Samia Ayadi 
email: samiaay@yahoo.com
  
Olivier Haeberlé 
email: olivier.haeberle@uha.fr
  
The Lorenz model for single-mode homogeneously broadened laser: analytical determination of the unpredictable zone Research Article

Keywords: 55.-f, 42.55.Ah, 05.45.Pq Laser instabilities, Lorenz-Haken equations, Self-pulsing, Chaos

. In this work, we extend this method in the aim of obtaining the higher harmonics. We show that this iterative method is indeed limited to the fifth order, and that above, the obtained analytical solution diverges from the numerical direct resolution of the equations.

Introduction

The simplest laser model is a single mode unidirectional ring laser containing a homogeneously-broadened, twolevel medium, commonly designated as the Lorenz-Haken model. In 1975, Haken [1] showed equivalence between the Lorenz model that describes fluid turbulence [2], already known for leading to deterministic chaos, and the equations of a homogeneously-broadened, single-mode laser. In this context, such a laser can be viewed as a system, which becomes unstable under suitable conditions related to the respective values of the decay rate (bad cavity condition) and of the level of excitation (second laser threshold). The numerical integration of the Lorenz-Haken model has indicated that the system undergoes a transition from a stable continuous wave output to a regular pulsing state. However, it also sometimes develops irregular pulsations (chaotic solutions). The nature of such irregular solutions was explained by Haken [1]. For more than thirty years, the approach towards solving Haken-Lorenz equations was dominated by the general line of thought that "the pulsing solutions of the singlemode laser equations must be found with numerical integration". Bougoffa and Bouggouffa [3][START_REF] Bougouffa | AIP Conf. Proc[END_REF][START_REF] Bougouffa | [END_REF] presented an analytical approach based on Adomian decomposition to find the solutions of the Lorenz system. Their method was applied to find the stationary states. In a previous work [6,7], it was shown that a simple harmonic expansion method permits to obtain analytical solutions for the laser equations, for physical situations where the long-term signal consists of regular pulse trains (periodic solutions). The corresponding laser field oscillates around a zero mean-value. In particular, we have shown that the inclusion of the third-order harmonic term in the field expansion allows for the prediction of the pulsing frequencies. The analytical expression of pulsing frequencies excellently matches their numerical counterparts, when the solution consists of regular period-one pulse trains. We have also derived a natural frequency, typical of the permanent pulsing-regime of operation. The aim of the present work is first to extract analytical information about the zone of period doubling and about the chaotic region, from the third-order expansion analysis. Then, the validity of the analytical development is discussed. We demonstrate in particular that the analytical expression of the periodic solutions diverges from the numerical one if one extends the development above the fifth order.

Haken-Lorenz equations: period-one oscillations

The model we start from is based on the Maxwell-Bloch equations in single mode approximation, considering a unidirectional ring laser containing a homogeneously broadened medium. The equations of motion are derived using a semi-classical approach, considering the resonant field inside the laser cavity as a macroscopic variable interacting with a two-level system. Assuming exact resonance between the atomic line and the cavity mode, and after adequate approximations, one obtains three coupled non-linear differential equations for the field, polarization, and population inversion of the medium, the so-called Lorenz-Haken model [START_REF] Haken | Light[END_REF][START_REF] Narducci | [END_REF][START_REF] Harrison | [END_REF]:

d E (t) dt = -κ {E (t) + 2 C P (t)} (1a) d P (t) dt = -P (t) + E (t) D (t) (1b) d D (t) dt = -℘ {D (t) + 1 + P (t) E (t)} (1c) 
where E(t) represents the electric field in the laser cavity having a decay constant k, P (t) is the polarization of this field, D(t) is the population difference having a decay constant ℘. Both κ and ℘ are scaled with respect to the polarization relaxation rate, and 2C is the pump rate required for obtaining the lasing effect. To obtain the steady-state solution of system (1), all derivatives with respect to time are set to zero. Under suitable conditions, the steady-state solution becomes unstable. We can delimit the boundary regime where Eqs. (1) involve unstable solutions by linear stability analysis (LSA) [START_REF] Haken | Light[END_REF][START_REF] Ya | Fundamental of Laser Dynamics[END_REF]. This analysis leads to the following results: the loss of stability simultaneously requires a bad cavity (i.e., κ being sufficiently larger than ℘ + 1) and a pumping parameter 2C larger than 2C 2th (the instability threshold condition). This threshold 2C 2th corresponds to the onset of instability and is given by:

