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RESTRICTION ESTIMATES, SHARP SPECTRAL MULTIPLIERS AND ENDPOINT

ESTIMATES FOR BOCHNER-RIESZ MEANS
PENG CHEN, EL MAATI OUHABAZ, ADAM SIKORA, AND LIXIN YAN

AssTtrACT. We consider abstract non-negative self-adjoint operators on L?(X) which satisfy the finite
speed propagation property for the corresponding wave equation. For such operators we introduce
a restriction type condition which in the case of the standard Laplace operator is equivalent to (p, 2)
restriction estimate of Stein and Tomas. Next we show that in the considered abstract setting our
restriction type condition implies sharp spectral multipliers and endpoint estimates for the Bochner-
Riesz summability. We also observe that this restriction estimate holds for operators satisfying
dispersive or Strichartz estimates. We obtain new spectral multiplier results for several second
order differential operators and recover some known results. Our examples include Schrédinger
operators with inverse square potentials on R", the harmonic oscillator, elliptic operators on compact
manifolds and Schrédinger operators on asymptotically conic manifolds.
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1. INTRODUCTION

A celebrated theorem of Hormander [38] for radial Fourier multipliers on the Euclidean space
states that for a given bounded function F : [0, 0) — C, the operator F(—A), initially defined by
Fourier analysis on L2(R"), extends to a bounded operator on L”(R") for all p € (1, c0) provided
the function satisfies
(1.1) sup [[n()F(t)lws2 < oo

>0

for some s > n/2. Here n € C°(0, o) is a non-trivial auxiliary function. This result is a sharp
version of the well known Mikhlin’s Fourier multiplier theorem [52]. These results have led to a
fruitful research activity on spectral multipliers and new perspectives in harmonic analysis. The
Hormander-Mikhlin theorem has been extended by several authors to other operators than the
Laplacian and settings that go beyond the Euclidean case. The bibliography is so broad that it is
impossible to provide complete list here. We refer the reader to [2, 12, 14, 15, 16, 17, 21, 24, 25,
26, 27, 28, 29, 32, 35, 37, 50, 53, 54, 56, 59, 60, 62, 64, 65, 67, 69, 70] and the references therein.

Suppose that X is a measure space and that L is a non-negative self-adjoint operator on L*(X).
Such an operator admits a spectral resolution £ (1) and for any bounded Borel function F': [0, c0) —
C, one can define the operator F(L)

(1.2) F(L) = foo FA)dEL(A).
0

By the spectral theorem, F(L) is well defined and bounded on L*(X). Spectral multiplier theorems
give sufficient conditions on F' under which the operator F(L) extends to a bounded operator
on L”(X) for some range of p.

Most of the references mentioned before deal with the case of sub-Laplacians on some Lie
groups. The papers [24, 25, 33] deal with a rather general situation where (X, d, u) is metric
measure space of homogeneous type (or even a domain of such space). One of the results there
is a spectral multiplier theorem under the sole assumption that the heat kernel of the operator has
a Gaussian upper bound. The condition there is however stronger than (1.1) in the sense that
the norm in W*? is replaced by the norm of W** where s is any constant larger than half of
homogeneous dimension. Condition (1.1) with norm W*? is better than the corresponding one
with norm W**. This can be seen from Bochner-Riesz summability which we discuss now.

The theory of spectral multipliers is related to and motivated by the study of convergence of
Bochner-Riesz means of self-adjoint operators. For any exponent § > 0 and a parameter R > 0 we
define the the function S%: R, — R by the formula

o
13 $501) = (1-4) for A<R
0 for 1> R

Then for any non-negative self-adjoint operator L we define the operator S%(L) using (1.2). We
call $9(L) the Riesz or the Bochner-Riesz means of order 6 corresponding to the operator L. The
basic question in the theory of Bochner-Riesz means is to establish the critical exponent for the
uniform continuity with respect to R and convergence of the Riesz means on L? spaces for various
pwith]l < p < co.

For 6 = 0, this is the spectral projector E ;[0, R], while for 6 > 0, Sfe(L) can be seen as
a smoothed version of this spectral projector. Bochner-Riesz summability describes the range
of ¢ for which the above operators are bounded on L”, uniformly in R. If one proves a spectral
multiplier result which states that F'(L) is bounded on L?(X) for all p € (1, o) whenever F satisfies
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n—1

(1.1), then the Bochner-Riesz mean S¢(L) is bounded on all L? spaces provided 6 > =

the case where L is the Euclidean Laplacian and 6 > % the kernel of S f?(L) is L' and hence

Bochner-Riesz means are bounded on L? for 1 < p < co. In this setting more is known. Indeed for

§ > max{n|i —1|-1, 0}, it was known for a long time that as a consequence of restriction estimates

2 p 2
for the Fourier transform, Bochner-Riesz summability holds on L? for all p < 2::2, and by duality

for p > % See Stein [67], p. 420. This was extended by Lee [46] to the case p < % (or

p > %) and recent improvements are proved by Bourgain and Guth [9]. The question whether
Bochner-Riesz summability holds on L7(R") for all p and all 6 > max{nll—l7 - % - %, 0} is a long-
standing open problem (except for n = 2, see Carleson and Sjolin [12] and Hormander [36]).
For all this, see Stein [67], p. 420 and the review paper of Tao [68]. The latter contains many
other information and relation of the Bochner-Riesz problem to other open problems in harmonic
analysis.

If L is a second order elliptic operator on a compact Riemannian manifold M with dimension

n, then the Bochner-Riesz means 3, z(1 = 4;/R)’ < -,e; > e; are uniformly bounded on L”(M)
provided p < % or by duality for p > % for o > max{nl%—% —%,0}. Here g < A; < Aj < ...
and e; are the corresponding eigenvalues and normalized L? eigenvectors, respectively. See Sogge
[62].

The theory of Fourier multipliers and Bochner-Riesz analysis in the setting of the standard
Laplace operator on R” is related to the so-called sphere restriction problem for the Fourier trans-

form: find the pairs (p, g) for which R; € L(LP(R"), LY(S"")) where R, is defined by
Rif(w) = f(Aw), w € S ,1> 0.

In

See for example [26, 28, 65, 67, 68]. For g = 2 the full description of possible range of p is due to
Stein and Tomas. The theorem of Tomas [71], extended by Stein to the endpoint, states that (p, 2)
restriction estimates hold if and only if 1 < p < 2(n + 1)/(n + 3). The case g # 2 is not relevant to
our discussion so we refer the interested reader to Tao [68] on the subject.

Note that on R", the Schwartz kernel of the spectral measure dE ;—3(1) of V-A is given by

n—1

Qnyr

dE (2,7 = f D dy, 7,7 € R,
Snfl

therefore dE —5(1) = %R;R 1 and the restriction theorem for g = 2 is equivalent to

(4 IdE —(Dllymy < CA"/P71!

for all p € [1, 2;:32]. In the sequel, we refer to (1.4) as (p, 2) restriction estimate of Stein-Tomas.

In this paper we follow the line of research described above. We deal with the problem of sharp
spectral multipliers and Bochner-Riesz summability for other operators than the Euclidean Lapla-
cian and elliptic operators on compact manifolds. Our aim is to build a theory which applies in
a general setting of self-adjoint operators on spaces of homogeneous type (i.e., metric measure
spaces which satisfy the volume doubling property). Our approach allows us to prove sharp mul-
tiplier results and Bochner-Riesz summability in new settings and also unifies several previously
known results. In order to do so we introduce a restriction type estimate which in the case of the
Laplacian on R” turns to be equivalent to the (p, 2) restriction estimate of Stein-Tomas.

Our setting will be the following. We consider a non-negative self-adjoint operator L on L*(X)
where (X, d, 1) 1s a metric measure space which satisfies the volume doubling condition

Vx,Ar) < CA"V(x,r) Yxe X, A>1,r>0,
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where C and n are positive constants and V(x, r) denotes the volume of the open ball B(x,r)
of centre x and radius ». We assume that L satisfies the finite speed propagation property for
the corresponding wave equation. We introduce the condition that for any R > 0 and all Borel
functions F supported in [0, R],

(ST, |F(VLD) Py

forall x e Xandall » > 1/R.
We will see that if the volume is polynomial, i.e. V(x, r) ~ ", then (STIZ)’Z) is equivalent to (p, 2)

< OV ) H R FR),

p—)S

restriction estimate of Stein-Tomas. For this reason, we call (STE,S) a Stein-Tomas restriction type
condition. One of our main results on sharp spectral multipliers can be stated as follows.

Theorem A. Assume that X satisfies the volume doubling condition. Suppose that L is a non-
negative self-adjoint operator which satisfies the finite speed propagation property and condition
(STy) for some p, s,q such that 1 < p < s <coand 1 < g < oo.

(i) Compactly supported multipliers: Let F be an even function such that supp F C [—1, 1]
and F € WP4(R) for some B> n(1/p —1/s). Then F( VL) is bounded on L(X), and

sup [|F(t VL)|l,—p < CIFllysq.

>0
(i) General multipliers: Suppose s = 2 and F is a bounded Borel function such that es-
timates sup,. |[n(-)F(t-)|lwss < oo hold for some > max{n(1/p — 1/2),1/q} and some
non-trivial function n € C(0, o). Then F( VL) is bounded on L'(X) forall p < r < p’. In
addition,
VD < Cof sup IO F (s +F(O)).
>

Assertion (i) of the theorem is inspired by Guillarmou, Hassell and Sikora [29] where a related
result is proved under the assumption that the volume is polynomial. Assertion (ii) is in the spirit
of Hormander’s multiplier theorem for the Euclidean Laplacian. Here, if p > 1, the order of
differentiability required on F is smaller since we do not search for boundedness of F( VL) on L”
for all r € (1, o).

The proof of assertion (i) makes heavy use of the finite speed propagation property. This prop-
erty together with the classical dyadic decomposition of F' allow to reduce the problem of bound-
edness of F(VL) on L” to boundedness of certain compactly supported operators. The Stein-
Tomas restriction type condition will be used to obtain an L” — L* estimate of these operators from
which we recover the boundedness of F/( \/Z) on L”.

Assertion (ii) appeals as expected to singular integral theory. We shall also make use of the
estimate from assertion (i) since F( VL) can be written as the sum 2 Fi( VL) with compactly
supported functions F;. However the operators F( VL) do not act independently of each other
and hence L? estimate for F( VL) does not hold in a trivial way from the corresponding estimates
for F( \/Z). As explained by Littman, McCarthy and Riviere [48], we may have F;( M) to be
uniformly bounded on L'(R") but F( V=A) fails to be a multiplier of any L? other than L?. This
problem of recovering L” bounds for F( V—=A) from those for F i( V-A) is discussed by Carbery,
Seeger and Sogge in [11, 58, 59]. We shall follow closely Carbery [11] and adapt some ideas there
to our abstract setting.

Our restriction type estimate does not hold when the point spectrum of the operator is not empty.
In particular, it does not hold for elliptic operators on compact manifolds or for the harmonic
oscillator. In order to treat these situations as well we modify the restriction estimate as follows:
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for a fixed natural number « and for all N € N and all even Borel functions F such that supp F C
[_N’ N] )

(SCp) |F(VD) Py
for all x € X and all » > 1/N where

1_1

11 n(l_1
< CV(x, 1) P (Nr)" | F (N Ins. g5

p—)S

N 1/q

- F/lq
o 2 S IFQ)

t=1-N €[5 . 5)

IFllng =

for F supported in [—1,1]. For g = oo, we put [|[F|lye = ||F|lw. The norm ||F||y, was used by
Cowling and Sikora [21] and Duong, Ouhabaz and Sikora [24] in the context of spectral multipli-
ers.

In some situations, (SCié) is equivalent to the following condition introduced by Sogge (see
[62, 63, 64])

(Sp) |E b a+ D[, < ca+aye

We call (SCp) Sogge’s spectral cluster condition. In this context we shall prove the following
result (see Theorems 3.6 and 4.2 for precise statements).

Theorem B. Suppose that X has finite measure and satisfies the volume doubling condition. Let L
be a non-negative self-adjoint operator which satisfies the finite speed propagation property and
Sogge’s spectral cluster condition (chji)for some p, s,qsuchthatl < p<s<ooandl < q < co.
Then both assertions of Theorem A hold provided > max{n(1/p — 1/s),1/q}.

The same conclusion holds in the case where u(X) = oo provided (SCSZS) and an a priori esti-

mate for ||F( \/Z)IIP_U, are satisfied.

As for Theorem A, an appropriate decomposition of F( VL) as the sum of operators with com-
pact supports is the backbone of our arguments in proving boundedness of F(VL) on L? for
compactly supported F. Passing from compactly supported multipliers to the general case will
be done in the same way as for Theorem A. The proof of this part does not make explicit use of
(STg’z) or (SCS:';) but the rather weaker condition

r

n(5-%)
[+ e VD) M Pye|| _, < CV(x, 0> (;) "L xex. rze>0.

p—2

Starting now from Theorem A or Theorem B with s = 2 and choosing the function F = §§
yields Bochner-Riesz summability on L”(X) for 6 > 6,(p) where

04(p) = max {O,n'll) —=|=--1

Now we address the question of endpoint estimates, i.e., estimate for SéRq(p )(L). It turns out that
our Stein-Tomas restriction type condition or Sogge’s cluster condition imply that Bochner-Riesz
means are weak-type (p, p) operators for 6 = 6,(p). More precisely we obtain

Theorem C. Assume that X satisfies the doubling condition and operator L satisfies the finite
speed propagation property.
(1) If the restriction condition (STg’z) holds for some p, q satisfying 1 < p<2and1 < q<
then S Zq(p )(L) is of weak-type (p, p) uniformly in R.
(i1) The same conclusion as in (i) holds if u(X) < oo and (SCE:;) is satisfied for some p,q
satisfying 1 < p <2and1 < g < co.
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In the Euclidean case, it is known that Sf;(p )(—A) is not bounded on L?(R") for p # 2. This was
observed by Christ and Sogge [17] who also proved weak-type (1, 1) for S f;(l)(—A). Weak-type

(p, p) estimates of §3*”(~A) are proved by Christ [14, 15] when p < 22,
result on compact manifolds is proved by Seeger [57]. The endpoint estimates for p =
proved by Tao [69] both for R” and compact manifolds.

