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RESTRICTION ESTIMATES VIA THE DERIVATIVES OF THE
HEAT SEMIGROUP AND CONNECTION WITH DISPERSIVE
ESTIMATES

FREDERIC BERNICOT AND EL. MAATI OUHABAZ

ABSTRACT. We consider an abstract non-negative self-adjoint operator H on an L2-

space. We derive a characterization for the restriction estimate HdEdLA(A)HLp_}LP/ <
del 1y _q

cx2mpr) (involving the Radon-Nikodym derivative of the spectral measure) in

terms of higher order derivatives of the semigroup e~ *. We provide an alternative proof

of a result in [1] which asserts that dispersive estimates imply restriction estimates. We

also prove LP — LP" estimates for the derivatives of the spectral resolution of H.

1. Introduction and main results

Let (X, 1) be a measured space. That is X is a non-empty set endowed with a positive
measure . We consider a non-negative self-adjoint operator H on L? = L?(X,p).

We denote by dEy the spectral resolution of H and by ddE—)\H its Radon-Nikodym

derivative. Since we will be interested in LP — L? estimates for dEdL/\(A) we shall assume

throughout this note that the spectrum of H is continuous. The LP — L* norm will
be denoted by || dEZl{)\(’\) | L»—» and p’ is the conjugate number of p.

We first discuss the Euclidean Laplacian. Suppose that X = R? and H = —A (the
positive Laplace operator) on L?(R%). It is a well-known fact that as a consequence
of the Stein—Tomas estimates for the restricted Fourier transform to the unit sphere,
the derivative of spectral measure dE:iiﬁo‘) is a bounded operator from L into L?'

for all p < 2LE2.n addition,

vl
—
S =
I

E]

L), 1
< C\ 7T A>0.
Lr—L?»

dE_a(N)
dA

Such estimate is sometimes referred to as the (p,2) restriction estimate of Stein—
Tomas. We refer to the introductions of the papers [1, 3] for more details about this.

The above restriction estimate was extended to the setting of asymptotically conic
manifolds in [3]. In the paper [1], the restriction estimate

HdEH()\) d(l 1y—1

<oxlemw) T
Lp—Lp

(1.1) =R
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was studied in an abstract setting. (Here d is any positive constant). It is also proved
there that (1.1) holds for several operators.

One of the aims of this note is to prove other characterizations of (1.1) in an
abstract setting. In the following result we show that the restriction estimate for
H can be characterized in terms of higher order derivatives of the corresponding
semigroup e . More precisely,

Theorem 1.1. Let d be a positive constant and fiz p € [1,2). The following assertions
are equivalent.

(1) The restriction estimate (1.1) holds for every A > 0;
(2) There exists a positive constant C' such that

(1.2) IHN ey < C(N — 1IN G N3G m30)

)

forallt >0 and all N € N;
(3) There exists a positive constant C' such that

d(1_ 1 ds
(13) 1P o < CREGT) [ 17(0)| %,
for all R > 0 and bounded measurable function F with supported in [0, R].

The main novelty here is the characterization of (1.1) by (1.2). The equivalence
of (1.1) and (1.3) is in the spirit of Proposition 2.4, Section 2.2 in [1]. Note however
that in contrast to that proposition in [1] we do not assume here that the volume of
balls in X is polynomial. Moreover, the L' norm in the RHS in (1.3) is taken w.r.t.
9 rather than ds as in [1] and it is obvious that

/O s)|— /|F Rs|>/ |F(Rs)|ds.

One of the main ingredients in the proof of Theorem 1.1 is the following result,
which expresses the spectral measure in terms of the semigroup. We denote by (., .)
the scalar product of L?. We have

Theorem 1.2. Consider a bounded and continuous function ¢. Then for every f,g €
L? we have

lim (Nl_l)!/ooo¢(s_1)<((N—1)sH) e )T (o) 1, g).

N—oo
A useful consequence of the latter theorem is the following equality for the deriva-
tives of Eg () (in which the limit has to be understood in the weak sense): for £ > 0
an integer
dk+1 1 dk

_ -1 -1 N+1 —NA"'H
gt Pr(A) = lim [A (NATZH) " e }

for A > 0.