2C th = 1 + (κ + 1) (κ + 1 + ℘) (κ -1 -℘) (2) 
At this critical value of the excitation parameter, the solution undergoes a subcritical Hopf bifurcation [START_REF] Sparrow | The Lorenz Equation: Bifurcation, Chaos and Strange Attractors[END_REF] and loses stability, leading to a large-amplitude, pulsing solution. We have solved numerically Eqs. (1) using a Runge-Kutta method with an adaptive integration step, and with the following parameters κ = 3, ℘ = 0.1 and 2C = 10 > 2C th (2C 2th = 9.63). The field and polarization oscillate around a zero mean-value, while the population inversion oscillates with a dc component. The corresponding frequency spectra obtained by Fast Fourier Transform (FFT) exhibit odd components at ∆, 3∆, 5∆,... for the field and polarization. On the contrary, the population inversion spectrum exhibits even components at 2∆, 4∆, 6∆,.... These properties are at the basis of the strong-harmonic expansion method [6,7,[START_REF] Meziane | Atomic, Molecular and Optical Physics[END_REF] that we use to construct analytical solutions. We now give a brief outline of the main steps of the adapted strong-harmonic expansion method we use. This yields analytical expressions for the angular frequency of the periodic solutions and for the first harmonics of the corresponding analytical solutions.

Iterative harmonic expansion

We here briefly summarize the analytical procedure, which we use to determine the long-term frequencies and amplitudes of the first harmonics of the field E(t) [6,7,[START_REF] Meziane | Atomic, Molecular and Optical Physics[END_REF]. We write the interacting variables as the following expansions:

E (t) = n≥0 E2n+1 cos ((2n + 1) ∆ t) (3a) 
P (t) = n≥0 P2n+1 cos ((2n + 1) ∆ t) + P2n+2 sin ((2n + 1) ∆ t) (3b) 
D (t) = D0 + n≥0 D2n+1 cos ((2n + 2 )∆ t) + D2n+2 sin ((2n + 2 ) ∆ t) (3c) 
Limiting these expansions to the third order for the field and polarization, and to the second order for the population inversion in Eqs. (3), we obtain the expression of the angular frequency of the pulsating solution [6,7]:

∆ 2 = (2 C -1) κ ℘ (2 + ℘) -3 (κ + 1) ℘ 2 8 (κ + 1) -℘ (2 κ + ℘ + 4) (4) 
The details of these calculations are given in section 2 and appendix A of Ref. [7]. This formula shows dependence to the pumping parameter 2C and indicates that the frequency of the signal increases with the excitation level.

We have previously [6] proved that the analytical frequency given by Eq. ( 4) perfectly matches the frequency numerically derived from Eqs. (1). Another expression for the operating long-term frequency [7] is obtained:

∆p = 3 ℘ + 2κ (1 + 2℘) 24 + 6κ + 9℘ (5) 
This expression shows no dependence to the excitation level 2C. It constitutes an expression of the natural frequency that characterizes a given set of κ and ℘ values that allow for periodic solutions. This frequency will be used to delimit the domain where the laser exhibits regular oscillations.