Our approach for endpoint estimates is inspired by Christ and Tao [14, 15, 69]. It is based
on L? Calder6n-Zygmund techniques (as used in Fefferman [26]), a spacial decomposition of the
Bochner-Riesz multiplier and the fact that if F has its inverse Fourier transform supported on a
set of width R, then by the finite speed propagation property the operator F( VL) is supported in a
CR— neighbourhood of the diagonal. It is worth to note that our proof of endpoint estimates does
not require any cancellation argument. This allows us to consider applications to operators with
non-smooth kernels.

The previous theorems are proved in Part 1 of this paper. In Part 2, we investigate the relation
of (STg’z) to dispersive or Strichartz estimates for the corresponding Schrédinger equation

The corresponding

2n+2
n+3 are

(1.5) A+ iLu =0, u(0) = f e L*

In the setting of Euclidean Laplacian, Strichartz’s original proof for L7(R X R") estimates of the
solution u of (1.5) uses restriction estimates of the Fourier transform. In some sense we want to
do the converse here, we want to take advantage of known dispersive or Strichartz estimates for
(1.5) to prove a Stein-Tomas restriction type condition and then obtain sharp spectral multipliers
by Theorem A. We are able do this either using directly dispersive estimates for ¢~ or endpoint
Strichartz estimates. We prove the following result.

Theorem D.

(1) Suppose that L satisfies the Strichartz estimate

f”eith”zznzdt < C”f”%, f er’
R "

for some n > 2. Assume also that the smoothing property

nel__n+2

lexp(—tL)ll,, 2 < Kr™2'%7 20,

holds for all p € [1,2%). Then for all A > 0

n+2
||dE\/Z(/l)||p—>p/ < C/ln(%_i)_l_

(1) Fix p € [1, n%]. Suppose that X satisfies the doubling condition and that there exists a
positive constants C > 0 such that V(x,r) < Cr" for every x € X and r > 0. Assume that
L satisfies the finite speed propagation property together with Strichartz and smoothing
estimates as in (1). Then for every even compactly supported bounded function F such that
||F|lws2 < oo for some 8 > n(% - %), the operator F( \/Z) is bounded on L? and

sup [|F (¢ VDIl < CIIF|lys2.
>0
(iii) Suppose that the conditions of (ii) are satisfied. Then for any bounded Borel function F
such that sup,. [In()F(t)|lws2 < oo for some f > max{n(1/p — 1/2),1/2} and some non-
trivial function n € C°(0, ), the operator F( \/Z) is bounded on L' (X) for all r € (p, p’).
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The main assertion here is (i). Indeed, once (i) is proved we obtain a Stein-Tomas restriction
type estimate and then appeal to Theorem A to prove assertions (ii) and (iii). We can also replace
the Strichartz estimates by dispersive estimates

le™ im0 < Clt|™?,  teR, t#0.

Note that by a result of Keel and Tao [42], endpoint Strichartz estimates follow from these disper-
sive estimates.

Strichartz estimates have been studied by several authors. For example, Burq, Planchon, Stalker
and A. Tahvildar-Zadeh [10] proved such estimates for Schrodinger operators with inverse square
potentials, i.e. L = —A+ # on R". Therefore we obtain sharp multiplier results as well as endpoint

Bochner-Riesz estimates for these operators. It is worth to mention that if —(n — 2)?/4 < ¢ < 0,
the semigroup exp(—tL) acts on L”(R") only for p € (p., p.) with p. < oco. In particular, the
corresponding heat kernel does not enjoy any good upper bounds such as Gaussian upper bounds.
Nevertheless we obtain sharp spectral multipliers for L on L? for p € (p.,2n/(n + 2)]. We discuss
in Part 3 several other examples to which Theorems A, B, C and D apply. This includes radial
Schrodinger operators with inverse square potentials, the harmonic oscillator, elliptic operators on
compact manifolds, Laplacian on asymptotically conic manifolds.

While this paper was finished we learned that in the recent PhD Thesis of M. Uhl [73] and
later in [45] a condition similar to our restriction type condition was introduced and a spectral
multiplier result similar to our Theorems 4.1 and 4.2 is proved. The order of differentiability
required in Uhl’s Thesis is 8 > n/2 and hence it is less sharp than our Theorems 4.1 and 4.2. The
result from [73] was improved in [45].

Part 1. Restriction estimates imply sharp spectral multipliers

2. RESTRICTION TYPE CONDITION

We start by fixing some notation and assumptions. Throughout this paper, unless we mention
the contrary, (X, d, u) is a metric measure space, that is, u is a Borel measure with respect to the
topology defined by the metric d. We denote by B(x,r) = {y € X, d(x,y) < r} the open ball
with centre x € X and radius r > 0. We often just use B instead of B(x,r). Given 4 > 0, we
write AB for the A-dilated ball which is the ball with the same centre as B and radius Ar. We set
V(x,r) = u(B(x, r)) the volume of B(x,r) and we say that (X, d, i) satisfies the doubling property
(see Chapter 3, [18]) if there exists a constant C > 0 such that

2.1 V(x,2r) <CV(x,r) ¥Yr>0,xeX
If this is the case, there exist C, n such that forallA > 1and x € X
2.2) V(x,Ar) < CA"V(x,r).

In the sequel we want to consider n as small as possible. Note that in general one cannot take
infimum over such exponents 7 in (2.2). In the Euclidean space with Lebesgue measure, n cor-
responds to the dimension of the space. Observe that if X satisfies (2.1) and has finite measure
then it has finite diameter (see, e.g., [3]). Therefore if u(X) is finite, then we may assume that
X = B(xp, 1) for some x; € X.

For 1 < p < +oo, we denote the norm of a function f € L”(X,du) by ||fll,, by (.,.) the
scalar product of L*(X,du), and if T is a bounded linear operator from LP(X,du) to LI(X,du),
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1 < p, g < +oo, we write ||T||,—, for the operator norm of T'. Given a subset E C X, we denote by
xk the characteristic function of E and set

Pef(x) = xe(x)f(x).

For a given function F : R — C and R > 0, we define the function 6zxF : R — C by putting
0rF(x) = F(Rx). For F € L*(R), the Fourier transform of F is given by

— 1 00 .
F(t) = — f F(De " da.
21 J)_

Finally, C denotes a generic constant, not necessarily the same at each occurrence, which, in the
course of a proof, may be taken to depend on any of the quantities assumed to be bounded.

2.1. Finite speed propagation for the wave equation. Set

D, ={(x,y) € XXX :d(x,y) <p}
Given an operator T from L?(X) to LY(X), we write
2.3) suppKr € D,

if (T f1, f2) = 0 whenever f; is in C(X) and has support supp fy € B(xi,px) when k = 1,2, and
p1+ 02+ p < d(xy,x;). Note that if T is an integral operator with a kernel K7, then (2.3) coincides
with the standard meaning of supp K C D, that is K7(x, y) = 0 for all (x, y) € D,

Given a non-negative self-adjoint operator L on L?(X). We say that L satisfies the finite speed
propagation property if

(FS) suppKo;vpy €D:r V1> 0.

Property (FS) holds for most of second order self-adjoint operators and is equivalent to Davies-
Gaffney estimates. See, for example [13], [61] and [19].
We recall the following well-known simple lemma.

Lemma 2.1. Assume that L satisfies (FS) and that F is an even bounded Borel function with
Fourier transform F € L'(R) and that suppF' C [—p, p]. Then

suppK vz, € Dp.

Proof. If F is an even function, then by the Fourier inversion formula,

1 e
F(VL) = o f F(t)cos(t VL) dt.
T J-co
But suppﬁ C [—p, p], and the lemma follows then from (FS). O

2.2. The Stein-Tomas restriction type condition. Assume that (X, d, i) satisfies the doubling
condition, that is (2.2). Consider a non-negative self-adjoint operator L and numbers p, s and g
suchthat 1 < p < s <ooand 1 < g < co. We say that L satisfies the Stein-Tomas restriction type
condition if: for any R > 0 and all Borel functions F such that supp F' C [0, R],

(ST}) [FVDPsc ... < Vi F R
forall x e Xand all r > 1/R.

Remark 2.2. Note that if condition (STE,S) holds for some g € [1, 00), then (STg,S) holds for all
g > q including the case § = oo.

sl

p—)

Proposition 2.3. Suppose that (X, d, ) satisfies property (2.2). Let 1 < p <2and N > n(1/p -
1/2). Then (ST;’Z) is equivalent to each of the following conditions:
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(@) Forall x e X and r > t > 0 we have

ryn(t-1)
<CV(x,r)%—%(—) Y
t

p—o2 —

(Gp) ||€_t2LP B(x,r)

(b) Forall x e X andr > t > 0 we have

(Ep,2) ||(I + l\/Z)_NPB(x,r)

<CV 5 (2 A
zevnt (7
Proof. We shall show that (E;,) = (ST;?Z) = (Gpo) = (Epo).
Suppose that F is a Borel function with suppF C [O,R]. Let 1 < p<2and N > n(1/p —1/2).
It follows from (E,») that for every x € X and r > 1/R,

VL VL. _
IFCVDPscnllpsz = [IFCVDT + =)+ =) P,
N VL, _y
< sgp|F(/1)(1 +2) | || + =) P,
< C2VV(x, 1T (RO 6pF Lo,
This gives condition (ST;’Z).
Next assume (ST;‘;Z). Then
He_tzLP B(x.r) = ‘ f e “AdEL ()P B(x.r)
po2 0 p—2
= ‘f tze_tZ/lEL[O, /l]PB(x,r)d/l
0 p—2
< 2 1A
< j(; t'e HX[O’ ﬁ]( \/Z)PB(XJ) s daA.

Now if 0 < A < 1/r?, then B(x, r) C B(x, 17'/?). Therefore, by (ST})

D10, v € VL)P Boellp—2

IA

I 10, vy VL)P B 12)llp—2
< CV(X, /1_1/2)%_% < CV(x, r)

_1
p-

D=

If A > 1/7%, then by (ST,

o i VD Paenllp < CV(x DF5(rA 267,
This proves (Gp2).
To finish the proof assume that (G, ) holds. Then

|+ VD)™ Pyipllpmn < ||+ 2N + e NDY VI + 2LV Py

p—2

IA

sup [(1+ 2221+ )™ - ||( + L) F Pace|
A

IA

|| + 2L Py

p—2°
Next note that for # > 0

||(I + Z2L)_N/2PB(XJ)

© _ _ o2
CN f e ‘YSN/Z 16 St LPB(x,r)dS
0

—2
P p—2
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(2.4)

IA

00
—s N/2-1 || -st’L
CNf e s He PB(x,r)
0

ds.
2

[)—)

Hence if s < r?/#, then by (G,2)

) 1_1 r 1.1
||€ St LPB(x,r)llp—>2 < CV(X, }")2 p(tST/z)n(p 2).

If s > r?/1%, then B(x, r) C B(x, s'/?) and (G,,) implies that
e P plly < lle™ HPyermllpon < CV(x, 151770 < CVi(x, 1),
Using these estimates in (2.4) yields (E,,) for N > n(1/p — 1/2). This ends the proof. |

It is natural to generalise condition (1.4) to abstract self-adjoint operators in the following way
(see [29]). One says that L satisfies L? to L” restriction estimates if the spectral measure dE Vi)
maps LP(X) to L” (X) for some p < 2, with an operator norm estimate

(R,) leE (), < cxe !
for all A > 0, where n is as in condition (2.2) and p’ is conjugate of p,i.e., I/p+1/p" = 1.
Proposition 2.4. Fix 1 < p < 2n/(n+ 1). Suppose that there exists a constant C > 0 such that

C'r" < V(x,r) < Cr' for all x € X and r > 0. Then conditions (R,), (STg’z) and (STIl)’p,) are
equivalent.

Proof. The proof is inspired by estimates (2.12) of [29]. We first show the implication (R,) =
(STII)’p,). Suppose that F is a Borel function such that supp F C [0, R] for some R > 0. Then by

(Ryp)

|F(VD) Py

p=p

f IFDIIAE (D), pd2
0

IA

§ (=71
C f |[F()IA™ ™7~ dA
0

IA

R
CR"» ) f IF()|dA
0

1

CV(x, )7 7 (rR)" 7 7 ||5x Fl1,

IA

where in the last inequality we used the assumption that V(x,r) < Cr".
Next we prove that (ST:)’p,) = (ST5,2)~ Note that V(x, r) ~ 7" for every x € X and r > 0. Letting

r — oo we obtain from (ST;’p,)

IFCVD)| ., < CRG™ 76l

By T*T argument

|FVD ., = IFPVD,.,, < CRMPliseF .
Hence
IFVDPoen|,, < |FOVD),_, < CVG 1T FRA™ )0k F .

This gives (STz,z)'
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Now, we prove the remaining implication (ST;Z) = (R,). By volume estimate V(x,r) > C™'r"
and condition (ST;Z)

(2.5) |F(VD) Py, < CR"2||6xF|),

po2

for any R > 0, all Borel functions F such that supp F c [0, R], all x € X and r > 1/R. Taking the
limit r — oo gives

(2.6) IFCVD)|,_, < CR'G2||oxF .
For F' = y(1—ea+e) and R = A + £1n (2.6) yields

2
—1 _ -1 _
T [ R

p=p
< Ce A+ o ey
< CA+e) .
Taking £ — 0 yields condition (R;) (see Proposition 1, Section 5, Chapter XI, [74]). O

3. SHARP SPECTRAL MULTIPLIERS - COMPACTLY SUPPORTED FUNCTIONS

In this section we show that the restriction type condition which we introduce in the previous
section can be used to obtain sharp spectral multiplier results in the abstract setting of self-adjoint
operators acting on homogeneous spaces. We first consider the case of compactly supported func-
tions. We assume here that (X, d, ) is a metric measure space satisfying the doubling property and
recall that 7 is the doubling dimension from condition (2.2). We use the standard notation W#4(R)
for the Sobolev space ||Fllwes = (I — d*/dx*)P*F||,. The first result and its proof are inspired by
Theorem 1.1 of [29].

Theorem 3.1. Suppose that operator L satisfies property (FS) and condition (STS,S) for some
p,S,qsuchthat 1 < p <s<ooand1 < q < co. Next assume that F is an even function such that
suppF C [-1,1] and F € WP4(R) for some B > n(1/p — 1/s). Then F(t \/Z) is bounded on LP(X)
forallt > 0. In addition,

3.1) sup [ (1 VD)llpop < ClIFllysa.
>

We describe the proof of Theorem 3.1 at the end of this section.

A standard application of spectral multiplier theorems is Bochner-Riesz means. Such appli-
cation is also a good test to check if the considered multiplier result is sharp. Let us recall that
Bochner-Riesz means of order ¢ for a non-negative self-adjoint operator L are defined by the
formula

L
3.2) SHL) = (I - ﬁ)i R>0.