RESTRICTION ESTIMATES 3

As an application we show that dispersive estimates for H imply the restriction
estimate (1.1) as well as LP? — L estimates for the derivatives d/\kﬂ En(\) for k <
d/2 — 1. The estimates for the derivatives is new, whereas the case k = 0 was already
proved in [1].

We finish this introduction by explaining why it is interesting to prove the restric-
tion estimate (1.1). Let us assume now that (X, u) is equipped with a metric p and
assume that for every x € X, r > 0, the volume u(B(x,r)) of the open ball B(x,r)
satisfies

errd < p(B(z,r)) < car,

where ¢; and co are positive constants. Suppose in addition that H satisfies the
finite speed of propagation property, that is the support of the kernel of cos(t\/ﬁ )
is contained in {(z,y) € X x X, p(z,y) < t}. Under these assumptions, it is proved
in [1] (see also [3] for the first assertion) that the restriction estimate implies sharp
spectral multiplier theorems. More precisely,

Theorem 1.3. Suppose that the restriction estimate (1.1) holds for some fized p €
[1,2). Then the following assertions hold.

(i) Compactly supported multipliers: Let F' be an even function with support
n[—1,1] and F € W52(R) for some 3 > d(1/p—1/2). Then F(H) is bounded
on LP(X), and

sup HF(tH)HLP—»LP < CHFHWBz
t>0

(ii) General multipliers: Suppose that F' is an even bounded Borel function
which satisfies sup ||[n(-)F(t-)|we2 < oo for some 3 > max{d(1/p —1/2),
1/2} and some non-trivial function n € C2°(0,00). Then F(H) is bounded on
L"(X) for allp <r < p'. In addition,

I1F(H)|

bz < Os (509 [1O)F ()l + [ F(0)]).

A version of this theorem for general doubling spaces is proved in [1]. One can apply
Theorem 1.3 to prove summability results for Bochner—Riesz means on LP-spaces.

2. Proofs

We start with the proof of Theorem 1.2. We shall write < for < up to a non-relevant
constant C.

Proof of Theorem 1.2. Let us set c&l = fooo xNe’f‘df = (N — 1)! By polarization, it
suffices to prove that for every function f € L?

@1 i ew [T o - DsEYe Y S (o)1 ),
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We have
22 ex / T oYV — D)sH)N e 0 g gy B8
0 S

e [ [ ot - psn e D 07 0
@3 = [ OB,

where

* N _—(N—1)sA ds
un(A) :==cn d(sT)((N =1)s\) Ve e
0
Owing to the constant cy, it is clear that the continuous function uy is bounded by
@l o= . Therefore, it is enough to prove that py(\) converges to the function ¢(\)
for all A > 0 and then conclude by the dominated convergence theorem.

Taking the difference yields

lun(A) = ¢(A)] = en

/Ooo [p(s™) — (V)] (N — 1)5)\)Ne*(N*1)S/\@

S

< /OO [6(s™) — BN)] en (N — 1)sh)Ne- W=D
0

S

Using Stirling’s formula

x = (V-1 = (5 I)N_l (2N) %,

we obtain for large enough N and uniformly with respect to A

v (X) = $(N)| S N2 / oY) — s (sn)Nem W -nea-n &

0 S
(2.4) SN[ o) = 600] (AN s,
0

Using the continuity of ¢ at A, we know that for every € > 0, there exists J such that
for every s > 0
[sA=1] <0 = [¢(s7) — (V)| < e

So, we decompose the integral for sA < 1—-0,1 -0 < sA < 1+4d and s\ > 1+ 9,
obtaining three terms I, IT and III. For the first term, we have (since z — ze~ (=1 ig
non-decreasing for z € (0, 1))

IS NE((1—8)e)N"IN|¢]| poe (/ ds>
sA<1-§
SNE((1=0)e)N | e
For the third term; we similarly have (since z — e~ (=1 is decreasing for x € (1, 00))
I < N2((146)e )N 2 </
SA>1+6