Chaos via a period doubling sequence

A. Narduccsi et al. [START_REF] Narducci | [END_REF][START_REF] Narducci | Laser physics and laser instabilities[END_REF] have shown that parameter ℘ plays an important role in defining the kind of dynamics predicted by the Lorenz-Haken model. Numerical simulations [START_REF] Meziane | Atomic, Molecular and Optical Physics[END_REF] with κ = 3 and ℘ = 0.1 (Fig. 1) have shown that large-amplitude periodic solutions dominate over the range 10 < 2C < 32. The behaviour of these periodic solutions for increasing gain 2C is extremely variable. 1e,1f)). This feature corresponds to the period-doubling bifurcations.

These results illustrate that period-doubling bifurcations can only emerge from asymmetrical solutions, as shown by Swift and Weisenfeld [18]. As the excitation level further increases, more and more complicated patterns emerge, which eventually lead to chaotic behaviour. As shown in Figs. (1g,1h) and Figs. (1i,1j), the temporal trace of the field exhibits asymmetric solution with period four when 2C = 29.7, and finally becomes chaotic for We now attempt to delimit the zone where the laser can exhibit periodic pulsations using the analytical method.

2C = 32. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
At first, we derive the analytical expression of the pumping rate 2C that leads the laser to oscillate with period one, period two and over. To get this expression, we assume that the pulsation frequency Eq. ( 4) is proportional to the eigenfrequency Eq. ( 5):

∆ = α ∆p (6) 
α being a rational number. Then, 2Cα takes the following form:

2 Cα = (2k + 3℘ + 4κ℘) α 2 [8(κ + 1) -℘(2κ + ℘ + 4)] + 3℘(8 + 2κ + 3℘) 3κ℘(2 + ℘)(8 + 2κ + 3℘) (7) 
For different values of α, we get the pumping level 2Cα that we have used for numerically solving Eqs. (1). These numerical solutions for the chosen parameters κ = 3 and ℘ = 0.1 can be categorized into four classes, depending on the values of α:

Symmetric and period-one solutions:

1 ≤ α < 1.5 (9.63 ≤ 2C ≤ 18.4)
Asymmetric solutions with period one:

α ≤ 1.75 (18.4 < 2C ≤ 27.8)
Asymmetric solutions with period two and over:

1.75 < α < 2 (27.9 ≤ 2C < 32) Chaotic solutions: α ≥ 2 (2C > 32)
These results are illustrated in Fig. (1), and the route to chaos via period doubling is clearly identified. We conclude that the chaotic behaviour takes place for α ≥ 2. This last result allows for delimiting the region of control parameters where the operation of the homogeneously-broadened single mode laser can be chaotic. To do so, we assume that 2C 2th is equal to 2C2. From this identity, we derive a characteristic equation of ℘ according to κ:

64κ -64κ 3 + (96 + 208κ + 92κ 2 -40κ 3 + 12κ 4 )℘ + (120 + 242κ + 274κ 2 + 70κ 3 + 6κ 4 )℘ 2 +(24 + 41κ + 76κ 2 -5κ 3 )℘ 3 + (15κ + 29κ 2 )℘ 4 = 0 (8) 
We have solved Eq. ( 8) using the Mathematica™ software to found the analytical expressions of its roots. Accepting 

Analytical periodic solutions

The analytical development described in section 3 permits to establish the analytical expression of the electric field. This was done in a previous work (see appendix A in Ref. [7]) to derive the expressions of the first and third-order harmonics of the field:

E1 = -2CP1 = 2 (1 + ∆ 2 )(4 ∆ 2 + ℘ 2 )(1 + κ) √ ℘ (℘ + 2 κ + 2℘ κ -∆ 2 (4 + ℘ + 2 κ)) (9) 
E3 = -2CP3 = - T 3d (℘ 2 (1 -3∆ 2 ) -8℘ ∆ 2 ) E 3 1 4 1 -T 1d (℘ 2 (1 -∆ 2 ) -4℘ ∆ 2 ) E 2 1 4 (10) 
The expressions of E1 and E3 are related to the decay rates ℘ and κ, and to the excitation parameter 2C through their dependence on the pulsing frequency ∆. Using the previously described analytical features, we now construct a typical sequence of analytical solutions being the counterparts of the numerical one, presented on Fig. (3a).