The case 6 = 0 corresponds to the spectral projector E;[0, R]. For 6 > 0 we think of (3.2) as
a smoothed version of this spectral projector; the larger 6, the more smoothing. Bochner-Riesz
summability on L? describes the range of ¢ for which S%(L) are bounded on L”, uniformly in R.

In Theorem 3.1, if one chooses F(1) = (1 — A%)] then F € W4 if and only if 6 > 8 — 1/q.
Therefore, we obtain
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Corollary 3.2. Suppose that the operator L satisfies the finite speed propagation property (FS)
and condition (STg,S) withsome 1l < p < s<ooand1 < q < co. Thenforall 6 > n(1/p—1/s)—1/g,
we have

L\s
(3.3) (- =)

+

<C

p—op

uniformly in R > 0.

As a consequence, we obtain the following necessary condition for the restriction condition
(ST;S) (see also Kenig, Stanton and Tomas [43]).

Corollary 3.3. Suppose that 1/q > n(1/p — 1/s) for some g > 1 and 1 < p < s < co. Then
condition (STS,S) implies that L = 0.

Proof. Note that if 1/g > n(1/p — 1/s) forsome ¢ > 1 and 1 < p < s < oo, then there exist
5 < 0and & > 0 such that S%(12) = (1 - A%)2 € W'~ %4, By Theorem 3.1, the operator S%(L) is
bounded on L”(X) uniformly in R, i.e., ||S fe(L)II p—p < C < oo for some constant C > 0 independent
of R. However, S 2(L) is a self-adjoint operator, so ||S 2(L)||p,_>p/ < oo, and by interpolation,
IS%(D)llasa < o0. Set M = 1 + [ISS(L)|lh—>. Next note that if 1 € (R*(1 — M'%), R?] then
§%(1) > M so by spectral theorem E;(R*(1 — M'°), R*] = 0. Because R is arbitrary positive
number, this implies that L = 0. O

Remark 3.4. Note that condition (STg’S) allows to define the operator S f?(L) even when 6 < 0 in
which case the function A — S%(A?) is unbounded.

We return to the discussion of Bochner-Riesz analysis in Section 5 and we now discuss a dis-
crete version of Theorem 3.1.

It is not difficult to see that condition (ST} ) with some ¢ < oo implies that the point spectrum
of L is empty. Indeed, one has for all 0 <a < Rand x € X,

|| 1 {a}( \/Z)PB(x,r)

1_1

<OV, r)%—%(rR)"%—?)Hn{a}(R-)||q =0, Rr>1

p—
and therefore 1 ,( VL) = 0. Due to o-(L) C [0, =), it follows that the point spectrum of L is empty.
In particular, (ST, ) cannot hold for any g < co for elliptic operators on compact manifolds or for
the harmonic oscillator. To be able to study these operators as well, we introduce a variation of
condition (STg’S). Following [21, 24], for an even Borel function F' with suppF C [-1,1] we
define the norm ||F||y,, by

N 1/q
sup [F(DI7|

(=1-N A€l5 %)

Pl - 1
IFllng = N
where g € [1,00) and N € N. For g = oo, we put || F||y,c = ||F|l. It is obvious that ||F||y, increases
monotonically in g.

Consider a non-negative self-adjoint operator L and numbers p, s and g suchthat 1 < p < s < 00
and 1 < g < co. We shall say that L satisfies the Sogge spectral cluster condition if: for a fixed
natural number « and for all N € N and all even Borel functions F such that supp F C [-N, N],

K 1_1 (L 1
(SCp0) IF(VDPser| < CVE, 1) 2 (NP6 Flle, 4

p—)S

for all x € X and r > 1/N. For g = oo, (SC¥") is independent of « so we write it as (SC}).
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Remark 3.5. It is easy to check that for k > 1, (Sngg) implies (ch:i).

Theorem 3.6. Suppose the operator L satisfies property (FS) and condition (chﬁ) for a fixed
k € N and some p, s,q suchthat 1 < p < s < o0 and 1 < g < co. In addition, we assume that for
any € > 0 there exists a constant C, such that for all N € N and all even Borel functions H such
that supp H C [-N, N],

K kn(L-1yig
(ABy") H(VDlyp < CaN"5™ 5|6 Hllye .
Then for any even function F such that supp F' C [—1, 1] and ||F||wss < oo for some 8 > max{n(1/p—
1/s),1/q}, the operator F(t \/Z) is bounded on LP(X) for all t > 0. In addition

sup |F(t VL)l -, < C|F|lysa-

>0

Note that condition (SCE:’Q) is weaker than (STE,S) and we need a priori estimate (ABg’K) in
Theorem 3.6. See also [21, Theorem 3.6] and [24, Theorem 3.2] for related results. Once (SCS:'Q)
is proved, a priori estimate (AB*) is not difficult to check in general, see for example the section
on the harmonic oscillator.

Following [24], we prove the following result.

Proposition 3.7. Suppose that u(X) < oo and (SCg:i) for some p,s,q such that1 < p < s < o0
and 1 < g < co. Then

1_1
IF(VD)ll,—p < CN"G|I6xFllvg

for all N € N and all Borel functions F such that supp F C [N, N). Therefore, for any even
function F such that supp F C [-1, 1] and ||F||lwss < oo for some > max{n(1/p —1/s),1/q}, the
operator F(t \/Z) is bounded on LP(X) for all t > 0 and

sup [|F(t VD)||p—p < ClIFllyea.

>0

Proof. Since u(X) < oo, we may assume that X = B(x, 1) for some xy € X (see [3]). It follows
from Holder’s inequality and condition (SCE::) that

1_1
IF(VD)llpep < () IF(VL)Paieyi)llpss
1_1 1_1 el 1
< CuX)r 5 u(X)s TN~ |I68 Fllw.o
< CN"G |5 F Iy

This means that (ABg’l) is satisfied and thus the last assertion follows from Theorem 3.6. This
proves Proposition 3.7. O

The proof of Theorems 3.1 and 3.6 uses the following lemma. In the case where the volume is
polynomial this lemma is proved in [29] using a similar argument.

Lemma 3.8. Suppose that T is a linear map such that for all x € X and r > 0 the operator T P
is bounded from LP(X) to L*(X) for some 1 < p < s < co. Assume also that

suppKr € D,

for some p > 0. Then there exists a constant C = C, ; such that

1_1
||T||17—>17 < CSUp{V(x,p)P S”TPB(x,p)”pax}-
xeX
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Proof. We fix p > 0. Then we choose a sequence (x,) € X such that d(x;, x;) > p/10 for i # j
and sup,.y inf; d(x, x;) < p/10. Such sequence exists because X is separable. Second we let
B; = B(x;,p) and define B; by the formula

AN
B’_B(x“lo)\gB(xf’lo)’

where B(x,p) = {y € X: d(x,y) < p}. Third we put y; = Xg,» Where yz is the characteristic
function of the set E,-. Note that for i # j B(x;, %) N B(x;, %) = (). Hence

V(x, (2 + £)0)

> < C41" < oo,
V(xa %)

K =sup#{j: d(x;,x;) <2p} < sup
It is not difficult to see that L
Dp C U B; x B] - 1)4/)
{i,j: d(xi,xj)<2p}
SO
Tf= > PsTPyf.
i,j: d(xi,x))<2p
Hence by Holder’s inequality

AR =1 > PRTPgflb=>1 >, PgTPzfIL

i,j: d(xi,xj)<2p i Jid(xi,xj)<2p
-1
<CK™' Y Y IPRTPy Sl

i jid(xixj)<2p
—1 B ap(i-1
<CK"' Y > B IIPE TPy fII
i jid(xixj)<2p
1

< CK? ) u(B)Y'r I Py fII
J

1_1

< CK? )" u(B)"5~ TPy Il 1P5 £
J

xeX

1_1
< CK” sup (V(x, oY 7 T Py} Y 1P £
J

1_1
= CK” sup {V(x, 0)"7™9|IT P pyllb - MIFIIE.
xeX

This finishes the proof of Lemma 3.8. m|
Proof of Theorem 3.1. Let 7 € C°(R) be even and such that suppn C {¢: 1/4 < |¢] < 1} and
don@ty=1 va>o.

leZ
Then we set 17p(1) = 1 — Yoo n(27),

(3.4) FOQ) = % f - 1n0(t)E (¢) cos(tA) dt

(%Y

and

(3.5) FOQ) = %r f ” N2~ O F (f) cos(td) dt.

(o9
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Note that in virtue of the Fourier inversion formula
F() =) FOW)
=0
and by Lemma 2.1
supp Kro,vi C Doy
Now by Lemma 3.8

|Fa V)|

IA

> FOavD)

>0

(3.6) < € ) sup (Ve 207 [FOCVD Py ||, )

>0 xeX

p—=p p—=p

Since F is not compactly supported we choose a function ¢ € C(—4,4) such that (1) = 1 for
A € (-2, 2) and note that

||F(€)(t \/Z)PB(x,Z‘t)”pﬂ

(3.7) < [JWFOYEVD Py, + (1 = FOYEVD Py,

p—)S

To estimate the norm [[(WF©)(t VL)Pp, 20l,—s» We use condition (STj;) and the fact that y €
C.(-4,4) to obtain

||(l//F(€))(t \/Z)PB(X’QZI)”‘D—M“ < CV(X, 26[)»]7?_1172571(%_%)”541‘_1 (l//F(f))(t)”q

for all # > 0. Hence

1_1 (L1
Z SU)I{) {V(X, 2[l)1’ s |(¢/F([))(l' \/Z)PB(X’zlt)”p—m} < CZ 25 (F f)||54t—l(lﬁF(€))(l‘)||q
>0 *€ £>0
Il 1
(3.8) < €Y 2"GTIFO),
>0
= C||F||BZ(1%7%)’

where the last equality follows from definition of Besov space. See, e.g., [5, Chap. VI ]. Recall
also that if 8 > n(1/p — 1/s) then WA C Bg(ll/p_l/s) and ||F| gsp-119 < CgllFllwsa, see again [S].
: o~
Hence the forgoing estimates give
11
(3.9) Z sup (V(x, 207 || FO) e «/E)PB(X,ZZ,)”H} < C||Flwea.
>0 *€

Next we show bounds for ||((1 —Y)FO)t \/Z)PB(X’zft)”p_)S. Since the function 1 — is supported

outside the interval (-2, 2), we can choose a function ¢ € C.°(2, 8) such that
L=y + ) $Q D) =y + ) ) ¥a>0.
k=0 k=0

Hence

(A= YFO)D) = > (BFO))  ¥a>0.

=0
It follows from the implication (STE,S) = (STy) that

< Z ||(¢kF(€))(t \/Z)PB(x,zft)||

k>0

(1 = ) FOYE VL) Pyions |

pos p—s
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< CZ V(.x, 2[[)%_%2’1([“()(%_%)
k>0

Sores -1 (B F )| -

Note that supp F' € [—1, 1], supp¢ C [2, 8] and 7 is in the Schwartz class so
e FO|, = 2°||pu(F % 62e)|| , < C27MERYFY,
and similarly, ||¢kF (O’Hm < C27MX||F||,. Therefore

||((1 _ w)F(t’))(t \/Z)PB(x,Z[t)”p_)s < C Z V(x, 2%)%—%2n(€+k)(;—%)2—M(t’+k)“F”q
k=0
(3.10) < CV(x, 20 720G M By,
Hence
11 a(L_1y_

Z sup {V(x, 2[1‘)” 5 ||((1 - l//)F([))(I \/Z)PB(x,th)||p_,s} < C Z 2 tn(;=5) M)HF”q

>0 X =0
(3.11) < C|IFllg.
Now estimate (3.1) follows from (3.11), (3.6), (3.7) and (3.9). This completes the proof of Theo-
rem 3.1. o
Proof of Theorem 3.6.

Case (1).t > 1/4.
If t > 1/4 then supp6,F C [—4,4]. By (AB"),
IFEVDllpsp < C4"0 I N64(F(t))llarg < ClIF o
Recall that if 8 > 1/g, then WA4(R) € L*(R) N C(R) and ||Flles < CI|F]lweq. Hence
sup [IF(t VD)llyop < ClIFllco < CIIFIlysa.

>1/4

Case (2). t < 1/4.

Let £ € C* be an even function such that suppé& < [~1,1], £0) = 1 and £P(0) = 0 for all
1 <k < [B]+2. Write &yt = N<1E(N*1) where N = 8[¢+~'] + 1 and [¢™'] denotes the integer part
of t~!. Following [21] we write

F(t VL) = (6,F — &yt % 6,F)(VL) + (€1 * 8, F)(VL).
We first prove that
(3.12) (6 F = &yer % 6, F)(VD)lpmp < CIIF llyea-
Observe that supp (6,F — &yt * 6,F) C [-N, N]. We apply (AB}*) to obtain

(3.13)  |(8,F = &yer % 6,F)(VD)|l,osp < CN"G 9%

Sn(0,F — Exwer % 6,F)

N¥gq"
Everything then boils down to estimating || - [|y«, norm of Sy(6,F — &yt * 6,F). We make the
following claim. For its proof, see [21, (3.29)] or [24, Propostion 4.6].

Lemma 3.9. Suppose that ¢ € C% is an even function such that suppé C [—1,1], €©0) = 1 and
é(k)(O) =0forall 1 <k <|[B]+ 2. Next assume that suppH C [—1,1]. Then

(3.14) |H — &y * Hllng < CN7P||H|lyss
forall B> 1/q and any N € N.
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Note that Sy (6, F — Ene-1 % 6,F) = Oy F — Ene * 3, F. Now, if B > max{n(1/p — 1/s), 1/q} then
(3.12) follows from Lemma 3.9 and estimate (3.13).