SNE(1+38)e )N 72(|¢]| oo

(s)\)e_(”_l))\ds> || oo
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Because the map x +— ze!™® attains its maximum (which is equal to 1) at z = 1,

then (1 —8)e® < 1 and (1 +8)e™® < 1 and so the two previous terms tend to 0 when
N goes to infinity. About the second term, we have the trivial bound

d
II< / ecn((N — 1)3/\)Ne_(N_1)S/\—S
[sA—1|<68 S

< ecN/ (N — 1)5)\)N67(N71)5A@
0 s
<e

As a consequence, we deduce that for every € > 0

limsup [un (A) — d(N)| <e,

N—oo

which concludes to the fact that uy pointwisely converges to ¢. Then, using dominated
convergence Theorem and then spectral theory in (2.3) implies (2.1). O

Remark 2.1. Let us point out that the previous reasoning does not allow us to
describe the speed of convergence for puy to ¢. We want to detail that if we know the
modulus of continuity of the function ¢ then we can have some information about
the convergence. For example, let us assume that the function ¢ is p-Holder at A for
some p € (0,1).

In this case, as previously done we then decompose the integral in (2.4) for sA < uy,
uy < sA < vy and s\ > vy, obtaining three terms I, IT and IIT and where uy < 1
and vy > 1 will be suitably chosen later (around 1). Then we have using the same
arguments as before

IS N2 (upe DN g o
and

I < N2 (vye OV D)YN=2)g]| o

About the second term, using the p-Holder regularity of ¢ (and that ze= (=1 <1 for
every x > 0), it follows that

_ P
I < N%/ <”N“N> \ds
un <sA<on s

S N2 (2A(on — un))’|on — unl,
where we used that uy, vy are around the value 1. Finally, we deduce that for every A
(N = ¢V S N7 (uye (D)=
+ N%(v]\ne_(w_l))N_2 + N%(/\(UN —un))’lvn —un|.

Now, let us write

uy:=1—¢€xy and ovy:=1+ ¢y,
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with ey — 0 as N — oo. We note that by a second order expansion,
1 N-1 1
log (Nz (unetov=n) ) = > log(N) + (N — 1) [log(un) — (uy — 1)]

— Llogn) — (v — 1) B(UN 12 4+ O(uy — 1)3]

1 1
= 3loa(V) — (¥ = 1) | 36k + O(eh)|
RPN
N—o0
provided
N
9. s _
( 5) N—oo log(N) N >

In this case,
lim N2 (uNef(“Nfl))Nfl =0.

N—o0

Similarly , we have
lim N2 (vye V-D)N=2 =

N—o0

and moreover, we can choose ey such that
(2.6) Jim Nz oy —un|(2A(vy — un))” < Jim NZen(Aey)” = 0.
Indeed, take ey such that

Neg = log(N)?,

(which is possible for large enough integer N) then ey tends to 0 and (2.5) and (2.6)
are satisfied. For this choice, we let the reader to check that we have

lun(A) = oM S N7,

for every o < p/2.
As a consequence, we deduce for example that for a smooth function ¢ compactly
supported in (0,00) then
71 o s(N— 1)H ds —c
¢ — 1)sH)Y — ¢(H) SN
— 1 L2 L2

for every exponent o < 5.

Corollary 2.2. Let § € (0,1]. For every smooth function ¢ and every L?-functions

f, 9, we have
dE
9= [ o )f,>
-1 A
o 1 \N+6 ,—A"'NH dA
]&:mwfqﬁ (NATLH) T e Lo
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Proof. The case 6 = 1 is exactly the statement of Theorem 1.2. For ¢§ € (0,1), we
follow the same proof and replace (N — 1)! = T'(N) by I'(N — § + 1) (we recall that
Stirling’s formula remains valid for the I' function, see (2.7) below). O

Making an integration by parts in Theorem 1.2, we obtain a formula for the deriva-
tives %E m(A) in terms of the semigroup. That is
Corollary 2.3. The following equality holds in the weak sense: for an integer k > 1

dk+1 1 dk
——Exg(\) =1

A ! 17 \N+1,—-NX"'H
AN i [V VAT ) ]

for X > 0.