The long term operating frequency is estimated from Eq. ( 4), while the first and third order field components are evaluated from Eqs. ( 9) and [START_REF] Sparrow | The Lorenz Equation: Bifurcation, Chaos and Strange Attractors[END_REF], respectively. The values of these components, for κ = 3, ℘ = 0.1 and 2C = 10, are E1 = 5.19 and E3 = 1.72 and the corresponding frequency is ∆ = 0.42. Thus, to the third order, the analytical field expansion takes the following form:

E (t) = 5.19 cos(0.42 t) + 1.72 cos(3 × 0.42 t) (11) 
The temporal evolution of Eq. ( 11) is illustrated in Fig. (3b). One may notice the resemblance with its numerical counterpart depicted in Fig. (3a), however, differences remain between the analytical and the numerical solutions.

The pulses peak at En = 7.75 in the long-term time trace of Fig. (3a), while from the analytical solution expressed by Eq. ( 11) we find E ≈ 6.95. This difference can be attributed to the limitation of a third-order-only development.

To verify this hypothesis, we have extended the calculations towards fifth order in field amplitude [START_REF] Meziane | Atomic, Molecular and Optical Physics[END_REF][START_REF] Ayadi | Semiconductor Lasers and Laser Dynamics III[END_REF]. Hence, we expand Eqs. (3) to fifth order (for n = 2) for the electric field and polarization and adopt the same procedure as in section 3. After calculations, we obtain the fifth components in terms of the first and the third order field amplitudes:

P5 = Γ d Γ5 f E 5 1 + g E 2 1 E3 + h E 4 1 E3 + q E1E 2 3 + s E 3 1 E 2 3 ( 12 
)
E5 = -2CP5 = -2CΓ d Γ5 f E 5 1 + h E3E 4 1 + s E 2 3 E 3 1 + g E3E 2 1 + q E 2 3 E1 (13) 
The parameters Γ d , Γ5, and the weight functions f , g, h, q and s, are written as:

f = - 1 16 T 3d Γ4 ℘ α 3 4∆ -2℘ ∆α4 -5∆α3 - 5 ℘ 2 ∆α4 2 (14) g = - 1 4 Γ4 - ℘ 4 ∆ + 6 ∆ + 5 ℘ ∆ 4 + Γ2 - ℘ 4 ∆ + 6 ∆ + 5 ℘ ∆ 4 (15) 
h = 1 16       -Γ4T 1d ℘α 1 4∆ -2℘∆α2 -5∆α1 -5℘ 2 ∆α 2 2 -Γ2T 1d α1 -5∆ + ℘ 2∆ + 2Γ2T 1d α2℘∆ 1 + 5℘ 2 -Γ2T 3d α3 -5∆ + ℘ 2∆ + 2Γ2T 3d α4℘∆ 1 + 5℘ 2       (16) 
q = Γ2 ℘ 8 ∆ -∆ + 5 ∆ ℘ 8 (17) 
s = 1 16 -Γ2 T 1d α1 ℘ 2 ∆ + 2 ℘ ∆ α2 -5 ∆ α1 -α2 ℘ 2 (18) 
where:

Γ2 = 2℘ ∆ ℘ 2 + 4∆ 2 , Γ4 = 4℘ ∆ ℘ 2 + 16∆ 2 , Γ5 = 1 1 + 25∆ 2 , Γ d = 1 1 + ∆ 2 + E 2 1 2 (19) T 1d = 1 (1 + ∆ 2 ) (℘ 2 + 4∆ 2 ) , T 3d = 1 (1 + 9∆ 2 ) (℘ 2 + 4∆ 2 ) (20) α1 = ℘ 2 (1 -∆ 2 ) -4℘ ∆ 2 , α2 = 1 + ℘ -∆ 2 , α3 = ℘ 2 (1 -3∆ 2 ) -8℘ ∆ 2 , α4 = 1 + 2℘ -3∆ 2 (21) 
For κ = 3, ℘ = 0.1 and 2C = 10, we computed E5 to get E5 = 1.23. Thus, to the fifth order, the analytical field expansion writes as: Eqs. ( 3) to further higher orders should lead to an even better agreement between the numerical solution and the analytical expansion method we have adopted.