It remains to show that
(3.15) IEper * S FYVD)llpep < ClIFIlypsa-
Let F be functions defined in (3.4) and (3.5). Following the proof of Theorem 3.1, we write
(Ever * SF)A) = D (Exer + 6,FO)),
>0

and by Lemma 2.1, supp K,

(& er 26, FOYND) © Dye;. Now by Lemma 3.8

< ;; |veer = 0, FOYND|

(3.16) < C Z sup {V(x, 2077 || (€t * 6,FO) VL) Py |

>0 xeX

Take a function ¢ € C°(—4, 4) such that (1) = 1 for A € (=2, 2). Then

Enet * SFOYNDPyan||, L, < |Gt * S FONVDPyan|
(3.17) (1 = 6)Ener « SFONNDPy|, ., = Ie + I
Note that (SCE:’S() = (chfs) and t < 1/4. Using (SC;’,‘,’S) instead of (ST;’;’S), we show as in the proof

1_1

of (3.10) that I, < CV(x,2'1)* 72 G| F||, for some large M > n(1/p — 1/5) + 1.
Next we estimate the term /,. We assume that ¢ € C.(—4,4) so by (SCE:'S()

[Execr = 5, F)(VL)||

p—=p

p—>s}'

Ie £ CV( 2077270 o (G Eyers # 6,5 )
Observe that (see also [21, (3.19)])

€00 < et [

-1

Ng'

A+1 1/q
|F<">(m)|qdu)

SO
NK

l/q
sup (N (Eyer * 5,FO)N )
i=1-N« A€l it &
i 1/g
DT sup [« S FOYDI)

e Aeli-1i)

1
[ow@a@nr «6F Ny, = (33

1
C(ﬁ

IA

A+1

1 ul i 1/q
Cliélly (5 D, sup [FON"u)ldu)

e Aeli-Li) Ja-1

1 N i+1 1/q
C(ﬁ Z f |F<">(zN1-Ku)|‘1du)
-2

i=1-N¥

IA

IA

1 1/q
< C(E f } IFO@w)%du) < C|IF,.
This shows that I, < CV(x, 2(t)s 520G 9||F ]|, Using the above estimates of I, and /I, together
with (3.16) and (3.17), we can argue as in (3.9) and (3.11) to obtain estimate (3.15). This proves
Theorem 3.6. O
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Now we discuss another condition introduced by C.D. Sogge (see [62, 63, 64]). We say that
L satisfies (p, p’) spectral cluster estimate (Sp) for some 1 < p < 2 and its conjugate p’ if the
spectral projection E [k, k + 1) maps L”(X) to L” (X) and

(SP) ||E\/Z[k,k + I)HP—)[)’ < C(l + k)n(%_l%)_l
forall k > 0.

Proposition 3.10. Suppose that 1 < p < 2n/(n + 1), u(X) < oo and V(x,r) < Cmin (", 1) for
every x € X and r > 0. Then conditions (S;) and (Scz’;) are equivalent.

Proof. We first prove the implication (S,) = (SC2 1) Note that for every even Borel function F
such that supp F C [-N, N],

N
D (E itk k+ DF(VL)f, E lk, k + DF(VI)[)

k=0

Z |IE yzlk, k + D)F( \/_)||

IFCVD)A,

IA

1.

p—2

Using a T*T argument and condition (S;) we obtain

< ClF(VD},

||F( \/Z)PB(x,r) 127_)2

IA

N
c Z |E yzlk.k + DFCVD)|[)

IA

CZ sup [FQO[C1 + k7

=0 A€lkk+1)
N

CN”(p‘N%Z sup |[FQ[*

=0 A€lk,k+1)

CV xS G ow [

IA

IA

N2’

and hence condition (SCié) is satisfied.
Next we prove the implication (SC2’1) = (Sp). By (SCZ’1

(3.18) ”X[k,k+1)( \/Z)” < C(1+ k)72 614 Xkl 1, 2-

Hence

| itk k+ D, = Itk K+ D

IA

(=1 2
C(] + k) s 2)||6(1+k)X[k»k+1)||1+k,2
Clk + 1) !

IA

which shows (S,). O

Proposition 3.11. Assume that u(X) < oo. Then conditions (SC ,) and (ST°°2) are equivalent.
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Proof. Since u(X) < oo, we may assume that X = B(xq, 1) for some xy € X. Observing
that ||F|lye = ||Fll«, we have the implication (ST;’Q) = (SC;fz). Let us show the implication
(SCI‘;’Z) = (ST}‘;’Z). Assume that supp F C [0,R]. If R > 1, then we let N = [R] + 1 and (ST}‘;’Z)
follows readily. Now for 0 < R < 1, from condition (SC;?Z) we can take N = 1 and the ball B(xy, 1)
to obtain

IF(VL)|l,—2 < ClIF ||

Now for any x € X and r > 0, we note that conditions 1/2 — 1/p < 0 and u(X) < oo give that
V(x,r)/?71/P > C. Hence for any r > 1/R

< C||Fllo < CV(x, )2 7 (rR)" 52| |6k F s

p—2

||F( \/Z)PB(x,r)

that is (ST7,). This ends the proof of Proposition 3.11. O

4. SHARP SPECTRAL MULTIPLIERS - SINGULAR INTEGRAL CASE

4.1. Statements. As in Section 3 we discuss two type of results corresponding to estimates
(STg’z) or (SCg:g). The aim of this section is to prove singular integral versions of Theorems 3.1
and 3.6. We use the same assumptions and notation as in Section 3. Recall that n is a homogeneous
dimension from (2.2). Fix a non-trivial auxiliary function n € C°(0, 00).

Theorem 4.1. Assume that operator L satisfies property (FS) and condition (STg’z) for some
p,q satisfying 1 < p < 2and 1 < g < oo. Then for any bounded Borel function F such that
Sup,.o Il 6:Fllwss < oo for some B > max{n(1/p — 1/2),1/q} the operator F( \/Z) is bounded on
L' (X) forall p < r < p’. In addition,

IECVD) s < Col sup 176, Fllwea + 1F(O)]).
>0
Note that if g < co then condition (STg’z) implies that £,({0}) = 0 (and in fact E.({1}) = 0) so
the term F(0) can be omitted in the above statement.
The next theorem is a variation of Theorem 4.1 suitable for the operators satisfying condition
(SCS:’;). It is a singular integral version of Theorem 3.6 above.

Theorem 4.2. Suppose the operator L satisfies property (FS), conditions (E,») and (SC;IZ';) for
some p,q such that 1 < p < 2and 1 < q < oo, and a fixed natural number k. In addition, we
assume that for any € > 0 there exists a constant C, such that for all N € N and all even Borel
functions H such that supp H C [-N, N],

1

K xn(L-1yie
(ABy") NH(VDlop < CaN“"5™3)|6 Hl e .

Then for any bounded Borel function F such that sup,. || 6:F||wss < oo for some > max{n(1/p—
1/2), 1/q} the operator F( VL) is bounded on L' (X) forall p <r < p'. In addition,

IF(VDllr < C( sup I 8 Fllwss + F(O)]).

>0

Remark 4.3. Suppose that u(X) < oo and (SCS:';) holds for some k > 1. Then (SC;?Z) and (E;»)

are satisfied by Remark 3.5 and Proposition 3.11. In addition, (ABg’K) holds by Proposition 3.7.
Therefore, Theorem 4.2 holds in this case without assumptions (E,») and (ABS’K).
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By a classical dyadic decomposition of F, we can write F( \/Z) as the sum ) F'( \/Z). Then we
apply Theorems 3.1 and 3.6 to estimate ||F;( \/Z)II,_W. However, as mentioned in the introduction,

this does not automatically imply that the operator F( VL) acts boundedly on L’. See [11, 58, 59]
where this problem is discussed in the Euclidean case. Our proof is almost identical to one in [11].
Nevertheless we give full details because the changes which are required to adapt the arguments
to the general setting are not trivial.

Note that condition (STg,z) implies (E,») (see Proposition 2.3). Therefore Theorems 4.1 and 4.2
follow from Theorems 3.1 and 3.6 (with s = 2) and the next result.

Theorem 4.4. Assume that L satisfies the finite speed propagation property (FS) and condition
(Ep,y2) for some 1 < py < 2. Next assume that for all even Borel functions H such that supp H C
[—1, 1] and ||H||wsa < oo for some 8 and q satisfying > max{n(1/py—1/2),1/q}and 1 < g < oo,

(4.1) sup [|H(t VD)||p—p < CllHllwsa» po < p < D).

>0

Then for any bounded Borel function F such that
(4.2) sup |76, Fllwss < 0o

>0

for some B > max{n(1/py—1/2), 1/q}, the operator F( \/Z) is bounded on L' (X) for all py < r < pj,.

4.2. Singular integrals. This subsection is devoted to the proof of Theorem 4.4. We start with
the following lemma.

Lemma 4.5. Suppose that operator L satisfies property (FS) and condition (E,,») for some 1 <
Po < 2.
(a) Assume in addition that F is a bounded Borel function such that

sup |[nd Fllce < eo

>0

for some integer k > n/2 + 1 and some non-trivial function n € C;°(0, ). Then the oper-
ator F(VL) is bounded on LP(X) for all py < p < Py

(b) Assume in addition that  be an even function in .(R) such that y(0) = 0. Define the
quadratic functional for f € L*(X)

. 1/2
GLNW = (D W@ VD f)P) "
JEZ
Then G, is bounded on L?(X) for all py < p < py,.
Proof. The finite speed propagation property implies L> — L? off-diagonal estimate
||PX\B(x,2jr)€_r2LP Bornlla—2 < Ce %,

see [19, 61]. It follows from (E,, ») that

2 1
IPx\gx2ine “Ppapllpy—2 < CV(x,1r)> 7.

Now the Riesz-Thorin interpolation theorem gives for p € (py, 2) the following L”—L? off-diagonal

estimate

-r’L L1 _wn2j
IPx\Bx2in€ “Pounllp—2 < CV(x,r)> " re™ .
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Now assertion (a) follows from [6]. The latter off-diagonal estimate implies that L has a bounded
holomorphic functional calculus on L? for py < p < pj (see [7]). It is known that the holomorphic
functional calculus implies the quadratic estimate of assertion (b) (see [20, 51]). O

Throughout the rest of this section, @ denotes an even function, ® € .#(R) such that ®(0) = 1

and whose Fourier transform @ is supported in [—1, 1]. We take € C°(R) even and such that

(4.3) suppn C {¢:1/2 <6 <2} and Z n2H =1, va>o.
leZ

Set 17,(A) = n(2‘A) and
(44) FO =n,F, (eZ
Put Q/(1) = Y10 Mk+e(A). Then we have the following result.

Proposition 4.6. Suppose that operator L satisfies property (FS) and condition (E,,,) for 1 <
po < 2 and let py < p < 2. Assume in addition that for a bounded Borel function F the following
estimates hold

(4.5) D sup|| Y FUOVIm VD), <o

k<0 / £>0

and

(4.6) supl| > FU (VLT = @2 VI)NQ;(VD)|| _, < .

T 0
Then F(VL) is of weak-type (p, p).

Proof. Let f € LP(X) and @ > u(X)™'/7|| fll,. A simple variation of the Calderén-Zygmund

decomposition of |f|” at height @ shows that there exist constants C and K such that f = g+ b =

g+ X b so that |lgll, < ClIfllp, llglle < Ca, each b; is supported on ball B; of radius 2/, and

#{i : x € 8B;} < K forall x € X, fx |bilPdu < Ca’u(B;), and ) ; u(B;) < COprfllZ- As a

consequence, cx”‘zllgllg < C||f||§. As in [11], we choose 2/ rather than r(i) to be able to sum in j.
We define the “nearly good” and “very bad” functions g and b by

g=g+ Z 20(2/D VL)b; - Z D22/ D VL)b; and b = Z(l — ®Q2/D\L))b,.

By Lemma 2.1, supp®(2/? VL)b; c 4B, and by the Calderén-Zygmund decomposition, every
x € X belongs to no more than K balls 4B;. Let N > n(1/p — 1/2). Now by condition (E, »)

1> 0@ VDpl, <k 0@ VL,
| < CZ sup [ (1 + 20VF|1 + 270 VI Vb
<C Y uB) HIb,
<C 2u<Bi>1‘é||bi||iu(Bi>é‘i

< Ca? )" u(B) < Ca* | fIl
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Replacing ® by ®? yields || 3, @22/ x/Z)b,-||§ < Ca®"||f|lb. By the standard L? argument
u(fx s F(VL)(@)(x) > a}) < Ca | fII%.

It remains to treat

FOVD)( ) (1 - 02" VL)Yb)

Z Z FUODLY T — 27D VL))2b;

i €20

4.7) + Z Z FUOONIY(T = O/ VL)) b,
i ¢<0

By Lemma 2.1

supp FUO*O(VL)(I - ®2/? VL))*b; € B(x;, 27+ +3.2/9) c 8B;, V€ < 0.

Thus the second term of (4.7) is supported in U8B; and ), u(8B;) < C X, u(B;) < Ca"’llfllz.
To treat the first term we show that

(4.8) 1> D FUoDa - 0@ VDy £ < || DI,

j =0 J

If we apply (4.8) with

fi= Z bi,
i:(0)=]
we see that
1> D FO DU - o@D, = |3 > FUODU - o@ VD,
i >0 Jj =0

< ¢ 21 ), il
J )=

< ¢ . will,

< €, bl < iy,

which completes the proof.
As in [11] we argue that by duality, (4.8) is equivalent to

(4.9) [supl > FI(VI)(I = @2/ VD)Yhl| , < CliAl,
20
Write
D FEONDU - 0N = Y FUOVL)(I - &2/ VL) (VL)
>0 k<0 €>0
(4.10) + Y FIONLI - 0@/ VD) (VD).
>0

Let i7 € C°(0, 00) be a non-negative function satisfying supp# € [1/4,4] and 7 = 1 on [1/2,2],
and let 7j; denote the function 7(2/-). By Lemma 4.5 point (b) with ¢ = 7 there exists a constant
C > 0 independent of k < 0 such that for 2 < p” < py,

(D W VD)™ < (3 i VD) | <
J

J
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and by Lemma 4.5 point (a), it follows that for 2 < p’ < pj, [I[( — ®(2/ \/Z))2||p'ap/ < C for some
constant C > 0 independent of j € Z. Hence

[ sup| Y > FHOVENT - 0@ VD mjos VD]

S k<0 €20

< SIS PN - 0@ VD0 VDR VD) "

k<0 J >0

<€ Y sup{ild = O VDl | 3 PO NDnu VD) )
J

k<0 >0

(3 VDR
J

(@.11) <C ) sup|| Y FIONDu VD), Ml < Clihll.

k<0 / >0

' p

The last inequality follows from assumption (4.5). Using assumption (4.6) instead of (4.5) the
similar argument as above gives the following estimate

| sup| > FU2VI I — 0@ VD) Q,(VIH|| | < Clhl-
720
This shows (4.9) and ends the proof of Proposition 4.6. O

Proposition 4.7. Suppose that operator L satisfies property (FS) and condition (E,, ,) for some
1 < po < 2 and fix p € (po,2). Next assume that for all even Borel functions H such that
suppH C [-1, 1] and ||H||ws~ < oo for some > n/2,

(4.12) sup [IH(t VD)l < Cl|H[lys.

