argument as in the proof of (5.4) for i = 1 to conclude that∥∥∥∥nk(
√

L)
(
I − ψ

( √L
R

))
b j

∥∥∥∥
2
≤ Cαµ(B j)1/2.(5.13)

On the other hand, suppnk(λ)ψ(λ/R) ⊂ [−2R, 2R] so by (STq
p,2)∥∥∥∥nk(

√
L)ψ

( √L
R

)
b j

∥∥∥∥
2

=
∥∥∥∥nk(
√

L)ψ
( √L

R

)
PB jb j

∥∥∥∥
2

≤

∥∥∥∥nk(
√

L)ψ
( √L

R

)
PB j

∥∥∥∥
p→2
‖b j‖p

≤ Cαµ(B j)
1
2 2kn( 1

p−
1
2 )
∥∥∥δ2R

(
nk(λ)ψ

(
λ/R

))∥∥∥
q
.

Now ∥∥∥∥δ2R

(
nk(λ)ψ

(λ
R

))∥∥∥∥
q
≤ C

( ∫ 1

0
|nk(2Rλ)|qdλ

)1/q

≤ C2−δq(p)k
( ∫ 1

0

(
1 + 2k|1 − 2λ|

)−Nqdλ
)1/q

≤ C2−δq(p)k2−
k
q ≤ C2−nk( 1

p−
1
2 ).

This yields ∥∥∥∥nk(
√

L)ψ
( √L

R

)
b j

∥∥∥∥
2
≤ Cαµ(B j)1/2.(5.14)

By (5.13) and (5.14) ∥∥∥nk(
√

L)b j

∥∥∥
2
≤ Cαµ(B j)1/2.

The rest of the proof of (5.4) for i = 2 is similar to the case i = 1. �

Proof of Theorem 5.2. Assume that condition (SCq,1
p,2) holds for some 1 ≤ p < 2 and 1 ≤ q ≤ ∞.

The proof of Theorem 5.2 is almost identical to that of Theorem 5.1 except some minor technical
complications so we only give a brief sketch of it.
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We apply the Calderón-Zygmund decomposition at height α to | f |p to get the same decomposi-
tion

f = g +
∑
k≤0

∑
j∈Jk

b j +
∑
k>0

∑
j∈Jk

b j = g + h1 + h2

as in Theorem 5.1. The proof of weak type estimates for g and h1 uses the simple observation that
(SCq,1

p,2) ⇒ (SC∞p,2) ⇔ (ST∞p,2) ⇒ (Ep,2) (see Propositions 2.3 and 3.11) and is essentially the same
as the corresponding argument in the proof of Theorem 5.1.

It remains to show that

(5.15) µ
({

x : S δq(p)
R (L)(h2)(x) > α

})
≤ Cα−p‖ f ‖p

p.

To show (5.15) we note that if µ(X) is finite, then we may assume X = B(x0, 1) for some x0 ∈ X.
Recall that Jk =

{
j : 2k/R ≤ rB j < 2k+1/R

}
. Thus the radius of each B j in the Calderón-Zygmund

decomposition satisfies 2k/R ≤ 4. If R ≤ 4, then k ≤ 4. Hence one can use the same argument as
in the proof of Theorem 5.1 for i = 1.

Next we consider the remaining case R > 4. Using the decomposition described in Lemma 5.4
it is not difficult to note that to finish the proof it is enough to show that∥∥∥∥nk(

√
L)

(
I − ψ

( √L
R

))
b j

∥∥∥∥
2
≤ Cαµ(B j)1/2,(5.16) ∥∥∥∥nk(

√
L)ψ

( √L
R

)
b j

∥∥∥∥
2
≤ Cαµ(B j)1/2,(5.17)

where nk is defined in Lemma 5.4 and ψ is a function in (5.12). The proof of (5.16) is similar to
that of (5.13).

To prove (5.17) set N = [2R] + 1. By condition (SCq,1
p,2)∥∥∥∥nk(

√
L)ψ

( √L
R

)
b j

∥∥∥∥
2
≤ Cµ(B j)( 1

2−
1
p )2kn( 1

p−
1
2 )
∥∥∥δN

(
nk(λ)ψ

(
λ/R

))∥∥∥
N,q
‖b j‖p.

Next (assuming that sup |ψ| = 1)

21/q
∥∥∥δN

(
nk(λ)ψ

(
λ/R

))∥∥∥
N,q
≤

( 1
N

N∑
`=1−N

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

≤
( 1
N

−[R]−2∑
`=1−N

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

+
( 1
N

−[R]+3∑
`=−[R]−1

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

+
( 1
N

0∑
`=−[R]+4

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

+
( 1
N

[R]−3∑
`=1

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

+
( 1
N

[R]+2∑
`=[R]−2

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

+
( 1
N

N∑
`=[R]+3

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q

= I + II + III + IV + V + VI.

Let M be a sufficiently large natural number. By Lemma 5.4

V =
( 1
N

[R]+2∑
`=[R]−2

sup
λ∈[`−1,`)

|nk(λ)|q
)1/q
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≤ C2−δq(p)k
( 1
N

[R]+2∑
`=[R]−2

sup
λ∈[`−1,`)

(
1 + 2k

∣∣∣∣λR − 1
∣∣∣∣)−Mq)1/q

≤ C2−δq(p)kR−1/q ≤ C2−δq(p)k2−
k
q
(2k

R
)1/q

≤ C2−nk( 1
p−

1
2 )

and

VI ≤ C
( 1
N

N∑
`=[R]+3

sup
λ∈[`−1,`)

∣∣∣∣2−δq(p)k
(
1 + 2k

(λ
R
− 1

))−M∣∣∣∣q)1/q

≤ C2−δq(p)k
( ∫ ∞

R

(
1 + 2k

(λ
R
− 1

))−Mq
R−1dλ

)1/q

≤ C2−nk( 1
p−

1
2 ).

A similar argument as in V shows that II ≤ C2−nk(1/p−1/2); the similar argument as in VI shows that
each of I, III and IV is less than C2−nk(1/p−1/2). Thus∥∥∥δN

(
nk(λ)ψ

(
λ/R

))∥∥∥
N,q
≤ C2−nk( 1

p−
1
2 ).