E (t) =

Higher order expansion

We therefore now extend the calculations above the fifth order. At first, we calculate the seventh-order components, by expanding the development in Eqs. (3) to n = 3 for the field and polarization, and inserting the obtained relations in Eqs. (1). The calculations are time-consuming but straightforward with the help of the Mathematica™ software, and one obtains the seventh-order component for the field in the form:

E7 = -2C[W7 E 7 1 + V7 E 6 1 + F7 E 5 1 + H7 E 4 1 + S7 E 3 1 + R7 E 2 1 + Q7 E1 + Z7] (23) 
The complete expressions of W7, V7, F7, H7, S7, R7, Q7 and Z7 are given in Appendix A, for the interested reader who would like to make use of these developments. With these values, we obtain E7 = -3.70. Therefore, the analytical field expansion is given by the expression: 

E (t) =
The field expansion then becomes: 

E (t) =
The time evolution of the expression given by Eq. ( 26) is represented in Fig. (3e). Discrepancies between this semi-analytical solution and the purely numerical one given on Fig. (3a) are still noticeable, while one expected indeed a better correspondance, thanks to the extended expansion. An attempt explanation for these remaining discrepancies is that they are in fact inherent to our procedure, which is iterative, based on the successive introduction of the orders of the electric field, order after order. For example, to find E3 it is necessary to calculate E1 (as E3 depends on E1), and similarly to have the value of E5, it is required to know the value of E1 and E3 (see Eq. ( 13)). As a consequence, the residual error on a specific term calculation increases with increasing term order, and (E11 >> E1, E13 >> E1), because the dependence of one term on the previous terms is non-linear. For example, E5 shows a dependence on E1 at the fifth power, and on E3 at the second power.

The Lorenz-Haken equations form a strongly nonlinear system, and therefore, little errors on the first terms are greatly amplified on the next terms, which explains that the analytical method will diverge from the numerical one.

This establishes the limit of the method: with the approach originally depicted in Refs. [6,7,[START_REF] Meziane | Atomic, Molecular and Optical Physics[END_REF], expansion above the fifth order does not bring noticeable improvement to accuracy of the analytical expressions of the field.

We however believe that one could obtain a better accuracy between the analytical and the numerical solution if developing Eqs. (3) up to the thirteenth order (as the field spectra obtained by FFT exhibit components up to the 13 th term), taking into account all terms without truncation, and inserting the obtained expansion in the system of equations Eqs. (1). Future work will explore this hypothesis. 

Conclusion

We have expanded the analytical procedure, introduced in previous work [6,7], that describes the self-pulsing regime of the single-mode homogeneously broadened laser operating in bad cavity configurations. The inclusion of the third-order harmonic term in the field expansion allows for deriving the analytical expression of the pumping rate 2Cα, that leads the laser to display period-doubling sequence. We have shown that for α < 2, the dynamical behaviour is periodic. It is important to note that constructing analytical or semi-analytical boundaries between the various periodic regions is not an easy task, because of the non-linear behaviour of the laser. Despite these difficulties, our method allows for a satisfactory localization of the periodic solution (predictable zone). We have also highlighted a divergence between the numerical solution and the analytical one when we extend the evaluation above the fifth order in the expression of the laser field. Analytical expansion is not meant to replace numerical integration of the Lorenz-Haken model, which is usually the prefered procedure, but development up to the third order gives accurate results, and may be used as an alternate to direct numerical solutions, with the advantage of greater ease of use. In that case, our approach may help to adress the physics of laser chaos, especially for nonspecialists. It is interesting to mention that the Lorenz equations represent a challenge, indexed by Smale [START_REF] Smale | [END_REF]12] in its list of the fourteen problems, which constitute, according to him, a serious challenge to mathematicians. 