>0

Then for any bounded Borel function F such that ||(Fn;)Y( \/Z)llp_,p < a(i—j)foralli,je Z with
D (K + Da(k) < oo,
k<0

the operator F(VL) is of weak-type (p, p). Here n; and (Fn,)? are defined in (4.3) and (4.4),
respectively.

Proof. By Proposition 4.6, it suffices to verify (4.5) and (4.6). Note that we may assume F(0) = 0
since F = F — F(0) + F(0).

Firstly we show (4.5). Fix k <0, £ >0 and j € Z and write
FUSYD(VL) = ) (Fni )" (VDmju VI

i€Z

k+2

Z +Z +Z oo = Tige + M je + M jgp.

i<k=2  i=k-2  i>k+2

The main term is X jx¢; Iz and I , are error terms. By (4.12), |[17;:( \/Z)Ilp_,p <Cso

k+2 2

Wiy < C D MER) (VDI < C Y- e +i = 0.

i=k-2 i==2
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Thus

(4.13) D2 sup iy < € (Il + Dam) < oo,
k<0 >0 J m<2

To estimate ||/ x| ,—, set

G = Y (Fnie U™ 0@ ().
i<k=2
Observe that

i( Z (Fﬂi+j)(j+€)(2_j_k/1)) — f Z F(S)n,+](s)2j+€2([ k)y(n)(y)(zt’ ky— 27+ 5\ds.

Y
da i<k—2 Isl>27%=7+2 537

Now 2/*|s| > 26-K+2 > 265113 for A € [1/2,2]. We may estimate the integral for each N € N by

Cy
F 002]+£’2([ k)y
mez Il sy

If N is chosen sufficiently large, this is dominated by ||F||,2¢ =N This yields
(4.14) IGllwre < ClIF||02%*°
for some &y > 0 and all y € N. Then by (4.12) |||l -, < ClIF||2%% 9. Hence

Z Z sup [[£jicllp—p < o0.

k<0 20 /
We estimate /Il ., in the similar way as ||/j||,—,. This proves (4.5).

Secondly we show (4.6). Fix £ > 0 and j € Z. Write
FUDLI - 0@ NINQ(VD) = > (Fnie)U™ (VL) - 02/ VD) Q,(VL)

i€Z
= Z+Z :Aj€+ng.
i<0 >0

We start with the term A j,. By condition (4.12) there exists a positive constant C independent
of j such that ||(I — ®(2/VL))Q i( ‘/Z)Ilp_w < C. By assumptions of the proposition, we have
I(F 12 )9O VD) ||y < (i = £). Hence

sup 1D A, <C >, > ali=0<C ) (ml+ Daim) < .

>0 >0 i<0 m<0

It remains to treat the term Bj,. More precisely, we want to prove that

sup > I Y (Fnie )V (VD(I = @2/ NLNQH VD),

S0 >0

—supZnZZ(FnH,)”*“(W (VDY = @2/ VL) Q( VDl <

>0 >0 kezZ

We write

as
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= Lig+ Wjg + Mg + Ve + Ve + VI,
Claim 1. For k < 0,
| Z(Fﬂwj)(jm( \/Z)Uj+k( \/z)llp—w < C2eh)

>0

for some £ > 0.

Claim 2.
k ‘ k
S ER N ONDlop < i = 0).
i=1

i=1

Claim 3. For k < i, [(F1;, )" O(ND)n (VD) sy < C275670) 50 that

4
D MER NI OVIN s VD)l < C(E = R)275H < €270,

i=k+1
Claim 4. For ¢ > k,
[ Z (Fnis ) I OND it VDl psp < €275,

i=t+1

Claim 5.
¢ ¢
D MER NI ONVDlpep < D ali =0,
i=1 i=1

Claim 6. For k > ¢,
1D Fni ) (VD3 VD)l <

i=0+1

If we agree with the claims 1-6, we can finish the proof of the proposition as follows. Let 7} €
C>(0, 00) be a non-negative function as in (4.11). We note that by condition (4.12),

171 VLY = D2 VL) Q(VD)ll,mp < Cli(1 = 84®)|lyynes
(4.15) < Cmin{l,27%}.

By Claim 1,
S Ml <€ 33 2770 < oo

>0 >0 k<0
by Claim 2 and (4.15),

k
el < C Z Z ali — 027"

13
k=1 i=1
by Claim 3 and (4.15),

¢
el < €y 275 P27, < CO7,
k=1
by Claim 4 and (4.15),

{
Vel < € ) 27007k < Co,
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by Claim 5 and (4.15),
¢

WVidlpmp < C Y Y ali= 27
k=(+1 i=1
by Claim 6 and (4.15),

IVIillpp < € Z 27"k < c27,

k=C(+1
Hence
D Ml + Ve + VIigllpsp < C )" 27 < 00
>0 >0
and
4 k 00 ¢
Wi+ Vidlpsp < €D ali=027 +C > " ali— 02"
k=1 i=1 k=C+1 i=1
l
= C) ali-0) Z 2% < C Z ali - 0277
i=1
Thus
¢
DM+ Vidlysy < €)Y 2%ali-0)
>0 >0 i=1
< CZ a(m)2™" Z 27 < CZ a(m) < oo,
m<0 >-m m<0

Now Claims 2 and 5 follow immediately from the definition of a(j). Similarly to the proof of
(4.14), we use condition (4.12) to prove Claims 1, 3, 4 and 6. So to establish Claims 1, 3, 4 and 6

we examine d
ﬁ( Z(Fni+j)(j+€)(2_j—k/l))

for |A] ~ 1, (where the sum is over a range of i depending on which claim we are proving). In any
case, we obtain

f ZF(s)n,ﬂ(s)zf”’z(‘ oy 0 (2" A= 27 5)ds.

For Claim 6, we just use | /wl < C and the fact that the integrand is supported in a set of measure
< C27U*0 to estimate the integral by ||F||,2“~®7; under the hypotheses of Claims 1, 3 and 4 we
have that (essentially) 2¢7%]4| > 2 - 2/*{|s| if |A| ~ 1, and thus we may estimate the integral by
| F |02/t 2¢00=N) multiplied by the measure of the support of the integrand, for each N € N.
These measures are 27/, 27/ and 27/~¢ respectively, and so in each case we can dominate the
integral by C2(-R0=N+D for all N € N. |

Recall that for 0 < @ < 1, A, is the usual Lipschitz space as defined for example in [66]. As a
consequence of Proposition 4.7, we have the following result.

Corollary 4.8. Assume that operator L satisfies property (FS) and condition (E,,,) for some
1 < po < 2. Next assume that for all even bounded Borel function H such that suppH C [-1,1]
and ||H||wse < oo for some 3 > n/2,

(4.16) sup [|H(t VD)l < CllHllws=,  po < p < py,

>0
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Then for any bounded Borel function F such that for all i, j € Z,

4.17) IFn) (VD)o + 962 Flla, < C

for some 0 < & < 1 and all py < r < 2, F(VL) is bounded on L" for py < r < p. Here n; and
(Fn)Y are defined in (4.3) and (4.4), respectively.

Proof. First we note that by definition
(4.18) (Fn)(2) = f FQ™On(0n,—5(2'A = ndt = (n6,-1F)V™(2'4).

Since [|76,-F|la, < C, we have that [|(F1)?|l < C2°¢- and so ||(F)?( VL)|l,—> < C2%¢-). By
interpolation, there exists some @’ > 0 such that

ICFn) (VD < €277
for all py < r < 2. From Proposition 4.7, F( \/Z) is of weak-type (r,r) for all py < r < 2. By
duality and interpolation, F( \/Z) is bounded on L" for py < r < pj,. O

Proof of Theorem 4.4. It is enough to verify conditions (4.17) of Corollary 4.8. First we recall
that n; and (Fn;)" are functions defined in (4.3) and (4.4), respectively. From (4.18), we have that
NF) (VD)= = 1621 F)Y=(2! VL)||,,. Let ¥ be a C=° even function which is supported on
[-8,8] and (1) = 1 on [—4,4]. Write
162 FY @ ND o < @S5 F) )2 VD)l + (1 = v)(S2-F) )2 VL)1
Observe that the function ¥/(5,-Fn)Y™ is supported on [-8, 8] and
(621 Fp) V™l wsa ClN (G2 F )™ sg

= CIF A+ &P PerFr@En )l

< CIF N+ EFPorFn@)l,

= CIIFCQ"On(Dllwsa-

From condition (4.2), we have that ||p(A)F(27 )||lwss < co. Therefore, we use our assumption (4.1)
to obtain

(4.19) @@ Fm) )2 VD), < C

with C > 0 independent of i and ;.

We estimate the term ||((1 — ¥)(65-F1)Y)(2' VL)||,,. For k € N and all 1 # 0, we have by
elementary calculation,
dk
dak
< C2U7 D] — y(2)| f |FQ wn@)|(1 + 27714 - ul) ™ du < Cla1™,

IA

(1= ()= (G F i) )|

where we use the fact that || > 4 and |u| < 2. We then apply (a) of Lemma 4.5 to obtain
(1 = ¥)(S2- F) )2 VD)l < C.

This estimate in combination with (4.19) shows that

(4.20) IF) Y (VD)llsr = 165 F )Y@ VL)||,o, < €

for some constant C > 0 independent of i, .
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Now we recall thatif 1 < g < ocand - 1/g > 0, then

1
B.q B o
W C B, C Bfo,oo c Amin{ﬂ—g,%}

and ||F||o gl 1, < C||F||lwea. See, e.g., [5, Chap. VI ] for more details. We obtain
min —a, 7
(4'21) ||n62_iF||Aminw_1/q,1/2) S C||7762"F”W/3>‘1 S C,‘
This estimate and (4.20) prove condition (4.17) of Corollary 4.8. The proof of Theorem 4.4 is
finished. =

5. ENDPOINT ESTIMATES FOR BOCHNER-RIESZ MEANS

We have seen in Corollary 3.2 that Bochner-Riesz means are bounded on L? provided the order
6 satisfies & > max {n(1/p — 1/s) — 1/¢,0}. In this section we prove that our restriction type
condition implies endpoint estimates for Bochner-Riesz means. Our approach is inspired by the
results of Christ and Tao [14, 15, 69]. As in the rest of the paper we assume that (X, d,u) is a
metric measure space satisfying condition (2.2) with a homogeneous dimension 7.

For any given p € [1,2) and g € [1, co] we define

04(p) = max {O,n'll? - —‘ - —}.

For simplicity we will write d(p) instead of d,(p). As in Sections 3 and 4 we discuss two type of
results corresponding to estimates (STg’Z) or (SCS:;).

Theorem 5.1. Assume that operator L satisfies property (FS) and condition (STg,z) for some p,q

satisfying 1 < p <2and 1 < q < oco. Then the operator S z"(p )(L) is of weak-type (p, p) uniformly
inR.

The next theorem is a variation of Theorem 5.1. As in Theorems 3.6 and 4.2, this variation can
be used in the case of operators with nonempty pointwise spectrum.

Theorem 5.2. Assume that u(X) < co. Assume that operator L satisfies property (FS) and condi-
tion (SCE:;) for some p, q satisfying 1 < p <2and 1 < q < oo. Then the operator Sf{’(p)(L) is of
weak-type (p, p) uniformly in R.

The proofs of Theorem 5.1 and 5.2 require three technical lemmas which we discuss first. We
commence with the following observation.

Lemma 5.3. For each k < O there exists a decomposition
(5.1) SE (@) = mDme() + S 7 (i)

such that

(a) Functions ny are even and their Fourier transforms are supported in [-2*/R, 2¥/R), i.e.,
suppi; C [-2¥/R, 2/R);

(b) Functions ny are continuous, even and 22:_00 (D> < C with C independent of A and R;

(c) For certain arbitrarily large N € N there exists a constant C such that

()] < C(1 + m)_N.
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Proof. Following [69] we consider the function ®(1) = 6473(1 — sin 1). Note that &3@) = 3n(l -
1)2. Set ni(1) = ®V2(2KA(RN)™'). We use term (RN)~! rather than R! to ensure that supp 7 C
[-2%/R, 2%/R]. Next we write

SE ()1 = n()

Sf;(”) ) = D ]nk(/l) + S;Zq(p)( ()

= D) + 8P (AP (D).

Verifying conditions (a) and (c) is straightforward. By definition of n;(1), there exist a constant
cn, depending only on N, and another constant C such that

m()=cy and [SYP (1 - m(D)| < €2
for all || < R and k < 0. This proves condition (b) because supp S Z‘f(p )(/12) C [-R,R]. O

The original statement of the following lemma comes from [69].

Lemma 5.4. For each k > 0, there exists a decomposition S Zq(p )(/12) = my(A) + n(Dni(A) such
that:

(a) Functions my and ny are even and supported on [-2F/R, 2% /R];
(b) ny are continuous and for all A > 0, 32, Ini(D)|* < C with C independent of A and R;
(c) For certain arbitrarily large N € N there exists a constant C such that

—5,(p)k il _ AN
()] < C2 K1+ 241 R‘) .
Proof. For the proof, we refer the reader to Lemma 2.1 in [69]. |

In the proofs of Theorems 5.1 and 5.2 we will also use the following lemma

Lemma 5.5. Suppose that L is a self-adjoint operator on L*(X). Assume that {Qy}xen is a family
of continuous real-valued functions such that ¥, |Qx(A)|* < C for some constant C independent of
A. Then for any sequence of functions { fi}xen on X,

(5.2) 1> o VDA]; < 3 [IAlh-
k k

Proof. Note that

|| Z Ox( ‘/Z)fk”;
X

(>, (VD i, ) VD)

f R Z Z QD Q(DAE (D fi. -
L

Under the assumption of Lemma 5.5 the above integral is a limit of its Riemannian approxima-
tions, see page 310 of [74]. Therefore let us consider Riemannian partition of [«, 5]

a=L <A <..<d, =B A, ]

for some —co < @ < 8 < co. Now to finish the proof of Lemma 5.5 it is enough to observe that

D000 D QQXE (e, Al fio £
¢ k J
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< ; ; >IN NKE s Aelfio i) KE i es Al £7)

J
= Z(Z 10k(1))] \/<E\@(/15, Aesi1fis fi) )2
7 %
< Z (Z |Qk(/l;,)|2) Z (E ;(A¢, Aeilfir Ji)
3 k k
< CZ Z (E vz, Aenlfis fi
7 %

<C Y IIflB,
k

where we used the fact that 3, |Qx(1)* < C. o

Proof of Theorem 5.1. Assume that condition (STE’Z) holds forsome 1 < p<2and 1 < g < 0.