Proof of Theorem 1.1. We first prove that (1) implies (2). Suppose that (1.1) is sat-
isfied. For fixed N we have

uHNe“ﬂ[wﬁLy——H%; AN e B ()

Lr—Lp

< /oo )\Ne—tA)\%(%—pfl/)—ld)\
0

= (/00 uN+g(71’Pl’)1e“du) tiNfg(%fﬁ).
0

_N—d(l_L d,1 1
= VEGTII W  S0C - ).

2p 7
Stirling’s formula for the Gamma function (see [2, Appendix A.6])
(2.7) I(z) ~z° 2e "V2r forz >0,

shows that

|

IHY e | 1o g S (N = 1)!N%( ey 2(5=37),

~

This proves assertion (2).
We now prove that (2) implies (3). Suppose first that F' is a continuous function
with support in [0, R]. We apply Theorem 1.2 and obtain

||F(H)||LP_>LP/
< limsup# /OO F(s™H|I(N - 1)5H)Ne_S(N_1)H|| ,ﬁ
TN (N=D!Jyg PP s
> d(1_1 _N_d(1i_1yd
5nmsup/ F(s~)(N = 1)s)V NG9 (s(N = 1)) V4G 98
o 1\ —4(i_1yds
< [ Rt
1/R S

[N

R
<;—,3,>/ Fs)%.
0

S

<R
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We have proved that

ds

R
4l _ 1
(28) 1Dl S REGH) [P,

Next, we extend the latter estimate to all bounded functions F' with support in [0, R].
This can be achieved by classical approximation arguments. First assume that the
support of F' is contained in [n, R] for some n > 0 and apply (2.8) to the convolution
F. = p. x F' by a mollifier p.. We obtain

R
de1l_ 1 d
IF(Dsr S (R+0807 [ ).
n—e

Since |Fe(s)| < || F||s and the support of F, is contained in [n/2, R+ n/2] for € < n/2
one can apply the dominated convergence theorem to the RHS of the previous in-
equality. We obtain (2.8). Now for every bounded F' with support in [0, R] we can
apply (2.8) to X[, g F" and then let ¢ — 0. Assertion (3) is then proved.

Finally we prove that (3) implies (1). In order to do this, we fix A > 0 and € € (0, \),
and apply (3) to F(s) = X(x—e,a+<(5). It follows that

a1_1y [MCds
IxXr—e e (H)ll oo S (>\+6)2(P P')/A s

de1_1y2€

)\ 2(1, p/)i‘

(X
Hence,

~1 (=) —1
”6 X(A—e)\-l-e]( )HLP*)LP ~ (/\ + 6) PN

We let € — 0 and obtain assertion (1). O
Remark 2.4.

e In the proof of (1) = (2) we can take N = 0 and obtain that (1) implies

_d¢l1__ 1
le™ | o St 2679 ¢ >0,

e Suppose that (1.1) holds. Let « > 0 and apply assertion (3) with F'(s%) to

obtain
I g S REGD) [ |Pa0)| S = arEGT) [ 1700
We conclude by Theorem 1.1 that
‘dEZ;W <oFGTTL Ao
Lr—L?'

In particular, for o = %

s
X

Lr—Lp
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e Assume that the heat semigroup (e=*);-( satisfies the classical LP — L2
estimates

le ™\ o2 St 5G-2) for every t > 0 and some p € [1,2].
Then we observe that for every integer N > 3

— _t — 2 _t
1N e™ |l g < lle™ 5™ papo [HN e O3 [ o pale™ ¥ 1 2

where we used Stirling’s formula to obtain the last inequality. Therefore, we
see that the gap between this very general estimate with the one required in
Theorem 1.1 is an extra term of order N2.

3. Restriction from dispersion

In this section we show that dispersive estimates for the semigroup generated by H
imply restriction estimates and also LP — L?" estimates for the derivatives -2 i /\k —FEu(\)
up to some order. The result for the case k = 0 was already derived in [1] by a different
proof. The result for k > 1 seems to be new.

Proposition 3.1. Fiz 1 < p < m = 2. Suppose that the semigroup (e *H),cc+
satisfies the following dispersive estimates:

_d(1_1
(31) e o g < 720G 737),

uniformly in z such that R(z) > 0. Then, for v > 0

d

INSEYY eV, <5~ ) Ny -1y,
uniformly in N > 1 and s > 0 (the implicit constant only depends on v > 0).

Remark 3.2. It follows from Cauchy’s formula that (3.1) extends to the derivatives
of the semigroup as follows: for k£ > 1 and every z € C*

IR e < 12| 207),

Proof. By the functional calculus, we have

—(sH
NsH)N+1e=NsH — NINN(sNH / L
( ) ( ) I'n (C _ N)N+1 C
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where I'y is the circle of center NV and of radius N — 1. So we deduce that

_NsH ||(5H)76_<8 lLo— o
|(NHs)N+tre=NsH| /<NN+"’N!/
LP—LP I'n |C N|N+1

dg

< NVENIY = 1) [y e
'y

27
(3.2) < NIV / |(sHY e SosH |, 0 db,
(0]

with Cp := N + (N — 1)e?®. Writing (up to some numerical constant) with an integer
k>1+~

—¢s (t4s dt
(sH)Ye ¢sH :sv/o (tH)*e (t+ C)HtHV

we deduce that (since v € (0, k))
tk dt

||(5H)76_CSHHLP—>LP’ S s7 %> tl+y
k

/0 (t+ RO (It + 5 F (7
<37(5|C|)_(1_pl’)/0 <t+smg> o

)’“ dt
t1+v %(C) t1+v

where we used that $(¢) > 1 and |t + s| > |sC]|. Putting this estimate together with
(3.2) yields with o := ¢ (%

I(NsH)M e

27

< s“’N!N'V/ |N + (N —1)e'| ™7 do
0

< s NIN? /1 (N + (N =1u)*+ (N —1)*(1 2))"’/2 du

S . — u — — U y—

—1 \/1—U2

—o/2  du

14w

sTONIN7 [/O (N?*(1+u)?+ (N = 1)*(1 4+ u))

/N‘ Al

(N-1)* d
s~ONINT V (1+v)o2- 2 N—e
0

Ny/v
< SsTONINT o~ 579(N —1)IN?,

where we used that o > 1 since p < 2,. O
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Corollary 3.3. Assume that the semigroup (e~ *1) cc+ satisfies the dispersive esti-

mate (3.1) for some 1 < p < % = 2.. Then we have

dEn ()
dA

In addition for an integer k < d/2—1,if 1 <p< % then

<2671 Ao
Lr—Lp

<AGm) =00y 5,

Lp—Lp’

Proof. The first assertion follows immediately from Proposition 3.1 and Theorem 1.1.
For the second assertion we give for simplicity a proof for £k = 1, the general case
follows by iteration. By Corollary 2.3 we have in the weak sense

d? . 1 d —17\N+1_—A"'NH,-1
) = Jim s (VAT Y e A
_ 1 -1 d —1\N+2_—A"'NH
= yim 3 (VH) a[““ H)™ e J

Following Proposition 3.1, we write
eforlH

(NATLH)NH2e=NATH = (N 4 2)INN+2 / d¢

and so

. —(AT'H
d [(NA—1H)N+26—N>\ H:| :(N+2)!NN+2/\—2/ (He

ax r (€ Wy

Hence,

1 . d B -1 (N + 2)| B C67<>\*1H
— (NH 17|:N)\ IH N+2 A NH:|: NN)\ 2/

N VH) T | ) (N —1)! by (C— NN
Using the dispersive estimate, it follows that

1
31

dc.

11l d _ 1
NH) 1 a[(N)\ 1H)N+26 A NH]

Lp—Lp

! —TtH)| »
NN)\2/ ‘C|||6 ]|\|7LF’1—>LP dC
M FN |< - N| +

S

! NN
: /\—2 1—0’)\0’d
a1 _ 1

with o := 3 <p — p/). Such integral was already computed in Proposition 3.1 and

is uniformly bounded as soon as 1 — ¢ < —1. This gives the desired estimate for
d2
e Eu(N). O
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