V7 = Γ6Γ7E5 ℘ 2 2 (-f1 -f3 + 7∆ (f2 + f4)) + ℘∆ (f2 + f4 + 7∆ (f1 + f3 )) + Γ10Γ7    ℘ 2 2 (-E5f1 -E3f3 -h5 + 7∆ (E5f2 + E3f4 + h6)) +℘∆ (3 (E5f2 + E3f4 + h6) + 21∆ (E5f1 + E3f3 + h5 ))    + Γ8Γ7E3    ℘ 2 2 (-f3 -f5 + 7∆ (f4 + f6)) +℘∆ (2 (f4 + f6) + 14∆ (f3 + f5 ))    (A11) Q7 = Γ6Γ7E5    ℘ 2 2 (-E3 q1 -E3 q5 -z3 + 7∆ (-E3q6 -E3 q2 + z4)) +℘∆ (-E3 q2 + E3 q6 + z4 + 7∆ (z3 + E3 q1 + E3 q5))    + Γ8Γ7E3    ℘ 2 2 (-z3 -E3 q1 -E5 q1 + 7∆ ( z4 + E3 q2 -E5q2)) +℘∆ (2 (E3q2 -E5 q2 + z4) + 14∆ (E3 q1 + E5 q1 + z3))    + Γ10Γ7E3 ℘ 2 2 (7 z4∆ -z3) + 3℘∆ ( z4 + 7z3∆) (A12) H7 = Γ6Γ7E5           ℘ 2 2    -E3 h1 -E5h3 -E3 h5 -h1 -s3+ 7∆ (-E3 h2 + E3 h6 -E5h4 + E5s2 + s4)    +℘∆    s4 -E3 h2 -E5h4 + E3 h6 + s2 + 7∆ (E3h1 + s1 + s3 + E5h3 + E3h5)              + Γ10Γ7    ℘ 2 2 (-r5 -E5s1 -E3s3 + 7∆ ( E5s2 + r6 + E3s4 )) +℘∆ (3 ( r6 + E5 s2 + E3s4) + 21∆ ( r5 + E5s1 + E3 s3))    + Γ8Γ7E3       ℘ 2 2 (-s3 -s5 -E3h1 -E5h1 + 7∆ (E3h2 -E5h2 + s4 + s6)) +℘∆    2 (E3h2 -E5h2 + s4 + s6) +14∆ (E3h1 + E5h1 + 2s3 + 2s5 + E3h1 + E5 h1)          (A13) S7 = Γ6Γ7E5    ℘ 2 2 (-r1 -r3 -E3 s1 -E5s3 -E3s5 + 7∆ (r4 -E3s2 -E5s4 + E3s6)) +℘∆ ( -E5s4 + E3 s6 -E3 s2 + r4 + 7∆ ( r1 + r3 + E3 s5 + E5s3))    + Γ10Γ7    ℘ 2 2 (-E3r3 -q5 -E5r1 + 7∆ (q6 + E3r4)) +3℘∆ (q6 + E3r4) + 7∆ (q5 + E5r1 + E3r3)    + Γ8Γ7E3    ℘ 2 2 (-r5 -E3s1 -E5s1 -r3 + 7∆ (r4 + E3s2 -E5s2 + r6)) +℘∆ (2 (E3s2 -E5s2 + r4 + r6) + 14∆ ( r3 + E5 s1))    (A14) R7 = Γ6Γ7E5    ℘ 2 2 (-q1 -E3r1 -E5r3 -E3r5 + 7∆ (q2 -E5r4 + E3r6)) +℘∆ ( q2 -E5 r4 + E3r6 + 7∆ (E3 r1 + E5r3 + E3 r5 + q1))    + Γ10Γ7E5 ℘ 2 2 (-q1 + 7∆q2) + 3℘∆ (q2 + 7∆q1) + Γ8Γ7E3    ℘ 2 2 (-q5 -E3r1 -E5r1 + 7∆q6) +℘∆(2 q4 + 3 q6 + 14∆ ( q5 + E3 r1 + E5r1))    (A15) Z7 = Γ6Γ7E 2 5 2 ℘ 2 (-z3 -7 z4∆) -2℘∆( z4 + 7z3∆) (A16) f3 = Γ3Γ d       Γ2    T 1d -℘α 1 32∆ + 3 α 1 ∆ 16∆ + ℘ α 2 ∆ 8 + 3 ℘ 2 α 2 ∆ 16 +T 3d -℘ α 3 32∆ + ℘α 4 ∆ 8 + 3℘ 2 α 4 ∆ 16 + 3 α 3 ∆ 16    +Γ4T 3d 3 α 3 ∆ 16 -℘ α 3 64∆ + ℘ α 4 8 + 3℘ 2 α 4 ∆ 32       (A34) h3 = Γ3Γ d T 1d E3    Γ2 -℘ α 1 32∆ + 3 α 1 ∆ 16 -℘ α 2 ∆ 8 -3 ℘ 2 α 2 ∆ 16 +Γ4 ℘ α 2 ∆ 8 + 3 ℘ 2 α 2 ∆ 32 -℘ α 1 64∆ + 3 α 1 ∆ 16 -α 1 8    (A35) s3 = Γ3Γ d - E 2 
+ ℘ α 4 ∆ 2 8 -Γ 3 α 3 ∆ 8       (A40) s2 = Γ1Γ d       Γ2    1 4 + γ 4 + T 1d    E 2 3 α 1 16 -℘ α 1 32 -℘ 2 α 2 16 -℘ α 2 ∆ 2 8 -∆ 2 4       +Γ4T 1d E 2 3 -α 1 16 -℘ α 1 64 -℘ 2 α 2 32 + ℘ α 2 ∆ 2 8 + ∆ 2       (A41) q2 = Γ1 Γ d E
-℘ α 3 32∆       (A43) h1 = Γ1Γ d E3       Γ2    T 1d -℘ α 1 16∆ -℘ 2 α 2 ∆ 8 + T 3d -℘ α 3 32∆ -α 3 ∆ 16 + ℘ α 4 ∆ 8 -℘ 2 α 4 ∆ 16    +Γ4T 3d ℘ 2 α 4 ∆ 32 -℘ α 3 64∆ + α 3 ∆ 16 + ℘ α 4 ∆ 8 -α 3 T 3d 8       (A44) s1 = Γ1Γ d       Γ2    ℘ 8∆ -∆ 2 -℘ ∆ 8 + T 1d E 2 3 -℘α 1 32∆ -α 1 ∆ 16 -℘ α 2 ∆ 8 + ℘ 2 α 2 ∆ 16    +Γ4T 1d E 2 3 ℘ α 2 ∆ 8 + ℘ 2 α 2 ∆ 32 -℘ α 1 16∆ + α 1 ∆ 16 + 1 2       (A45) r1 = Γ1Γ2Γ d E3 4 ℘ 1 ∆ + ∆ (A46) q1 = Γ1 -1 + Γ d E 2 3 Γ2 ℘ 8∆ + ∆ 2 - ℘∆ 8 + Γ4 ℘ 16∆ - ∆ 2 - ℘ ∆ 16 (A47)