Fix a f € L” and @ > u(X)""/?||f]|,, and apply the Calder6n-Zygmund decomposition at height
to |f|7. There exist constants C and K so that

() f=g+b=g+3,by

(i) llgll, < Clif1lp, llglle < Car;
(ii1) b; is supported in B and #{j : x € 4B;} < K for all x € X;
(iv) [, 1bjlPdu < Ca”u(B)), and 3;u(B)) < Ca || f1l}.

Let 7, be the radius of B; and denote by J; = {j : 2*/R < rp, < 2**'/R}. Write

g+Zb _g+ZZb +ZZb =g+ h +h.

k<0 jeJi k>0 jedi

By a standard argument it is enough to show that there exists a constant C > 0 independent of R
and « such that for every a > u(X)™'/?||f|l,,

(5.3) u(fx qu(p)(L)(g)(x) > a}) < Ca|If1ID
and that fori = 1, 2,
(5.4) u((x : SEP L)) > a)) < CaP|IfL.
04(p)
Note that sup, z. (1 - 1%): "~ 1 and that by (ii) a”2|Igll; < CIIf1I5. Hence by spectral theory

u(fx: S P (L@ > a)) < @ ASYP(L)@IE < a2l
(5.5) < Ca’|If1Ib.

Next we prove (5.4) for i = 1. By the spectral theorem and equality (5.1)

DS Wh; = ) VD ) m(VDb))

k<0 jeJi k<0 JeJk
+ SEPW( DD m(VDb;).
k<0 jeJi

Applying the spectral theorem and Lemma 5.5 with Q(1) = m(1) yields

so [ R X siwnl, < ¢ S m Ve, +c| 33 n VD,

k<0 jeJi k<0 jeJi k<0 jeJi
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Next suppi; € [-2¥/R,2%/R] so by Lemma 2.1,
suppK,, vp € {(x,y) € X X X : d(x,y) < 2"/R}.

Hence if j € J, then suppn( VL L)b; C 4B;. Thus by (iii) there exists constant C > 0 such that

22 m VD + | 3 2 mvEw ], < € 3 5 s Vo,

k<0  jeJx k<0 jeJx k<0 jeJi

Next, by Proposition 2.3 and Remark 2.2,

an( \/Z)bJHZ = nk( \/Z)PB_,'ijZ
< [mvors| o,
< D+ 252 R | e,
< CH(I+2"%)_ Py 10l
< Cu(B)* 7au(B))
< Cau(B)'".
Hence by (iv)
A S5O )| = a5 Y Yo
k=0 el k<0 jeJi
(5.7) < Ca™”|If15.

Now, we prove (5.4) for i = 2. Let Q" = {J ;o 4B;. By (2.1) that
pQ) < C Y u(B)) < Ca’|fII.
J
Hence it is enough to show that

(5.8) IsE 7@ > b, < € Zu(B ) < Ca* A1,

>0 jed

Using the decomposition from Lemma 5.4 we write
(5.9) SEP@W( D] 6;) = > > m(NDb;+ > i NDm VL) D b)),
k>0 jeJy k>0 jeJ; k>0 jedy

Recall that i is even and supported in [-2%/R, 2¥/R]. By Lemma 2.1
2k
suppK,, (vi) C{(x,y) € X X X 1 d(x,y) < E}'

This implies that if x € X\Q*, then my( \/Z)b i(x) = 0 for any j € J and k > 0O so it makes no
contribution to (5.8). By (5.9) and Lemma 5.5

7”@ 2 b Momay < 12, m VDD b,

>0 jed >0 ek

¢S VDX Y bl

k>0 JjeJk

(5.10)

IA
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Next 7; is even and supported on [-2%/R, 2¥/R] so by Lemma 2.1
suppK, vz) S {(x,y) € X X X 1 d(x,y) < 2Y/R).

Hence supp n( VL)b j € 4B; for j € J;. By (iii) there exists a constant C > 0 such that

(5.11) DmVDO bl < €30 VDbl

>0 = >0 jel
To continue, fix Y € C°, even and supported in [-2, 2] such that /(1) = 1 for 4] < 3/2. Write

L L
(5.12) m( VL) = ni( ﬁ)w(%) +n(VI)(1 - w(%)).
Then supp (1 — ¥(1/R)) C (—o0, —3R/2] U [3R/2, o0) so for every k > O,

(1 - () 2

C‘l - w(%)'z‘éq@k(l + 2"'1 - = )

1+ ‘2% )",

and we use a similar argument as in the proof of (5.4) for i = 1 to conclude that

IA

(5.13) an(\/_)(l l//(‘/_ bH < Cap(B)".
On the other hand, suppni()yY(1/R) C [-2R,2R] so by (STg’z)
VDR8], = [ VEW(SE)Pa o]
< [t @w(%)PB,. el
< Cop(B) 252 ||ssr(meOY(U/R))|..
Now
1
HézR(l’lk(/l)lﬂ(I%))Hq < ¢ fo 2RV "
< C2nY f 1(1 241 =22y a2) "
0
< C2%PRi < G,
This yields
\/_ 1/2
(5.14) an(\/_):p bH < Cou(B)'"

By (5.13) and (5.14)
[n( VDb |, < Cap(B)'2.
The rest of the proof of (5.4) for i = 2 is similar to the case i = 1. O

Proof of Theorem 5.2. Assume that condition (SCEZ;) holds for some 1 < p<2and1 < g < 0.
The proof of Theorem 5.2 is almost identical to that of Theorem 5.1 except some minor technical
complications so we only give a brief sketch of it.
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We apply the Calder6n-Zygmund decomposition at height « to [f|? to get the same decomposi-

tion
F=g+) > bj+ > > bi=g+h+h

k<0 jed >0 jedk
as in Theorem 5.1. The proof of weak type estimates for g and 4, uses the simple observation that
(SC;‘:;) = (SC;’Z) S (ST;?Z) = (E,») (see Propositions 2.3 and 3.11) and is essentially the same
as the corresponding argument in the proof of Theorem 5.1.

It remains to show that

(5.15) u((x : SYPULY()(x) > a}) < Ca|If I
To show (5.15) we note that if u(X) is finite, then we may assume X = B(x, 1) for some x; € X.
Recall that J; = {j : 2¥/R < rg; < 2c+1/R}. Thus the radius of each B; in the Calderén-Zygmund

decomposition satisfies 2¢/R < 4. If R < 4, then k < 4. Hence one can use the same argument as
in the proof of Theorem 5.1 fori = 1.

Next we consider the remaining case R > 4. Using the decomposition described in Lemma 5.4
it is not difficult to note that to finish the proof it is enough to show that

(5.16) an(\/_)(l W~ \/_ bH < Cau(B)',

(5.17) an(\/_)w \/_ )b H < Cau(B)"?,

where 7, is defined in Lemma 5.4 and ¢ is a function in (5.12). The proof of (5.16) is similar to
that of (5.13).
To prove (5.17) set N = [2R] + 1. By condition (SCg:;)

VDW= W o, < CuBYEPEED s OB, 11

Next (assuming that sup |:,D| =1)

N

1
2o (m DR, < (v > sup Imel) "

N &= aete-1.0
) ~[R]+3

<( >0 s m@r) s (5 > swp o)

(S Aele-1.0 = SR1-1 A€le-1.0)
0 [R1-3

H(x > s )+ (5 Y s imcor)”

N {=—[R]+4 A€[t-1,0) =1 Ae[t-1,¢)

[R]+2 1 N

H > s ) e (5 D) sup mcar)

=[R]-2 A€LE=1.O (Z[R]+3 A€lE-10
=I+0+M+1V+V+VIL

Let M be a sufficiently large natural number. By Lemma 5.4
[R]+2

Vo= (5 > sw )"

R A€ll-1.0
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= C2_§q(p)k(l 3 sup (1+2k|£_1‘)_Mq)l/q

- (<R A€l-1.0 R

< C2 %Wkp-lla < C2—5q(p)k2—§ (2_k )l/q

- B R

< C27MGY

and
1 < - A —M|q\1/
Vs o 2 e PG

- * A -Mq 1/q

e fR (1+2k(1—€— ) Rda)

< C2MGTY,

A similar argument as in V shows that II < C27"K(1/P=1/2); the similar argument as in VI shows that
each of I, Il and 1V is less than C27*(/P=1/2) Thus

loxuw R, < €276,
This finishes the proof of Theorem 5.2. O

Part 2. Dispersive and restriction estimates
6. DISPERSIVE AND STRICHARTZ ESTIMATES

Let (X, d, i) be a metric measure space. Next let L be a non-negative self-adjoint operator acting
on L*(X). In virtue of the spectral theory, we can define the semigroup exp(—zL) for all z € C with
Re z > 0 and such that

llexp(=zL)|h—2 < 1.
We say that the operator L satisfies dispersive type estimates if there exist constants n and C such
that

(6.1) llexp (isL) ll-e < ClsI ™, Vs € R\ {0},

Of course, the standard Laplacian on R” satisfies the dispersive estimates. Such estimates are
of importance in analysis and PDE. In particular, they imply endpoint Strichartz estimates (see
Keel and Tao [42]). We refer to Strichartz endpoint estimates for the corresponding Schrodinger
equation as

(62) [ s ar < cirg. s ez
R "
This endpoint estimate together with the obvious fact

lexp(izL) fllz=r2 < (1 fllr2

give L'L? Strichartz estimates. See [42] for more details. Our aim will be to explain how sharp
spectral multipliers follow from the dispersive or Strichartz estimates.

It is natural to consider the dispersive estimates (6.1) in conjunction with the smoothing condi-
tion

(6.3) llexp(—tL)|l1e0 < Kt™%, ¥ 1> 0.
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Note that if the self-adjoint contractive semigroup exp(—tL) on L*(X) is in addition uniformly
bounded on L*(X), which includes the case of a sub-Markovian semigroup, then

Il exp(=(t + iS)D)ll1 o0 < || €Xp(—1L/2)llcomscoll eXp(=isL)[l1 o0 < C |52,
Together with (6.3) this yields

lexp(—(t + is)L)|l1 5o < Cmin{t™?,|s|™?} < C'|t + is|™"/?

forall > 0, s € R. Hence
(6.4) | exp(—zL)|l1 e < Clz| ™"

for all Re z > 0. Of course this estimate implies (6.1) and (6.3) and the argument above shows that
if semigroup exp(—tL) is uniformly bounded on L*(X) then it is equivalent to conjunction (6.1)
and (6.3). It turns out however that this equivalence holds without the boundedness assumption
on L*(X). This fact will be used in the next subsection in which we will not assume uniform
boundedness of semigroup exp(—¢L) on L*(X).

Lemma 6.1. Suppose that L is a non-negative self-adjoint operator on L*(X). Then the dispersive
estimates (6.1) are equivalent to (6.4).

Proof. All what we need is to prove that (6.1) is enough to get (6.4) on the positive half-plane.
Fix f,g € L'(X) N L*(X) and consider the function

H(z) = 2"*(exp(—zL)f, 8).

The analyticity of the semigroup on L? implies analyticity of H on the open right half-plane and
continuity on the boundary. Now for z = is with s € R, the dispersive estimates (6.1) gives

|H(is)| < Cligllillfll-
For all z with Re z > 0, we have

IH@)| < l"llglll Az
Therefore, we can apply the Phragmén-Lindel6f theorem and conclude that
(6.5) |H ()| < Cligllillf1ly

for all z with Re z > 0. From this and the density of L'(X) N L?>(X) in L'(X) we obtain the lemma.
O

7. FROM DISPERSIVE AND STRICHARTZ ESTIMATES TO SHARP MULTIPLIERS

We continue with the assumption that (X, d, i) is a metric measure space. In this section, let us
start with the following proposition.

Proposition 7.1. Let L be a non-negative self-adjoint operator on L*. Assume that L satisfies
estimates (6.1). Then forall 1 < p < 2 and all 1 > 0

n+2
(7.1) IdE yz(Dllpmy < CA"F7771

where p’ is again the conjugate exponent of p.
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Proof. We first prove that L satisfies

n(i-2,
(7.2) IF(VD)llywy < CR™77|I6xFl;

for all bounded F € L! with suppF C [0,R] and all p with 1 < p < n% This estimate is very
similar to (STII)’p,) studied in Part 1. Note that we do not consider here X to be a doubling space
(even a metric d is not needed).

Consider the case where R = 1 and fix F with support contained in [0, 1]. Set G(1) = F( Vet

By the inverse Fourier transform, we have (up to a constant)
G() = fR G(&)e“dé.
This gives
(7.3) F(VL) = fR G(&) exp(=(1 — ié)L)dé.

This equality follows immediately from Fubini’s theorem if G € L'. One may start by prov-
ing (7.3) for smooth functions F, and then use standard approximation arguments to obtain the
equality for all F as above.

Now the dispersive estimates together with Lemma 6.1 imply that for any p € [1, 2]

IF(VD)llpsy < fR|G(§)|||eXp(_(l_ig)L)”p—m’dé:

IA

c f GO + & 15 Pag
R

(7.4)

IA

ClIG f (1+&) 15 Pae.
R
Now we note that
IGll < IGIl; < CIIF|l;

and
[arerttPas <o
R

for p < n% This shows (7.2) when R = 1. Now, for general R > 0 and F with support in [0, R]
we reproduce the previous arguments with the function 6z F and the operator L' = 1%. This leads
to (7.2). Now we argue as in the proof of Proposition 2.4. Fix A > 0 and € > 0 small. We use (7.2)
to obtain

HE_IE@(A -, A+ 8]H

-1
& Hﬂ(/l—s,/lﬂs](\/z)” ,
p—=p
-1 n(i-L)
Ce(A+e)r |LY(%1]||1
CA+ &)y,

p—=p

IA

IA

Letting € — 0 we obtain

which implies the estimate of the proposition. O
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Remark 7.2. Let p € [1,-2%] and suppose that G is a distribution such that suppG c [0, R] and

n+2

fR Ié(f)l(l + §2/R2)_Z(5_ )d.f < oo. It follows from the previous calculations that G(L) is well
defined as an operator acting from LP to ¥ and that

IG(Dllp—p < CfR|G(§)|(1 + IR,

Proposition 7.1 does not yield the optimal results for the standard Laplace operator. However
in the abstract setting we can include the endpoint p = =5 when n > 2 in the following way. We
start with the Strichartz estimate (6.2) and repeat the prev1ous proof to get

I ( ‘/Z)flln% flé(f)lll exp(=(1 = i§)L) fI|  d&

IA

IA

1/2
||G||2( llexp(i€L) exp(~L) 1 EN f)

n—.

ClIF [l exp(=L) fll2 < ClIFIL2Il11l2

for all F' with support in [0, 1]. For F supported in [0, R] we apply the previous estimate with g F'
and L' = % to get

IA

IF(VDll,-, 2, < CRIIGRF .
Therefore,
(7.5) IF(VD)ll2, , 2 < CRAISRFII}.

Similar arguments as above give (7.1) for p = ﬁ

We can now extend this easily to all p < =% if the smoothing property (6.3) is satisfied. More
precisely, fix p < -=5 and assume that

(7.6) ||exp(—tL)|| o < K12 ) , Vir>0.

We introduce as before Gg(1) = (5gF)( VA)e' for F supported in [0, R]. Then for ¢ = p’ we have

IF(VL)fIl,

IA

||eXp(—IT)||2fn_>q f |GR<§)|||exp(—(iﬁmfil%df

IA

1/2
Rn(*—*) 1||GR||2 (f || exp(— (l ¢ )L)f” 2 df)

< CRPY6rFllzel fllzcos
where we used the Strichartz estimate (6.2) to obtain the last inequality. As in the last proposition,
this gives the Stein-Tomas restriction (7.1) for all p € [1, 2:’2] We have proved

Proposition 7.3. Let L be a non-negative self-adjoint operator on L*. Assume that L satisfies
the Strichartz estimate (6.2) for some n > 2. Fix p such that 1 < p < n% and assume that the
smoothing property (7.6) is satisfied. Then for all 1 > 0

(o1
(7.7) IE (Dl < CA57!

where p’ is again the conjugate exponent of p.
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We mentioned above that the dispersive estimates imply the Strichartz estimates ([42]). For
this reason we formulate the results below for the case where L satisfies the endpoint Strichartz
estimate.

Theorem 7.4. Suppose that (X, d, ) satisfies the doubling property (2.2) and there exists a positive
constant C > 0 such that V(x,r) < Cr" for every x € X and r > 0. Assume that L satisfies the
finite speed propagation property (FS) and the Strichartz estimate (6.2) with the same n as in the
doubling property. Assume also that n > 2. Fix p € [1, n%] and assume that (7.6) holds. Then for
every bounded Borel function F such that supp F C [-1, 1] and

[Fllwe2 < 00

for some 8 > n(I—I) — %), the operator F(t VL) is bounded on L? for all t > 0 and

sup [|F(t VL)|l,—p < CIIFllys2.

>0

Proof. If F is supported in [0, R] then by Proposition 7.3, we have

R
IF(VL)|lpo I f F)AE (Dllpo
0

IA

i (G=7)-1
Cf |[F(D)IA™ ™7~ dA
0

CRG™7||6-F 1.

IA

Hence by the 7°T argument
1

(Ll 1
IF(VL)|l,—y < CR™™2||6xF|l,.

Combining this with our assumption on the volume yields (STIZ),Z). We then apply Theorem 3.1

: 2n
and obtain the result for p € [1, =5 ]. O

We have seen that the assumptions of the previous theorem imply (ST;Q), we can then apply
Theorem 5.1 to obtain endpoint estimate for Bochner-Riesz means. In addition, by applying
Theorem 4.1 we obtain under the assumptions of the previous theorem the following result.

Theorem 7.5. Fix p € [1, n%]. For any bounded Borel function F such that sup,., || 6,F||ys2 < o0
for some B > max{n(1/p — 1/2),1/2} and some non-trivial function n € C>(0, 00), the operator

F(VL) is bounded on L' (X) for all r € (p, p’). In addition,
IFCVDllr < C( sup lln 6, Fllysz + [F(O)]).

>0

Remark 7.6. In the general setting of doubling spaces, we can replace the dispersive estimates
(6.1) by

n(5=7)
(7.8) 1Py €Xp GSL) Ppienllpy < CV(x, r)H( rH) .
S

Here the constant n is the same as in the doubling condition. The arguments in the proof of (7.2)

2n
show that for p < =,

2 &-1 =% 2
1P| FI Poierllpsy < CV(x, )7 "2 (R) > 7|6 F|I3
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for all F supported in [0, R]. The T*T argument gives (ST;Z) forall p < n% Therefore we obtain
the same conclusion as in Theorems 7.4 and 7.5 for L satisfying property (FS) and (7.8) on any
doubling space.

Note also that under these two assumptions, we obtain from Theorem 5.1 endpoint estimates for

the Bochner-Riesz mean Sf;p)(L) onL? (pell, n%))far 6(p) = max {0,n é - % - %}

We finish this section by observing that a local dispersive estimate could also be used to esti-
mates for ||E.[k, k + 1)||,—,,,. More precisely,

Proposition 7.7. Let L be a non-negative self-adjoint operator on L*. Assume that L satisfies the
local dispersive estimates

|l exp(itL)|l; oo < Ct?
forall 0 < |t| < 2. Assume also that

lexp(=tL)|lomsee < C and |lexp(—tL)||j 00 < Ct™?

orallt > 0. Then fora <p<=anda >
lit>0.Th i1 24 and all k > 0

(7.9) |ELlk,k + D,y < C( + k)%(%_?lf)‘l,
where p’ is again the conjugate exponent of p.

Proof. Set G(¢) = 3n(1 — |€)2e ™ so that Gy(1) = 6(1 — k)2 — 65545, Note that there exists a

positive constant ¢ such that G;(1)e™®® > cy 1) (A) for all A € [k, k + 1). So
ClELLk k+ DfIE < IGLye™ Il
It follows from the above inequality and the 7*7T argument that
CNELk k + Dllpsy < NGKP(L)e™ ]y

Next (6.4) holds for |Imz| < 2. Hence

NG (L™ e < f z Gy * Gilllexp(—(1/k — i)L)| sy d€
= Cf ey
-2
<C f 2+ &1 dg
R
< C+k)2
This proves estimate (7.9). i

Remark 7.8. Using Mehler’s formula it is not difficult to verify that the estimates required in
Proposition 7.7 hold for the harmonic oscillator. One can use this fact to prove the corresponding
spectral cluster estimates (10.4) for this case (see Theorem 10.4).
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Part 3. Applications
8. STANDARD LAPLACE OPERATOR AND COMPACT MANIFOLDS

As mentioned in the introduction, the restriction estimates (Ry,) for standard Laplace operator on
R*are valid for 1 < p <2(n+1)/(n + 3). As a consequence of Theorem 5.1, we obtain alternative
proof of Theorem 1.1 of [69] by Tao, Theorem 1 [15] and main result of [14] described by M.
Christ. These results can be stated in the following way:

Proposition 8.1. For alln > 2 and 1 < p < 2(n+1)/(n+ 3), the operator (I — A)i(p) is of
weak-type (p, p).

Proof. This result is a consequence of Proposition 2.4 and Theorem 5.1. O

Similarly, using Theorem 5.2 one can obtain alternative proof of Theorem 1.2 of [69]. Our
proof shows that this result holds for all operators on compact manifolds which satisfy property
(FS) and condition (S,) as in the following proposition.

Proposition 8.2. Suppose the operator L satisfies (FS) and condition (S,) for some 1 < p <
2(n+ 1)/(n + 3). Then the operator (I — L/Rz)i(p ) is of weak-type (p, p) uniformly in R.

Proof. This result follows from Proposition 3.10 and Theorem 5.2. O

In both cases of compact manifolds with or without boundaries, examples which satisfy condi-
tion (S,) are described in [62, 64] by C.D. Sogge.

We mentioned here endpoint Bochner-Riesz summability results. From Theorems 4.1 and 4.2
we have more general spectral multiplier results for the operators considered in the previous propo-
sitions.

9. ASYMPTOTICALLY CONIC MANIFOLDS

Scattering manifolds or asymptotically conic manifolds are defined as the interior of a compact
manifold with boundary M, and the metric g is smooth on M° and has the form

2
_d k)
x* x?
in a collar neighbourhood near M, where x is a smooth boundary defining function for M and
h(x) a smooth one-parameter family of metrics on dM; the function r := 1/x near x = 0 can be
thought of as a radial coordinate near infinity and the metric there is asymptotic to the exact metric
cone ((0, ), X IM, dr* + r*h(0)).
In this subsection we consider the following classical operators:

e Schrodinger operators, i.e. —A + V on R", where V smooth and decaying sufficiently at
infinity;

e The Laplacian with respect to metric perturbations of the flat metric on R”, again decaying
sufficiently at infinity;

e The Laplacian on asymptotically conic manifolds.

Proposition 9.1. Let (M, g) be an asymptotically conic manifold of dimension n > 3, and let x be
a smooth boundary defining function of M. Let L := —A + 'V be a Schrodinger operator with
V € x3C*(M) and assume that L has no L*-eigenvalues and that 0 is not a resonance. Then
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(1) For any Ay > O there exists a constant C > 0 such that the spectral measure dE(Q) for VL
satisfies

n(Lo1y_
(9‘1) ||dE\/Z(/l)||LI’(M)_>LP’(M) <CA Gy

for1 <p<2n+1)/(n+3)and 0 < A < A,.
(11) If (M, g) is nontrapping, then there exists C > 0 such that (9.1) holds for all 1 > 0.

Proposition 9.1 was proved in [29, Theorem 1.2]. This proposition has useful consequence to
establish the convergence of the Riesz means up to the critical exponent §(p) = max {0, n|1 /p -

1/2| —1/2}forall 1 < p <2(n+1)/(n+3).

Corollary 9.2. Let (M, g) be nontrapping and the operator L satisfies all assumptions of Proposi-
tion9.1. Let 1 < p <2(n+1)/(n+ 3). Then

(i) S%PU(L) is of weak-type (p, p) uniformly in R.
(i1) For any bounded Borel function F : [0, co) — C such that sup,., |[ 6,F|lws2 < oo for some
B > max{n(1l/p — 1/2),1/2} and some non-trivial function n € C;°(0, c0), the operator
F( \/Z) is bounded on L' (X) for all p < r < p" with
IF(VDll-—, < Cy( suplln & Fllws: + IF(0))).

>0

Proof. Corollary 9.2 follows from Propositions 9.1, 2.4 and Theorems 5.1, 4.1. O

10. SCHRODINGER OPERATORS WITH ROUGH POTENTIALS

This section we discuss new spectral multiplier results for Schrodinger type operators of the
form -A + V.

10.1. Schrodinger operators with inverse-square potential. We start with inverse square poten-
tials, that is V(x) = # Fix n > 2 and assume that —(n — 2)>/4 < c¢. Define by quadratic form

method L = —A + V on L*(R", dx). The classical Hardy inequality
(n—2)°
—
shows that for all ¢ > —(n — 2)?/4, the self-adjoint operator L is non-negative. Set p. = n/o,
o = max{(n — 2)/2 — \/(n—2)?/4 +¢,0}. If ¢ > O then the semigroup exp(—tL) is pointwise

bounded by the Gaussian semigroup and hence a;[s on all L? spaces with 1 < p < co. If ¢ < 0,
then exp(—tL) acts as a uniformly bounded semigroup on L”(R") for p € ((p})’, p;) and the range
((py)', py) is optimal (see for example [47]).

It is proved in [10] that the solution u(t) = et f of the corresponding Schrddinger equation
iu+ Lu=0, u)=f

satisfies Strichartz estimates (6.2). The smoothing property (7.6) is proved in [4]. Therefore, we
obtain from Proposition 7.3 that L satisfies restriction estimate (R,) for all p € ((p})’, n%]. If
¢ >0, then p = (p)’ = 11is included. Using the above observation and Theorems 5.1 and 7.4 we

obtain

(10.1) ~A> |x|~2,

Theorem 10.1. Suppose that n > 2 and —(n —2)*/4 < c and that p € ((pr),2n/(n + 2)] where
pi=n/o and o = max{(n —2)/2 — \/(n — 2)*/4 + ¢,0} and (p?) its dual exponent. Then
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i S g(p (L) is of weak-type (p, p) uniformly in R.

(i1) For any bounded Borel function F : [0, c0) — C such that sup,., |[n 6,F|lys2 < oo for some
B > max{n(l/p — 1/2),1/2} and some non-trivial function n € CZ(0, ), the operator
F(VL) is bounded on L'(X) forall p < r < p’ with

IF(VDl.—, < Cs( supll 6,Fllysz +1F(0)]).

>0

10.2. Scattering operators. Assume now that » = 3 and V is a real-valued measurable function
such that

\% \% \%
VOUVON ) 1 < 4 and Vo)l
re X =l xeR3 JR3 lx =yl

The following proposition is a consequence of Proposition 7.1 and the main result in Rodnianski
and Schlag [55] which gives the dispersive estimates for exp(it(—A + V)) on R3.

10.2)

dy < 4nm.

Proposition 10.2. Suppose that L = —A + V on R? with a real-valued V which satisfies (10.2).
Then L satisfies (R;,) forall 1 < p < 6/5.

In the special case p = 1, Proposition 10.2 was obtained in [24, Theorem 7.15] for compactly
supported function V > 0 which satisfies (10.2). The following result is a consequence of Theo-
rem 5.1, 4.1 and Proposition 10.2.

Corollary 10.3. Suppose that L = —A + V on R? and that V satisfies assumption of Proposi-
tion 10.2. Assume also that 1 < p < 6/5. Then

1 S ;(p (L) is of weak-type (p, p) uniformly in R.

(i1) For any bounded Borel function F : [0, c0) — C such that sup,., || 6,F|lys2 < oo for some
B > max{3(1/p — 1/2),1/2} and some non-trivial function n € CZ(0, ), the operator
F( \/Z) is bounded on L' (X) forall p <r < p'.

If n > 3 and potential V € W**(R") for some s > 5 — 1 and has fast decay, Bourgain [8] proved
the dispersive estimates for exp(it(—A + V)) . Our results apply for L = —A +V and allow to obtain
sharp spectral multiplier results. We also refer to Rodnianski and Schlag [55] for more references
on dispersive estimates for Schrodinger operators.

We also mention that Strichartz estimates are proved for a class of elliptic operators with vari-
able coeflicients by J. Marzuola, J. Metcalfe and D. Tataru [49] (see Theorem 1.20). Therefore,
the same reasoning as for the Theorem 10.1 allows us to obtain sharp spectral multipliers and
endpoint Bochner-Riesz summability for these elliptic operators.

10.3. The harmonic oscillator. In this section we focus on Schrédinger operators such as the
harmonic oscillator —A + |x|> on L>(R") for n > 2. As in [44] we can also consider Schrodinger
operators L = —A + V with a positive potential V which satisfies the following condition

(10.3) Vo~ IVVI~d, 07V < L.

We apply Theorems 3.6 and 4.2 and the results from [44] to prove sharp results on Bochner-Riesz
summability and singular spectral multipliers for L. Bochner-Riesz summability results for the
harmonic oscillator were obtained before (see for instance, [31, 41, 40, 70]). Here we describe an
alternative proof. The corresponding singular integral multiplier is a new result. The following
theorem is the main goal of this section.
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Theorem 10.4. Assume that potential V satisfies condition (10.3) and set L = —A + V. Let
1 <p<2n/(n+?2). Then

(i) For any even function F such that suppF C [-1,1] and ||F|lws> < oo for some [ >
max{n(1/p —1/2),1/2}, the operator F(t VL) is bounded on L (X) forall t >0 and

sup [|F(t VD)||p—p < ClIFllyeo.

>0

(i1) For any bounded Borel function F : [0, c0) — C such that sup,., || 6,F|lys2 < oo for some
B > max{n(1l/p — 1/2),1/2} and some non-trivial function n € C°(0, c0), the operator
F(VL) is bounded on L' (X) for all p < r < p’. In addition,

IF(VD)llr < Cy( sup Iy 6, Fllysz + [F(0)])-

>0

Proof. It follows from Theorem 4 in [44] that forall A > Oand all 1 < p < 2n/(n + 2)
(10.4) IEL[A%, 22 + Dl|,my < C(1 + 2)"57 27",
Take a function F with support in [-N, N]. We have as in the proof of Proposition 3.10

¥ (-1 ¢
IFCVDG -, < ) IE il )F(VDIG s
=1

<
r —1 ¢
< sup [FQOPIE 1t S
=1 A€lFhH) NN
N2
(10.5) = > swp IFQPIELC ) (o ))llpﬁz
(=1 L5 %)

Now we observe that forall £ = 1,2,--- , N?

t-1, €-1 2,
||EL[< Ly (5 5 oIl ()% (7 + 2|
This, in combination Wlth (10.4) and (10.5), shows that for 1 < p <2n/(n+ 2)

IEx

p—2 po2°

N2

-1 2n(%—l)—2
IFCVDIG, < € sup [F@P2+—=) "
=1 €[5 5)
1 X
< CN"G P sup FQ)P
N =1 Ae[5H5)
1 X
Al 1
< CN2 (p 2)N2Z Sup |F(N/l)|2

=1 A€l 57)

This proves (SCZK) for k = 2 and p such that 1 < p < 2n/(n + 2). It remains to show (AB2 “) and
then apply Theorems 3.6 and 4.2. Now condition (AB; “) follows from the following lemma. O

Lemma 10.5. Let L = -A +V, where V € Llloc(Rn) and V > 0. Suppose that for some k > 0 and
any € >0

(10.6) (1 + V(x))"170/27¢dx < co.

Rn
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Then condition (SCi:g) implies (AB%’K).

The proof of Lemma 10.5 can be obtained by making a minor modification of the proof of
Lemma 7.9 of [24] so we skip it here. O

11. OPERATORS A, + % ACTING ON L*((0, 00), r"~'dr)

In this section we consider a class of Schrodinger operators on L*((0, o), 7'~'dr). These opera-
tors generate semigroups but do not have the classical Gaussian upper bound for the heat kernel.

Fix n > 2 and ¢ > —(n — 2)?>/4 and consider the space L*((0, o), ”""'dr). For f,g € C(0, 00)
we define the quadratic form

(1L.1) 0.7 = f g rdr + f ) S Fgrrdr.
0 0

Using the Friedrichs extension one can define the operator L, = A, + ¢/r? as the unique self-
adjoint operator corresponding to Qﬁ,(,)gw), acting on L2((0, o), 7"~'dr). In the sequel we will write
L instead of L, ., which is formally given by the following formula
c d? n—1d c
Lf = @u rz)f o dr? r drf " rzf'
The classical Hardy inequality (10.1) shows that for all ¢ > —(n — 2)?/4, the self-adjoint operator
L is non-negative. Such operators can be seen as radial Schrodinger operators with inverse-square
potentials. It follows by Theorem 3.3 of [19] that L satisfies Davies-Gaffney estimate, which in
turns implies property (FS).
Now for —(n —2)*/4 < ¢ < 0, we set pi = n/o where o = (n — 2)/2 — {/(n —2)?/4 + ¢ and
(pr) its dual exponent. Note that 2 < nZT"Z < p:. Liskevich, Sobol and Vogt [47] proved that for all
t>0andall p € ((py), p)s

—tL
lle™ I, < C.

They also proved that range ((p}.)’, p;) is optimal and that for all p ¢ ((py)’, p}), the semigroup
does not even act on L”((0, o), r*~'dr) (see also [22, 19, 30]).

Proposition 11.1. Suppose that n > 2 and —(n — 2)*/4 < c. For ¢ < 0, set p € ((p%), 2%) where

n+l

pr=nj/oand o = (n—2)/2 — \J(n—2)?/4 + c and (p) its conjugate exponent. For ¢ > 0, set
p € [1, 2). Then for any R > 0 and all Borel functions F such that supp F C [0, R],

(11.2) IF(VDPoyrm ||, < CVxa, 1) 7 (Rrg)" 72|61,

|p—>2
forall xg e R, and rg > 1/R.

Proof. In [30] the explicit formula for the resolvent of the operator L = A, + -5 is described.
Based on this formula we calculate explicitly the spectral projections dE (1) (This calculation
was shown to us by Andrew Hassell). Define the number n” = n’(n, ¢) to be the maximum positive
root of the equation (n'/2 — 1)*> = (n/2 = 1)*> + ¢ so that p; = n/o = 2n/(n — n’) where o =
(n—2)/2 — 3/(n—2)?/4 + c¢. Next let K, and I, are modified Bessel function, see [1, §9.6.1 p.
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374] or [72, §1.14 p. 16]. Set m(x) = x> 1, »_1(x) and k(x) = x™**'K,,;»_1(x). Then by (4.2)
and Section 6.1 of [30] the resolvent kernel for L = A, + 5 is given by
A2 k(Ay)ym(Ax)  if y > x,
11.3) R(A)(x,y) = K, -i(x,y) =

( (D) = Kaewrt CON =N k(i) it x> y
for some constant v. Next recall that x™/, is an even analytic function and that

I—a/ - Ia

Ky = & 10 = o)

2 sin(ar)

see [1, §9.6.1 p. 374]. Hence by the limiting absorption principle (that is Stone’s Theorem,
Chapter XIV, [34]) forall x <y

A
%(R(i/l)(x, ¥) = R(=id)(x,))

i1 1-n/2, 1-n/2 . Il—n’/Z(i/ly) _In’/2—1(i/ly)
= y—x " Ly -1 (id -
or Y oA == T2 = )

2
id 1-n/2. 1-n/2 . Il—n’/Z(_i/ly) - In//2—1(_i/1y)
BRAY In’ —1(=id .
oty o ) T — )

Kae zn(x,y)

Recall next that x™*, is an even analytic function so

Ly jp 1 GAX) 2 ((y) = Ly jpo1 (—IAX) ]y o (=i AY)

and
Ly o1 (—iAX) Ly joy (=idy) = €™ D Ly o1 (IAX) Ly o1 (i),
Thus
i1, B o, Ly ;o1 (iAX) Ly -1 (i)
K ) — L 1-n/2 1-n/2( in(n 2)_1 /
ak g®y) = vy e )= sn(r/2 - D)
(11.4) = iye™ DAY IR (GAX) Ly 1 (i),

We prove equality (11.4) under assumption that x < y but similar argument shows that (11.4) holds
for all x and y. Now if we set £(x) = x™**'1,,;,_,(ix) then by (11.4)

(11.5) dE (D f(x) = CU™ () fo (oY dy

for some constant C. The function ¢ = £, (1) for n > 2 satisfies the following estimates ([1, 72]):

n’—n

AT i A<
A7 i 1<

[E(DI < {
By (11.5)

Ky yp(x.y) =C fo F()(Ax)E(Ay)A" " dA.

Let us prove our estimate (11.2). We consider only the case —(n — 2)*/4 < ¢ < 0. The proof is
similar for the case ¢ > 0. For every B = B(xp, rg), one writes

F(VD)Psf(x) = C f ( f FOYEADEAN A dA)s0) )y dy:
0

0
Hence
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IF(VL)P5f13

e ) 2
CL ‘fov (L F(/Df(/lX)f(/ly)/ln_1d/l>YB(y)f(y)yn—ldy‘ xn_ldx

(o] 00 o 2
= C f ‘ f LAx)A"! f F) )5 fO)y* dy d/l' Pl
0 0 0

Note that the following Plancherel type equality (see, e.g., [16, 24]) is satisfied
00 00 ) -
I 1, Fevaaveadvax= | raraan
0 0 0

which yields

0 0 2
IFNDPaflE = € [ 1P| [ dmaoron o] 2

< C f FOORICA DI FIR dA.
0

Case I: B = B(xp, rg) and xp < 2rgz. Hence

3rp ,
C fo [eay)|” y"'dy

C fo |y dy

[ e

IA

< o f i leon|” vy dy
0
< Cca™

for all 2n/(n - 1) < p’ < pi = 2n/(n — n’) (For ¢ > O this condition should be replaced by
2n/(n—1) < p’). Thus

A

IFNDPafl < € [ IFQE2 P aaisi;
0

n—2 2 2
CR™ 7 ||6rFILIFIL,-

IA

When xp < 2rp, we have that V(B) ~ r, and V(B)”z‘””rg(l/p_l/z) ~ 1. This gives

2n(3-5)

CVBE P r, " R 5k FIBIAIR
CV(BY P (Rrp)™ 5 2|6 FIRIFI2

IF(VL)xsfI?

IA

IA

This proves Case I.
Casell: B = B(XB, I"B) and Xpg > 27"3. Then

IA

XB+rp ,
f |ecay)|” ydy

B~TI'B

XB+rp (! -
c (Ay) 2y dy

B—I'B

eyl

IA

rlon o p—l4ptLn

CA? 2 rpx,

IA
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Hence

A

2
IF(VDPfIE < f FQRA 2O g e

2 2n=1) _

< Crfx,” R||5RF||2||f||2

Note that if xz > 2rp then V(B) ~ x}~ '7g. Thus

2 2(n 1)

—n+1
IF(NDPsfI < Cryx,”  RISzFIBISI,
CV(B)Z(Q—%)(RrB)Zn(ﬁ—%)(RrB)l—Zn(i—%)”5RF”%”]€”?)
CV(BY P (Rrp)* 725k FIRIAIR

according to the condition Rrg > 1 and p’ > 2n/(n — 1). This proves Case II, and then the proof
of Proposition 11.1 is complete. O

INIA

IA

Vl

Corollary 11.2. Suppose that n > 2 and —(n — 2)*/4 < c. For ¢ < 0, set p € ((p?), =% ) where

pr=nj/oand o = (n—2)/2 — \J(n—2)?/4 + c and (p}) its conjugate exponent. For ¢ > 0, set
pe[l,2&). Then

n+1

(i) S%PU(L) is of weak-type (p, p) uniformly in R.

(i1) For any bounded Borel function F : [0, c0) — C such that sup,., || 6,F|lws2 < oo for some
B > max{n(1l/p — 1/2),1/2} and some non-trivial function n € C;°(0, c0), the operator
F( \/Z) is bounded on L' (X) for all p < r < p" with

IFCVD - < Co( sup 6, Fllwsz + IFO)).
>

Proof. This result follows from Proposition 11.1 and Theorems 5.1, 4.1. m|

Remark 11.3. Note that for the standard Laplacian A on R" Stein-Tomas estimate (R;) holds if
and only if 1 < p < 2(n+ 1)/(n + 3). Surprisingly, if n > 2 and —(n —2)*/4 < ¢ < 0, then the
restriction estimate (ST;Z) Jfor the operator A, + 5 holds only for all p € ((p;)’,2n/(n+ 1)) where

pi=njoand o =(n-2)/2 - \(n—-2)/4+c.

12. ExaMPLES OF (1, 2)-RESTRICTION TYPE CONDITIONS

In [24] the following Plancherel condition is introduced: for any R > 0 and all even Borel
functions F such that supp F C [0, R],

(12.1) f 1K g vy (5 )Pda(x) < CV(y, R (166 F 12
X
for some g € [2, co]. Note that for every x € X and r > 1/R,

[FDPsnfll, < | [ Keiunteemnems oo £t
X

IA

IA

fX 1K vy s Wl n WL F W)l dpa(w)

IA

CllorFllq f Vw, R ™2y g nWIf (W)ldpa(w)
CV(x, 1) 2(RrY"N16& Fll ANl

IA
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where in the last inequality we used the doubling condition (2.2). Therefore, for every x € X and
r>1/R

(12.2) IF(VL)Ppinllisa < CV(x, 1) 2RI 2|6 F I,

and so the condition (12.1) is just a slightly stronger version of condition (ST?’z).

It was noted in [16, 23, 39] and used in context of spectral multipliers that condition (12.1) with
g = 2 holds for homogeneous sub-Laplacian acting on homogeneous Lie groups. Condition (12.1)
with g = 2 holds also for “quasi-homogeneous” subelliptic and elliptic operators (see [60]). As
we note, condition (12.1) is stronger than condition (STiz) so this implies the following result.

Proposition 12.1. Let L be a homogeneous sub-Laplacian or “quasi-homogeneous” operator
acting on homogeneous Lie group with homogeneous dimension d. Then the Riesz mean S ;ed_l)/ 2(L)
of order (d — 1)/2 is of weak-type (1, 1) uniformly in R.

Proof. Proposition 12.1 follows directly from Theorem 5.1. O

We believe that in this generality Proposition 12.1 is a new result. However in the case of
Heisenberg group it follows from the result obtained by Miiller, Stein and Hebisch that the the
Riesz means of order § > (d, — 1)/2 is bounded on L', where d, < d is the topological dimension
of the Heisenberg group (see [53, 32]). Therefore it is likely that Proposition 12.1 is not a genuine
endpoint result.
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