This finishes the proof of Theorem 5.2. �

Part 2. Dispersive and restriction estimates

6. Dispersive and Strichartz estimates

Let (X, d, µ) be a metric measure space. Next let L be a non-negative self-adjoint operator acting
on L2(X). In virtue of the spectral theory, we can define the semigroup exp(−zL) for all z ∈ C with
Re z ≥ 0 and such that

‖ exp(−zL)‖2→2 ≤ 1.
We say that the operator L satisfies dispersive type estimates if there exist constants n and C such
that

(6.1) ‖ exp (isL) ‖1→∞ ≤ C|s|−n/2, ∀ s ∈ R \ {0}.

Of course, the standard Laplacian on Rn satisfies the dispersive estimates. Such estimates are
of importance in analysis and PDE. In particular, they imply endpoint Strichartz estimates (see
Keel and Tao [42]). We refer to Strichartz endpoint estimates for the corresponding Schrödinger
equation as

(6.2)
∫
R

‖eitL f ‖22n
n−2

dt ≤ C‖ f ‖22, f ∈ L2.

This endpoint estimate together with the obvious fact

‖ exp(itL) f ‖L∞t L2
x
≤ ‖ f ‖L2

give Lp
t Lq

x Strichartz estimates. See [42] for more details. Our aim will be to explain how sharp
spectral multipliers follow from the dispersive or Strichartz estimates.

It is natural to consider the dispersive estimates (6.1) in conjunction with the smoothing condi-
tion

(6.3) ‖ exp(−tL)‖1→∞ ≤ Kt−n/2, ∀ t > 0.
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Note that if the self-adjoint contractive semigroup exp(−tL) on L2(X) is in addition uniformly
bounded on L∞(X), which includes the case of a sub-Markovian semigroup, then

‖ exp(−(t + is)L)‖1→∞ ≤ ‖ exp(−tL/2)‖∞→∞‖ exp(−isL)‖1→∞ ≤ C |s|−n/2.

Together with (6.3) this yields

‖ exp(−(t + is)L)‖1→∞ ≤ C min{t−n/2, |s|−n/2} ≤ C′|t + is|−n/2

for all t > 0, s ∈ R. Hence

(6.4) ‖ exp(−zL)‖1→∞ ≤ C|z|−n/2

for all Re z ≥ 0. Of course this estimate implies (6.1) and (6.3) and the argument above shows that
if semigroup exp(−tL) is uniformly bounded on L∞(X) then it is equivalent to conjunction (6.1)
and (6.3). It turns out however that this equivalence holds without the boundedness assumption
on L∞(X). This fact will be used in the next subsection in which we will not assume uniform
boundedness of semigroup exp(−tL) on L∞(X).

Lemma 6.1. Suppose that L is a non-negative self-adjoint operator on L2(X). Then the dispersive
estimates (6.1) are equivalent to (6.4).

Proof. All what we need is to prove that (6.1) is enough to get (6.4) on the positive half-plane.
Fix f , g ∈ L1(X) ∩ L2(X) and consider the function

H(z) = zn/2〈exp(−zL) f , g〉.

The analyticity of the semigroup on L2 implies analyticity of H on the open right half-plane and
continuity on the boundary. Now for z = is with s ∈ R, the dispersive estimates (6.1) gives

|H(is)| ≤ C‖g‖1‖ f ‖1.

For all z with Re z ≥ 0, we have
|H(z)| ≤ |z|n/2‖g‖2‖ f ‖2.

Therefore, we can apply the Phragmén-Lindelöf theorem and conclude that

(6.5) |H(z)| ≤ C‖g‖1‖ f ‖1

for all z with Re z ≥ 0. From this and the density of L1(X) ∩ L2(X) in L1(X) we obtain the lemma.
�

7. From dispersive and Strichartz estimates to sharp multipliers

We continue with the assumption that (X, d, µ) is a metric measure space. In this section, let us
start with the following proposition.

Proposition 7.1. Let L be a non-negative self-adjoint operator on L2. Assume that L satisfies
estimates (6.1). Then for all 1 ≤ p < 2n

n+2 and all λ ≥ 0

(7.1) ‖dE√L(λ)‖p→p′ ≤ Cλn( 1
p−

1
p′ )−1,

where p′ is again the conjugate exponent of p.
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Proof. We first prove that L satisfies

(7.2) ‖F(
√

L)‖p→p′ ≤ CRn( 1
p−

1
p′ )‖δRF‖1

for all bounded F ∈ L1 with supp F ⊆ [0,R] and all p with 1 ≤ p < 2n
n+2 . This estimate is very

similar to (ST1
p,p′) studied in Part 1. Note that we do not consider here X to be a doubling space

(even a metric d is not needed).
Consider the case where R = 1 and fix F with support contained in [0, 1]. Set G(λ) = F(

√
λ)eλ.

By the inverse Fourier transform, we have (up to a constant)

G(λ) =

∫
R

Ĝ(ξ)eiξλdξ.

This gives

(7.3) F(
√

L) =

∫
R

Ĝ(ξ) exp(−(1 − iξ)L)dξ.

This equality follows immediately from Fubini’s theorem if Ĝ ∈ L1. One may start by prov-
ing (7.3) for smooth functions Fn and then use standard approximation arguments to obtain the
equality for all F as above.

Now the dispersive estimates together with Lemma 6.1 imply that for any p ∈ [1, 2]

‖F(
√

L)‖p→p′ ≤

∫
R

|Ĝ(ξ)|‖ exp(−(1 − iξ)L)‖p→p′dξ

≤ C
∫
R

|Ĝ(ξ)|(1 + ξ2)−
n
4 ( 1

p−
1
p′ )dξ

≤ C‖Ĝ‖∞

∫
R

(1 + ξ2)−
n
4 ( 1

p−
1
p′ )dξ.(7.4)

Now we note that
‖Ĝ‖∞ ≤ ‖G‖1 ≤ C‖F‖1

and ∫
R

(1 + ξ2)−
n
4 ( 1

p−
1
p′ )dξ < ∞

for p < 2n
n+2 . This shows (7.2) when R = 1. Now, for general R > 0 and F with support in [0,R]

we reproduce the previous arguments with the function δRF and the operator L′ = L
R2 . This leads

to (7.2). Now we argue as in the proof of Proposition 2.4. Fix λ ≥ 0 and ε > 0 small. We use (7.2)
to obtain ∥∥∥∥ε−1E√L(λ − ε, λ + ε]

∥∥∥∥
p→p′

= ε−1
∥∥∥∥11(λ−ε,λ+ε](

√
L)

∥∥∥∥
p→p′

≤ Cε−1(λ + ε)n( 1
p−

1
p′ )

∥∥∥χ( λ−ελ+ε , 1]

∥∥∥
1

≤ C(λ + ε)n( 1
p−

1
p′ )−1.

Letting ε→ 0 we obtain ∥∥∥∥dE√L(λ)
∥∥∥∥

p→p′
≤ Cλn( 1

p−
1
p′ )−1,

which implies the estimate of the proposition. �
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Remark 7.2. Let p ∈ [1, 2n
n+2 ] and suppose that G is a distribution such that suppG ⊂ [0,R] and∫

R
|Ĝ(ξ)|(1 + ξ2/R2)−

n
4 ( 1

p−
1
p′ )dξ < ∞. It follows from the previous calculations that G(L) is well

defined as an operator acting from Lp to Lp′ and that

‖G(L)‖p→p′ ≤ C
∫
R

|Ĝ(ξ)|(1 + ξ2/R2)−
n
4 ( 1

p−
1
p′ )dξ.

Proposition 7.1 does not yield the optimal results for the standard Laplace operator. However
in the abstract setting we can include the endpoint p = 2n

n+2 when n > 2 in the following way. We
start with the Strichartz estimate (6.2) and repeat the previous proof to get

‖F(
√

L) f ‖ 2n
n−2
≤

∫
R

|Ĝ(ξ)|‖ exp(−(1 − iξ)L) f ‖ 2n
n−2

dξ

≤ ‖Ĝ‖2

(∫
R

‖ exp(iξL) exp(−L) f ‖22n
n−2

dξ
)1/2

≤ C‖F‖2‖ exp(−L) f ‖2 ≤ C‖F‖2‖ f ‖2

for all F with support in [0, 1]. For F supported in [0,R] we apply the previous estimate with δRF
and L′ = L

R2 to get

‖F(
√

L)‖2→ 2n
n−2
≤ CR‖δRF‖2.

Therefore,

(7.5) ‖F(
√

L)‖ 2n
n+2→

2n
n−2
≤ CR2‖δRF‖21.

Similar arguments as above give (7.1) for p = 2n
n+2 .

We can now extend this easily to all p < 2n
n+2 if the smoothing property (6.3) is satisfied. More

precisely, fix p < 2n
n+2 and assume that

(7.6) ‖ exp(−tL)‖p→ 2n
n+2
≤ Kt−

n
2 ( 1

p−
n+2
2n ), ∀ t > 0.

We introduce as before GR(λ) = (δRF)(
√
λ)eλ for F supported in [0,R]. Then for q = p′ we have

‖F(
√

L) f ‖q =

∥∥∥∥∥∫
R

ĜR(ξ) exp(−(
1
R2 − i

ξ

R2 )L) f dξ
∥∥∥∥∥

q

≤ ‖ exp(−
L
R2 )‖ 2n

n−2→q

∫
R

|ĜR(ξ)|‖ exp(−(i
ξ

R2 )L) f ‖ 2n
n−2

dξ

≤ CRn( 1
2−

1
q )−1
‖GR‖2

(∫
R

‖ exp(−(i
ξ

R2 )L) f ‖22n
n−2

dξ
)1/2

≤ CRn( 1
2−

1
q )
‖δRF‖L2(R)‖ f ‖L2(X),

where we used the Strichartz estimate (6.2) to obtain the last inequality. As in the last proposition,
this gives the Stein-Tomas restriction (7.1) for all p ∈ [1, 2n

n+2 ]. We have proved

Proposition 7.3. Let L be a non-negative self-adjoint operator on L2. Assume that L satisfies
the Strichartz estimate (6.2) for some n > 2. Fix p such that 1 ≤ p ≤ 2n

n+2 and assume that the
smoothing property (7.6) is satisfied. Then for all λ ≥ 0

(7.7) ‖dE√L(λ)‖p→p′ ≤ Cλn( 1
p−

1
p′ )−1,

where p′ is again the conjugate exponent of p.
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We mentioned above that the dispersive estimates imply the Strichartz estimates ([42]). For
this reason we formulate the results below for the case where L satisfies the endpoint Strichartz
estimate.

Theorem 7.4. Suppose that (X, d, µ) satisfies the doubling property (2.2) and there exists a positive
constant C > 0 such that V(x, r) ≤ Crn for every x ∈ X and r > 0. Assume that L satisfies the
finite speed propagation property (FS) and the Strichartz estimate (6.2) with the same n as in the
doubling property. Assume also that n > 2. Fix p ∈ [1, 2n

n+2 ] and assume that (7.6) holds. Then for
every bounded Borel function F such that supp F ⊆ [−1, 1] and

‖F‖Wβ,2 < ∞

for some β > n( 1
p −

1
2 ), the operator F(t

√
L) is bounded on Lp for all t > 0 and

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,2 .

Proof. If F is supported in [0,R] then by Proposition 7.3, we have

‖F(
√

L)‖p→p′ = ‖

∫ R

0
F(λ)dE√L(λ)‖p→p′

≤ C
∫ R

0
|F(λ)|λn( 1

p−
1
p′ )−1dλ

≤ CRn( 1
p−

1
p′ )‖δRF‖1.

Hence by the T ∗T argument

‖F(
√

L)‖p→2 ≤ CRn( 1
p−

1
2 )
‖δRF‖2.

Combining this with our assumption on the volume yields (ST2
p,2). We then apply Theorem 3.1

and obtain the result for p ∈ [1, 2n
n+2 ]. �

We have seen that the assumptions of the previous theorem imply (ST2
p,2), we can then apply

Theorem 5.1 to obtain endpoint estimate for Bochner-Riesz means. In addition, by applying
Theorem 4.1 we obtain under the assumptions of the previous theorem the following result.

Theorem 7.5. Fix p ∈ [1, 2n
n+2 ]. For any bounded Borel function F such that supt>0 ‖η δtF‖Wβ,2 < ∞

for some β > max{n(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all r ∈ (p, p′). In addition,

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,2 + |F(0)|

)
.

Remark 7.6. In the general setting of doubling spaces, we can replace the dispersive estimates
(6.1) by

(7.8) ‖PB(x,r) exp (isL) PB(x,r)‖p→p′ ≤ CV(x, r)
1
p′ −

1
p

(
r
√
|s|

)n( 1
p−

1
p′ )

.

Here the constant n is the same as in the doubling condition. The arguments in the proof of (7.2)
show that for p < 2n

n+2 ,

‖PB(x,r)|F|2PB(x,r)‖p→p′ ≤ CV(x, r)
1
p′ −

1
p (Rr)n( 1

p−
1
p′ )‖δRF‖22
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for all F supported in [0,R]. The T ∗T argument gives (ST2
p,2) for all p < 2n

n+2 . Therefore we obtain
the same conclusion as in Theorems 7.4 and 7.5 for L satisfying property (FS) and (7.8) on any
doubling space.

Note also that under these two assumptions, we obtain from Theorem 5.1 endpoint estimates for
the Bochner-Riesz mean S δ(p)

R (L) on Lp (p ∈ [1, 2n
n+2 )) for δ(p) = max

{
0, n

∣∣∣ 1
p −

1
2

∣∣∣ − 1
2

}
.

We finish this section by observing that a local dispersive estimate could also be used to esti-
mates for ‖EL[k, k + 1)‖p→p′ . More precisely,

Proposition 7.7. Let L be a non-negative self-adjoint operator on L2. Assume that L satisfies the
local dispersive estimates

‖ exp(itL)‖1→∞ ≤ Ct−n/2

for all 0 < |t| ≤ 2. Assume also that

‖ exp(−tL)‖∞→∞ ≤ C and ‖ exp(−tL)‖1→∞ ≤ Ct−n/2

for all t > 0. Then for all 1 ≤ p < 2n
n+2 and all k > 0

(7.9) ‖EL[k, k + 1)‖p→p′ ≤ C(1 + k)
n
2 ( 1

p−
1
p′ )−1,

where p′ is again the conjugate exponent of p.

Proof. Set Ĝk(ξ) = 3π(1 − |ξ|)2
+e−ikξ so that Gk(λ) = 6(λ − k)−2 − 6 sin(λ−k)

(λ−k)3 . Note that there exists a
positive constant c such that Gk(λ)e−λ/(2k) ≥ cχ[k,k+1)(λ) for all λ ∈ [k, k + 1). So

c2‖EL[k, k + 1) f ‖22 ≤ ‖Gk(L)e−L/(2k) f ‖22.

It follows from the above inequality and the T ∗T argument that

c2‖EL[k, k + 1)‖p→p′ ≤ ‖|Gk|
2(L)e−L/k‖p→p′ .

Next (6.4) holds for |Imz| ≤ 2. Hence

‖|Gk|
2(L)e−L/k‖p→p′ ≤

∫ 2

−2
|Ĝk ∗ Ĝk|‖ exp(−(1/k − iξ)L)‖p→p′dξ

≤ C
∫ 2

−2
(k−2 + ξ2)−

n
4 ( 1

p−
1
p′ )dξ

≤ C
∫
R

(k−2 + ξ2)−
n
4 ( 1

p−
1
p′ )dξ

≤ C(1 + k)
n
2 ( 1

p−
1
p′ )−1.

This proves estimate (7.9). �

Remark 7.8. Using Mehler’s formula it is not difficult to verify that the estimates required in
Proposition 7.7 hold for the harmonic oscillator. One can use this fact to prove the corresponding
spectral cluster estimates (10.4) for this case (see Theorem 10.4).
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Part 3. Applications

8. Standard Laplace operator and compact manifolds

As mentioned in the introduction, the restriction estimates (Rp) for standard Laplace operator on
Rn are valid for 1 ≤ p ≤ 2(n + 1)/(n + 3). As a consequence of Theorem 5.1, we obtain alternative
proof of Theorem 1.1 of [69] by Tao, Theorem 1 [15] and main result of [14] described by M.
Christ. These results can be stated in the following way:

Proposition 8.1. For all n ≥ 2 and 1 ≤ p ≤ 2(n + 1)/(n + 3), the operator (I − ∆)δ(p)
+ is of

weak-type (p, p).

Proof. This result is a consequence of Proposition 2.4 and Theorem 5.1. �

Similarly, using Theorem 5.2 one can obtain alternative proof of Theorem 1.2 of [69]. Our
proof shows that this result holds for all operators on compact manifolds which satisfy property
(FS) and condition (Sp) as in the following proposition.

Proposition 8.2. Suppose the operator L satisfies (FS) and condition (Sp) for some 1 ≤ p ≤
2(n + 1)/(n + 3). Then the operator (I − L/R2)δ(p)

+ is of weak-type (p, p) uniformly in R.

Proof. This result follows from Proposition 3.10 and Theorem 5.2. �

In both cases of compact manifolds with or without boundaries, examples which satisfy condi-
tion (Sp) are described in [62, 64] by C.D. Sogge.

We mentioned here endpoint Bochner-Riesz summability results. From Theorems 4.1 and 4.2
we have more general spectral multiplier results for the operators considered in the previous propo-
sitions.

9. Asymptotically conic manifolds

Scattering manifolds or asymptotically conic manifolds are defined as the interior of a compact
manifold with boundary M, and the metric g is smooth on M◦ and has the form

g =
dx2

x4 +
h(x)
x2

in a collar neighbourhood near ∂M, where x is a smooth boundary defining function for M and
h(x) a smooth one-parameter family of metrics on ∂M; the function r := 1/x near x = 0 can be
thought of as a radial coordinate near infinity and the metric there is asymptotic to the exact metric
cone ((0,∞)r × ∂M, dr2 + r2h(0)).

In this subsection we consider the following classical operators:
• Schrödinger operators, i.e. −∆ + V on Rn, where V smooth and decaying sufficiently at

infinity;
• The Laplacian with respect to metric perturbations of the flat metric on Rn, again decaying

sufficiently at infinity;
• The Laplacian on asymptotically conic manifolds.

Proposition 9.1. Let (M, g) be an asymptotically conic manifold of dimension n ≥ 3, and let x be
a smooth boundary defining function of ∂M. Let L := −∆ + V be a Schrödinger operator with
V ∈ x3C∞(M) and assume that L has no L2-eigenvalues and that 0 is not a resonance. Then
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(i) For any λ0 > 0 there exists a constant C > 0 such that the spectral measure dE(λ) for
√

L
satisfies

(9.1) ‖dE√L(λ)‖Lp(M)→Lp′ (M) ≤ Cλn( 1
p−

1
p′ )−1

for 1 ≤ p ≤ 2(n + 1)/(n + 3) and 0 < λ ≤ λ0.
(ii) If (M, g) is nontrapping, then there exists C > 0 such that (9.1) holds for all λ > 0.

Proposition 9.1 was proved in [29, Theorem 1.2]. This proposition has useful consequence to
establish the convergence of the Riesz means up to the critical exponent δ(p) = max

{
0, n

∣∣∣1/p −
1/2

∣∣∣ − 1/2
}

for all 1 ≤ p ≤ 2(n + 1)/(n + 3).

Corollary 9.2. Let (M, g) be nontrapping and the operator L satisfies all assumptions of Proposi-
tion 9.1. Let 1 ≤ p ≤ 2(n + 1)/(n + 3). Then

(i) S δ(p)
R (L) is of weak-type (p, p) uniformly in R.

(ii) For any bounded Borel function F : [0,∞)→ C such that supt>0 ‖η δtF‖Wβ,2 < ∞ for some
β > max{n(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all p < r < p′ with

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,2 + |F(0)|

)
.

Proof. Corollary 9.2 follows from Propositions 9.1, 2.4 and Theorems 5.1, 4.1. �

10. Schrödinger operators with rough potentials

This section we discuss new spectral multiplier results for Schrödinger type operators of the
form −∆ + V .

10.1. Schrödinger operators with inverse-square potential. We start with inverse square poten-
tials, that is V(x) = c

|x|2 . Fix n > 2 and assume that −(n − 2)2/4 < c. Define by quadratic form
method L = −∆ + V on L2(Rn, dx). The classical Hardy inequality

(10.1) − ∆ ≥
(n − 2)2

4
|x|−2,

shows that for all c > −(n − 2)2/4, the self-adjoint operator L is non-negative. Set p∗c = n/σ,
σ = max{(n − 2)/2 −

√
(n − 2)2/4 + c, 0}. If c ≥ 0 then the semigroup exp(−tL) is pointwise

bounded by the Gaussian semigroup and hence acts on all Lp spaces with 1 ≤ p ≤ ∞. If c < 0,
then exp(−tL) acts as a uniformly bounded semigroup on Lp(Rn) for p ∈ ((p∗c)′, p∗c) and the range
((p∗c)′, p∗c) is optimal (see for example [47]).

It is proved in [10] that the solution u(t) = e−itL f of the corresponding Schrödinger equation

i∂tu + Lu = 0, u(0) = f

satisfies Strichartz estimates (6.2). The smoothing property (7.6) is proved in [4]. Therefore, we
obtain from Proposition 7.3 that L satisfies restriction estimate (Rp) for all p ∈ ((p∗c)′, 2n

n+2 ]. If
c ≥ 0, then p = (p∗c)′ = 1 is included. Using the above observation and Theorems 5.1 and 7.4 we
obtain

Theorem 10.1. Suppose that n > 2 and −(n − 2)2/4 < c and that p ∈ ((p∗c)′, 2n/(n + 2)] where
p∗c = n/σ and σ = max{(n − 2)/2 −

√
(n − 2)2/4 + c, 0} and (p∗c)′ its dual exponent. Then
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(i) S δ(p)
R (L) is of weak-type (p, p) uniformly in R.

(ii) For any bounded Borel function F : [0,∞)→ C such that supt>0 ‖η δtF‖Wβ,2 < ∞ for some
β > max{n(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all p < r < p′ with

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,2 + |F(0)|

)
.

10.2. Scattering operators. Assume now that n = 3 and V is a real-valued measurable function
such that ∫

R6

|V(x)| |V(y)|
|x − y|2

dxdy < (4π)2 and sup
x∈R3

∫
R3

|V(y)|
|x − y|

dy < 4π.(10.2)

The following proposition is a consequence of Proposition 7.1 and the main result in Rodnianski
and Schlag [55] which gives the dispersive estimates for exp(it(−∆ + V)) on R3.

Proposition 10.2. Suppose that L = −∆ + V on R3 with a real-valued V which satisfies (10.2).
Then L satisfies (Rp) for all 1 ≤ p < 6/5.

In the special case p = 1, Proposition 10.2 was obtained in [24, Theorem 7.15] for compactly
supported function V ≥ 0 which satisfies (10.2). The following result is a consequence of Theo-
rem 5.1, 4.1 and Proposition 10.2.

Corollary 10.3. Suppose that L = −∆ + V on R3 and that V satisfies assumption of Proposi-
tion 10.2. Assume also that 1 ≤ p < 6/5. Then

(i) S δ(p)
R (L) is of weak-type (p, p) uniformly in R.

(ii) For any bounded Borel function F : [0,∞)→ C such that supt>0 ‖η δtF‖Wβ,2 < ∞ for some
β > max{3(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all p < r < p′.

If n ≥ 3 and potential V ∈ W s,2(Rn) for some s > n
2 − 1 and has fast decay, Bourgain [8] proved

the dispersive estimates for exp(it(−∆+V)) . Our results apply for L = −∆+V and allow to obtain
sharp spectral multiplier results. We also refer to Rodnianski and Schlag [55] for more references
on dispersive estimates for Schrödinger operators.

We also mention that Strichartz estimates are proved for a class of elliptic operators with vari-
able coefficients by J. Marzuola, J. Metcalfe and D. Tataru [49] (see Theorem 1.20). Therefore,
the same reasoning as for the Theorem 10.1 allows us to obtain sharp spectral multipliers and
endpoint Bochner-Riesz summability for these elliptic operators.

10.3. The harmonic oscillator. In this section we focus on Schrödinger operators such as the
harmonic oscillator −∆ + |x|2 on L2(Rn) for n ≥ 2. As in [44] we can also consider Schrödinger
operators L = −∆ + V with a positive potential V which satisfies the following condition

(10.3) V ∼ |x|2, |∇V | ∼ |x|, |∂2
xV | . 1.

We apply Theorems 3.6 and 4.2 and the results from [44] to prove sharp results on Bochner-Riesz
summability and singular spectral multipliers for L. Bochner-Riesz summability results for the
harmonic oscillator were obtained before (see for instance, [31, 41, 40, 70]). Here we describe an
alternative proof. The corresponding singular integral multiplier is a new result. The following
theorem is the main goal of this section.
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Theorem 10.4. Assume that potential V satisfies condition (10.3) and set L = −∆ + V. Let
1 ≤ p ≤ 2n/(n + 2). Then

(i) For any even function F such that supp F ⊆ [−1, 1] and ‖F‖Wβ,2 < ∞ for some β >

max{n(1/p − 1/2), 1/2}, the operator F(t
√

L) is bounded on Lp(X) for all t > 0 and

sup
t>0
‖F(t
√

L)‖p→p ≤ C‖F‖Wβ,2 .

(ii) For any bounded Borel function F : [0,∞)→ C such that supt>0 ‖η δtF‖Wβ,2 < ∞ for some
β > max{n(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all p < r < p′. In addition,

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,2 + |F(0)|

)
.

Proof. It follows from Theorem 4 in [44] that for all λ ≥ 0 and all 1 ≤ p ≤ 2n/(n + 2)

‖EL[λ2, λ2 + 1)‖p→2 ≤ C(1 + λ)n( 1
p−

1
2 )−1.(10.4)

Take a function F with support in [−N,N]. We have as in the proof of Proposition 3.10

‖F(
√

L)‖2p→2 ≤

N2∑
`=1

‖E√L[
` − 1

N
,
`

N
)F(
√

L)‖2p→2

≤

N2∑
`=1

sup
λ∈[ `−1

N , `N )
|F(λ)|2‖E√L[

` − 1
N

,
`

N
)‖2p→2

=

N2∑
`=1

sup
λ∈[ `−1

N , `N )
|F(λ)|2‖EL[(

` − 1
N

)2, (
`

N
)2)‖2p→2.(10.5)

Now we observe that for all ` = 1, 2, · · · ,N2∥∥∥EL[(
` − 1

N
)2, (

`

N
)2)

∥∥∥2

p→2
≤

∥∥∥EL[(
` − 1

N
)2, (

` − 1
N

)2 + 2)
∥∥∥2

p→2
.

This, in combination with (10.4) and (10.5), shows that for 1 ≤ p ≤ 2n/(n + 2)

‖F(
√

L)‖2p→2 ≤ C
N2∑
`=1

sup
λ∈[ `−1

N , `N )
|F(λ)|2

(
2 +

` − 1
N

)2n( 1
p−

1
2 )−2

≤ CN2n( 1
p−

1
2 ) 1

N2

N2∑
`=1

sup
λ∈[ `−1

N , `N )
|F(λ)|2

≤ CN2n( 1
p−

1
2 ) 1

N2

N2∑
`=1

sup
λ∈[ `−1

N2 ,
`

N2 )
|F(Nλ)|2.

This proves (SC2,κ
p,2) for κ = 2 and p such that 1 ≤ p ≤ 2n/(n + 2). It remains to show (AB2,κ

p ) and
then apply Theorems 3.6 and 4.2. Now condition (AB2,κ

p ) follows from the following lemma. �

Lemma 10.5. Let L = −∆ + V, where V ∈ L1
loc(Rn) and V ≥ 0. Suppose that for some κ > 0 and

any ε > 0

(10.6)
∫
Rn

(1 + V(x))n(1−κ)/2−εdx < ∞.
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Then condition (SC2,κ
p,2) implies (AB2,κ

p ).

The proof of Lemma 10.5 can be obtained by making a minor modification of the proof of
Lemma 7.9 of [24] so we skip it here. �

11. Operators ∆n + c
r2 acting on L2((0,∞), rn−1dr)

In this section we consider a class of Schrödinger operators on L2((0,∞), rn−1dr). These opera-
tors generate semigroups but do not have the classical Gaussian upper bound for the heat kernel.

Fix n > 2 and c > −(n − 2)2/4 and consider the space L2((0,∞), rn−1dr). For f , g ∈ C∞c (0,∞)
we define the quadratic form

(11.1) Q(0,∞)
n,c ( f , g) =

∫ ∞

0
f ′(r)g′(r)rn−1dr +

∫ ∞

0

c
r2 f (r)g(r)rn−1dr.

Using the Friedrichs extension one can define the operator Ln,c = ∆n + c/r2 as the unique self-
adjoint operator corresponding to Q(0,∞)

n,c , acting on L2((0,∞), rn−1dr). In the sequel we will write
L instead of Ln,c, which is formally given by the following formula

L f = (∆n +
c
r2 ) f = −

d2

dr2 f −
n − 1

r
d
dr

f +
c
r2 f .

The classical Hardy inequality (10.1) shows that for all c > −(n − 2)2/4, the self-adjoint operator
L is non-negative. Such operators can be seen as radial Schrödinger operators with inverse-square
potentials. It follows by Theorem 3.3 of [19] that L satisfies Davies-Gaffney estimate, which in
turns implies property (FS).

Now for −(n − 2)2/4 < c < 0, we set p∗c = n/σ where σ = (n − 2)/2 −
√

(n − 2)2/4 + c and
(p∗c)′ its dual exponent. Note that 2 < 2n

n−2 < p∗c. Liskevich, Sobol and Vogt [47] proved that for all
t > 0 and all p ∈ ((p∗c)′, p∗c),

‖e−tL‖p→p ≤ C.

They also proved that range ((p∗c)′, p∗c) is optimal and that for all p < ((p∗c)′, p∗c), the semigroup
does not even act on Lp((0,∞), rn−1dr) (see also [22, 19, 30]).

Proposition 11.1. Suppose that n > 2 and −(n − 2)2/4 < c. For c < 0, set p ∈
(
(p∗c)′, 2n

n+1

)
where

p∗c = n/σ and σ = (n − 2)/2 −
√

(n − 2)2/4 + c and (p∗c)′ its conjugate exponent. For c ≥ 0, set
p ∈

[
1, 2n

n+1

)
. Then for any R > 0 and all Borel functions F such that supp F ⊂ [0,R],

(11.2)
∥∥∥F(
√

L)PB(xB,rB)

∥∥∥
p→2
≤ CV(xB, rB)

1
2−

1
p
(
RrB)n( 1

p−
1
2 )
∥∥∥δRF

∥∥∥
2

for all xB ∈ R+ and rB ≥ 1/R.

Proof. In [30] the explicit formula for the resolvent of the operator L = ∆n + c
r2 is described.

Based on this formula we calculate explicitly the spectral projections dE√L(λ) (This calculation
was shown to us by Andrew Hassell). Define the number n′ = n′(n, c) to be the maximum positive
root of the equation (n′/2 − 1)2 = (n/2 − 1)2 + c so that p∗c = n/σ = 2n/(n − n′) where σ =

(n − 2)/2 −
√

(n − 2)2/4 + c. Next let Kα and Iα are modified Bessel function, see [1, §9.6.1 p.
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374] or [72, §1.14 p. 16]. Set m(x) = x−n/2+1In′/2−1(x) and k(x) = x−n/2+1Kn′/2−1(x). Then by (4.2)
and Section 6.1 of [30] the resolvent kernel for L = ∆n + c

r2 is given by

(11.3) R(λ)(x, y) = K(L+λ2)−1(x, y) =

 νλn−2k(λy)m(λx) if y ≥ x,

νλn−2m(λy)k(λx) if x > y

for some constant ν. Next recall that x−αIα is an even analytic function and that

Kα(x) =
π

2
I−α(x) − Iα(x)

sin(απ)
,

see [1, §9.6.1 p. 374]. Hence by the limiting absorption principle (that is Stone’s Theorem,
Chapter XIV, [34]) for all x ≤ y

KdE√L(λ)(x, y) =
iλ
π

(R(iλ)(x, y) − R(−iλ)(x, y))

= ν
iλ
2

x1−n/2y1−n/2In′/2−1(iλx)
I1−n′/2(iλy) − In′/2−1(iλy)

sin((n′/2 − 1)π)

−ν
iλ
2

x1−n/2y1−n/2In′/2−1(−iλx)
I1−n′/2(−iλy) − In′/2−1(−iλy)

sin((n′/2 − 1)π)
.

Recall next that x−αIα is an even analytic function so

In′/2−1(iλx)I1−n′/2(iλy) = In′/2−1(−iλx)I1−n′/2(−iλy)

and
In′/2−1(−iλx)In′/2−1(−iλy) = eiπ(n′−2)In′/2−1(iλx)In′/2−1(iλy).

Thus

KdE√L(λ)(x, y) = ν
iλ
2

x1−n/2y1−n/2(eiπ(n′−2) − 1
) In′/2−1(iλx)In′/2−1(iλy)

sin((n′/2 − 1)π)
= iνeiπ(n′/2−1)λx1−n/2y1−n/2In′/2−1(iλx)In′/2−1(iλy).(11.4)

We prove equality (11.4) under assumption that x ≤ y but similar argument shows that (11.4) holds
for all x and y. Now if we set `(x) = x−n/2+1In′/2−1(ix) then by (11.4)

(11.5) dE√L(λ) f (x) = Cλn−1`(λx)
∫ ∞

0
`(λy) f (y)yn−1dy

for some constant C. The function ` = `n,c(λ) for n > 2 satisfies the following estimates ([1, 72]):

|`(λ)| ≤

 λ
n′−n

2 if λ ≤ 1

λ
1−n

2 if 1 ≤ λ.
By (11.5)

KF(
√

L)(x, y) = C
∫ ∞

0
F(λ)`(λx)`(λy)λn−1dλ.

Let us prove our estimate (11.2). We consider only the case −(n − 2)2/4 < c < 0. The proof is
similar for the case c ≥ 0. For every B = B(xB, rB), one writes

F(
√

L)PB f (x) = C
∫ ∞

0

( ∫ ∞

0
F(λ)`(λx)`(λy)λn−1dλ

)
χB(y) f (y)yn−1dy.

Hence
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‖F(
√

L)PB f ‖22 = C
∫ ∞

0

∣∣∣∣ ∫ ∞

0

( ∫ ∞

0
F(λ)`(λx)`(λy)λn−1dλ

)
χB(y) f (y)yn−1dy

∣∣∣∣2xn−1dx

= C
∫ ∞

0

∣∣∣∣ ∫ ∞

0
`(λx)λn−1

∫ ∞

0
F(λ)`(λy)χB(y) f (y)yn−1dydλ

∣∣∣∣2xn−1dx.

Note that the following Plancherel type equality (see, e.g., [16, 24]) is satisfied∫ ∞

0

∣∣∣∣ ∫ ∞

0
F(λ)`(λx)λn−1dλ

∣∣∣∣2xn−1dx =

∫ ∞

0
|F(λ)|2λn−1dλ,

which yields

‖F(
√

L)PB f ‖22 = C
∫ ∞

0
|F(λ)|2

∣∣∣∣ ∫ ∞

0
`(λy)χB(y) f (y)yn−1dy

∣∣∣∣2λn−1dλ

≤ C
∫ ∞

0
|F(λ)|2‖`(λy)χB(y)‖2p′‖ f ‖

2
pλ

n−1dλ.

Case I: B = B(xB, rB) and xB ≤ 2rB. Hence

∥∥∥`(λy)χB

∥∥∥p′

p′
≤ C

∫ 3rB

0

∣∣∣`(λy)
∣∣∣p′yn−1dy

≤ C
∫ ∞

0

∣∣∣`(λy)
∣∣∣p′yn−1dy

≤ Cλ−n
∫ ∞

0

∣∣∣`(y)
∣∣∣p′yn−1dy

≤ Cλ−n

for all 2n/(n − 1) < p′ < p∗c = 2n/(n − n′) (For c ≥ 0 this condition should be replaced by
2n/(n − 1) < p′). Thus

‖F(
√

L)PB f ‖22 ≤ C
∫ ∞

0
|F(λ)|2λn−1− 2n

p′ dλ‖ f ‖2p

≤ CRn− 2n
p′ ‖δRF‖22‖ f ‖

2
p.

When xB ≤ 2rB, we have that V(B) ≈ rn
B and V(B)1/2−1/prn(1/p−1/2)

B ≈ 1. This gives

‖F(
√

L)χB f ‖22 ≤ CV(B)2( 1
2−

1
p )r

2n( 1
p−

1
2 )

B Rn− 2n
p′ ‖δRF‖22‖ f ‖

2
p

≤ CV(B)2( 1
2−

1
p )(RrB)2n( 1

p−
1
2 )
‖δRF‖22‖ f ‖

2
p.

This proves Case I.
Case II: B = B(xB, rB) and xB > 2rB. Then

‖`(λy)χB‖
p′

p′ ≤

∫ xB+rB

xB−rB

∣∣∣`(λy)
∣∣∣p′yn−1dy

≤ C
∫ xB+rB

xB−rB

(λy)
(1−n)p′

2 yn−1dy

≤ Cλp′ 1−n
2 rBxn−1+p′ 1−n

2
B .
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Hence

‖F(
√

L)PB f ‖22 ≤ C
∫ ∞

0
|F(λ)|2r

2
p′

B x2(n−1+
(1−n)p′

2 )/p′

B dλ‖ f ‖2p

≤ Cr
2
p′

B x
2(n−1)

p′ −n+1

B R‖δRF‖22‖ f ‖
2
p.

Note that if xB > 2rB then V(B) ≈ xn−1
B rB. Thus

‖F(
√

L)PB f ‖22 ≤ Cr
2
p′

B x
2(n−1)

p′ −n+1

B R‖δRF‖22‖ f ‖
2
p

≤ CV(B)2( 1
2−

1
p )(RrB)2n( 1

p−
1
2 )(RrB)1−2n( 1

p−
1
2 )
‖δRF‖22‖ f ‖

2
p

≤ CV(B)2( 1
2−

1
p )(RrB)2n( 1

p−
1
2 )
‖δRF‖22‖ f ‖

2
p

according to the condition RrB ≥ 1 and p′ > 2n/(n − 1). This proves Case II, and then the proof
of Proposition 11.1 is complete. �

Corollary 11.2. Suppose that n > 2 and −(n − 2)2/4 < c. For c < 0, set p ∈
(
(p∗c)′, 2n

n+1

)
where

p∗c = n/σ and σ = (n − 2)/2 −
√

(n − 2)2/4 + c and (p∗c)′ its conjugate exponent. For c ≥ 0, set
p ∈

[
1, 2n

n+1

)
. Then

(i) S δ(p)
R (L) is of weak-type (p, p) uniformly in R.

(ii) For any bounded Borel function F : [0,∞)→ C such that supt>0 ‖η δtF‖Wβ,2 < ∞ for some
β > max{n(1/p − 1/2), 1/2} and some non-trivial function η ∈ C∞c (0,∞), the operator
F(
√

L) is bounded on Lr(X) for all p < r < p′ with

‖F(
√

L)‖r→r ≤ Cβ

(
sup
t>0
‖η δtF‖Wβ,2 + |F(0)|

)
.

Proof. This result follows from Proposition 11.1 and Theorems 5.1, 4.1. �

Remark 11.3. Note that for the standard Laplacian ∆ on Rn Stein-Tomas estimate (Rp) holds if
and only if 1 ≤ p ≤ 2(n + 1)/(n + 3). Surprisingly, if n > 2 and −(n − 2)2/4 < c < 0, then the
restriction estimate (ST2

p,2) for the operator ∆n + c
r2 holds only for all p ∈ ((p∗c)′, 2n/(n + 1)) where

p∗c = n/σ and σ = (n − 2)/2 −
√

(n − 2)2/4 + c.

12. Examples of (1, 2)-restriction type conditions

In [24] the following Plancherel condition is introduced: for any R > 0 and all even Borel
functions F such that supp F ⊆ [0,R],

(12.1)
∫

X
|KF(

√
L)(x, y)|2dµ(x) ≤ CV(y,R−1)−1‖δRF‖2q

for some q ∈ [2,∞]. Note that for every x ∈ X and r ≥ 1/R,∥∥∥F(
√

L)PB(x,r) f
∥∥∥

2
≤

∥∥∥ ∫
X

KF(
√

L)(z,w)χB(x, r)(w) f (w)dµ(w)
∥∥∥

2

≤

∫
X

∥∥∥KF(
√

L)(·, w)
∥∥∥

2
χB(x, r)(w)| f (w)|dµ(w)

≤ C‖δRF‖q

∫
X

V(w,R−1)−1/2χB(x, r)(w)| f (w)|dµ(w)

≤ CV(x, r)−1/2(Rr)n/2‖δRF‖q‖ f ‖1,
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where in the last inequality we used the doubling condition (2.2). Therefore, for every x ∈ X and
r ≥ 1/R

(12.2) ‖F(
√

L)PB(x,r)‖1→2 ≤ CV(x, r)−1/2(Rr)n/2‖δRF‖q,

and so the condition (12.1) is just a slightly stronger version of condition (STq
1,2).

It was noted in [16, 23, 39] and used in context of spectral multipliers that condition (12.1) with
q = 2 holds for homogeneous sub-Laplacian acting on homogeneous Lie groups. Condition (12.1)
with q = 2 holds also for “quasi-homogeneous” subelliptic and elliptic operators (see [60]). As
we note, condition (12.1) is stronger than condition (ST2

1,2) so this implies the following result.

Proposition 12.1. Let L be a homogeneous sub-Laplacian or “quasi-homogeneous” operator
acting on homogeneous Lie group with homogeneous dimension d. Then the Riesz mean S (d−1)/2

R (L)
of order (d − 1)/2 is of weak-type (1, 1) uniformly in R.

Proof. Proposition 12.1 follows directly from Theorem 5.1. �

We believe that in this generality Proposition 12.1 is a new result. However in the case of
Heisenberg group it follows from the result obtained by Müller, Stein and Hebisch that the the
Riesz means of order δ > (de − 1)/2 is bounded on L1, where de < d is the topological dimension
of the Heisenberg group (see [53, 32]). Therefore it is likely that Proposition 12.1 is not a genuine
endpoint result.
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Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004. 2, 3

[69] T. Tao, Weak-type endpoint bounds for Riesz means. Proc. Amer. Math. Soc. 124 (1996), no. 9, 2797–2805.
1, 5, 27, 28, 29, 39

[70] S. Thangavelu, Lecture on Hermite and Laguerre expansions. Princeton Univ. Press, Princeton, NJ, 1993
(with a preface by Robert S. Strichartz). 1, 42

[71] P. Tomas, A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975), 477–478. 2
[72] C. J. Tranter, Bessel functions with some physical applications. Hart Publishing Co. Inc., New York, (1969).

44, 45
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