First, the laser

  displays a symmetric and period-one solution (Fig. (1a)). This solution has been called symmetrical because of the symmetry of E(t) with respect to E = 0: the projection of the trajectory onto the (E, D) plane produces symmetrical loops as shown in Fig. (1b). For increasing excitation level 2C (2C = 18.4), the previously symmetric, period-one solution becomes asymmetric. The field amplitude undergoes a symmetry-breaking transformation with different positive and negative excursions (Figs. (1c,1d)). For 2C = 29, the laser exhibits a period-two, asymmetric solution (Figs. (

Figure 1 :

 1 Figure 1: Examples of Eqs. (4) solutions for (κ = 3,℘ = 0.1). Left column: time dependence of the electric field amplitude. a) Symmetric solution with period one, obtained with 2C = 18.4. b) Asymmetric, period-one solution, obtained with 2C = 20. c) Asymmetric solution with period two, obtained with 2C = 29. d) Asymmetric solution with period four, obtained with 2C = 29.7. e) Chaotic solution. Right column: attractor projection onto the (D, E)-plane. One can distinguish a cascade of period doublings, which leads to chaos.

Figure 2 :

 2 Figure 2: a) Predictable and unpredictable zone. b) Exemple of periodic solution in the region C2 < C 2th . c) Exemple of chaotic pulsation for C2 > C 2th .

  5.19 cos(0.42 t) + 1.72 cos(3 × 0.42 t) + 1.23 cos(5 × 0.42 t) (22) and is represented in Fig. (3c). Compared to the signal of Fig. (3a), the time trace of Fig. (3c) exhibits thinner and higher peaks, with values approaching those of their numerical counterpart in Fig. (3a). A priori, expanding

For κ = 3 ,

 3 ℘ = 0.1, and 2C, one obtains: W7 = 8.27 × 10 -9 , V7 = 1.06 × 10 -5 , F7 = 5.19 × 10 -5 , H7 = 5.21 × 10 -4 , S7 = 1.84 × 10 -3 , R7 = -1.46 × 10 -2 , Q7 = -5.80 × 10 -2 , Z7 = -3.64 × 10 -3 .

  [START_REF] Bougouffa | [END_REF].19 cos (0.42 t) + 1.73 cos (3 × 0.42 t) + 1.23 cos (5 × 0.42 t) -3.70 cos (7 × 0.42 t) (24)The evolution of this expression against time is shown in Fig.(3d). We note that there still is a disagreement between Fig.(3a) and Fig.(3d), owing to the negative sign of the seventh component. To correct this variance, one should take into account higher order components in the analytical expression of the field. Analytical evaluation of the higher terms of the field is however very lengthy and tedious, so we propose to continue the evaluation in a semi-analytical, semi-numerical way. This implies that we inject the values of parameters κ, ℘ and 2C in Eqs.(1) and Eqs. (3), and then evaluate the field components numerically by adopting the same procedure as before. The field spectra obtained by FFT exhibit components up to the 13 th term. We therefore compute the numerical components up to this order. For κ = 3, ℘ = 0.1 and 2C = 10, such a procedure directly yields the higher-order terms: E9 = -64.97, E11 = 1275.46 and E13 = 8.53 × 10 9

Figure 3 :

 3 Figure 3: a) Long-term time dependence of the electric-field amplitude. Analytical solutions representation for b) third-order, c) fifth-order, d) seventh-order, and e) thirteenth-order for laser-field amplitude for κ = 3, ℘ = 0.1 and 2C = 10.

  5.19 cos (0.42 t) + 1.73 cos (3 × 0.42 t) + 1.23 cos (5 × 0.42 t) -3.34 cos (7 × 0.42 t) -64.97 cos (9 × 0.42 t) + 12759.46 cos (11 × 0.42 t) + 8.53 10 9 cos (13 × 0.42 t)
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Appendix A: Derivation of the Seventh-Order Field Component

We give here the weight functions of the analytical expression of the electric field E(t) at seventh order E7(t) given by Eq. ( 23). This expression have been derived from Eq. ( 3), expanded up to n = 3, inserting these equations into the Lorenz-Haken equations Eqs. (1a-1c) and identifying the same order-harmonic terms in each relation using the Mathematica™ software. We find a hierarchical set of algebraic relations:

The seventh order field component is related to the first component through:

with:

Where: