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Abstract

In this manuscript we will study the advantages of Jacobi iterations to solve
the problem of Canonical Dependence Analysis. Canonical Dependence Anal-
ysis can be seen as an extension of the Canonical Correlation Analysis where
correlation measures are replaced by measures of higher order statistical de-
pendencies. We will show the benefits of choosing an algorithm that exploits
the manifold structure on which the optimisation problem can be formulated
and contrast our results with the joint blind source separation algorithm that
optimises the criterion in its ambient space. A major advantage of the proposed
algorithm is the capability of identifying a linear mixture when multiple observa-
tion sets are available containing variables that are linearly dependent between
the sets, independent within the sets and contaminated with non-Gaussian in-
dependent noise. Performance analysis reveals at least linear convergence speed
as a function of the number of sweeps.
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1. Introduction

Many practical measurements result in multiple datasets sharing information
through some variables. These variables may be descriptors for some physical
quantity and the sets may contain data from different modalities, multiple sub-
jects [1], multiple frequency bins [2, 3], etc. Each of these sets then contains
some information that is shared with the other data sets as well as information
proper to the respective modality, subject or frequency bin. For instance, one
might be interested in simultaneously measuring the positioning of the subject’s
gaze on a screen and the electro-physiological effect of a change in eye position
(e.g., as measured with an electro-oculogram, which are cutaneous electrodes
placed in the vicinity of the eyes). Changes in the electrical field measured
by the electro-oculogram are not linearly related to changes in gaze direction,
but there almost certainly exist a relation. Indeed, some changes in gaze direc-
tion can directly be related to an observed change in the electro-physiological
measurement. A part from the effects due to a change in gaze direction, the
electro-oculogram also records electrical correlates of cerebral activity due to
the volume conduction of the brain, skull and skin. The measured gaze direc-
tion itself does not, of course, exhibit traces from cerebral activity, although
the latter might be contaminated by recording noise due to the system’s detec-
tion algorithms that are used or its limited spatial accuracy. These errors are
obviously not observable on the electro-oculogram. Neither of both may thus
act as a pure reference for the other modality. As a consequence this system
exhibits all of the above properties, namely that each modality is composed of
a set of variables that may explain the information shared between the datasets
as well as variables that contain information proper to the recording modality.
The latent variables exhibiting the largest dependence between both measure-
ments may thus reveal the electro-physiological activity explained by a change
in gaze direction and, vice versa, one may isolate the change of direction that
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is effectively causing a change in the measured electro-physiological potential
field.

Our interest lies in the estimation of subspaces of dependent variables from
multiple datasets. If we reduce the dependencies between the subspaces to
the direct sum of dependencies between the basis vectors spanning these sub-
spaces, we refer to these basis vectors as source components. To estimate those
latent variables or source components that explain the information shared be-
tween datasets, we may rely on the recently introduced framework of joint blind
source separation (JBSS) [4] or Independent Vector Analysis (IVA) [2]. A joint
diagonalisation procedure for JBSS has been introduced in [5] and described
in more detail in [4]. The goal is to estimate these source components with as
little side information as possible, i.e., without disposing of prior information
about the distribution family of these components. This is in contrast to the
natural gradient procedure introduced in IVA [2], which explicitly assumes the
source components to have multivariate Laplace distributions. In this work, we
focus on an approach based on non-parametric statistics and will not make any
assumption about the source distributions as such closely following the principle
of [5, 4]. We will gradually build up our ideas starting from the linear depen-
dencies used in Canonical Correlation Analysis (CCA). Hence, we will refer to
the proposed method as Canonical Dependence Analysis (CDA).

We will show how CDA can exploit the structure of the smooth optimisation
space, which is actually a manifold. Indeed, suppose we have found a whitening
transform for our data that effectively decorrelates the data within each of the
datasets, then the manifold over which to optimise is that of the orthogonal
matrices [6]. A natural evolution on this manifold outperforms the previously
introduced method of [4] based on a second order approximation to the objec-
tive function and followed by a refinement step based on re-projected gradients.
Empirical results obtained by extensive Monte Carlo simulations, allow us to
conjecture what we think might be the two major obstacles encountered in the
joint diagonalisation optimisation procedure for JBSS and show how a formula-
tion in the framework of Jacobi iterations and Givens rotations indeed helps to
overcome these difficulties. To this end, we will first recapitalise the framework
of CCA, of which CDA can be seen as an extension using higher order statis-
tics. We then briefly expose the model of instantaneous linear mixtures in the
case of multiple datasets and present the framework of optimisation on the spe-
cial orthogonal group using Givens rotations and Jacobi iterations [6, 7]. Both
he empirical convergence properties of this approach as well as a performance
analysis are conducted and a detailed comparison with the state-of-the-art JBSS
algorithm [5, 4] allows to reveal both drawbacks and advantages of the JBSS,
CCA and CDA methods. We hope this paves the path for future algorithmic
developments in this domain.



2. Canonical Correlation Analysis

2.1. Canonical Correlations and Mutual Information

When two datasets are available, Canonical Correlation Analysis (CCA) [8,
9] yields an appropriate solution to finding the information shared between these
sets. CCA (also known as the method of angles between subspaces [7]) assumes
there exists a (non-singular) linear transformation for each of both datasets such
that the source components become apparent. The source components, often
also called the canonical correlates or the latent variables, are those univariates
that share information with a univariate of the other set but with no other
variable within the same set. It is straightforward to calculate the shared infor-
mation for two univariate sets composed of normally distributed components x
and y, respectively. For a zero-mean variable (z,y)? distributed as

1 —1 T
T. _ —(z,9)E7 " (z,y)
0,.X) =
N((:I:,y) ; 0, ) 3] det |e

the mutual information between its components is given by

MI(z,y) = —% log (1 —p*(z,y)) ,

where p?(z,y) is the squared correlation coefficient E{xz,y}?/ (E{z?}E{y?}) =
0%y /(011022). Here, & = (0ij)i 4 ()7 denotes the transposition and E{-} the
mathematical expectation operator. The maximum of the mutual information
is obtained when the correlation coefficient takes its maximum, i.e., p?(z,y) — 1
implies MI(x,y) — +o0o. The minimum is obtained at p?(z,y) = 0, implying

MI(z,y) = 0.
In the multivariate case, we have the additional requirement that no within
set dependencies exist. Denote by p (zz[]fl],zz[fﬂ) k1, ko € {1,2} the correlation

coefficient between the 7;1-th variable of the set k; and the i>-th variable of the

set k2. The within set dependencies vanish when the components of (zz[k]) ~do
K3

not share information [10]. As a result, we may write
o (s, 28) =0

whenever i1 # io. Imposing that this holds true for whatever values of k1 and
ko results in the definition of source components for CCA.
These source components can be obtained by having linear operators acting

(K] [] (k] )T

on the observed random variables yl* = (Yi 5 ys - 'YN,)" as

xH = QMHylH

Only when we limit ourselves to two datasets and no two canonical cor-
relation coefficients are equal, a unique algebraic solution exists to the above
problem, which is the solution proposed by Hotelling [9].



Extensions of the above to an arbitrary number of observation sets exist,
although one should then relax some of the conditions on the source compo-
nents [11, 12] [13, and references therein]. In [12], the specific conditions on
the source components is found in the requirement of a same ordering of the
canonical correlates. In this case, an algebraic solution can be obtained for
multiple sets. Unfortunately, the restrictions under which the model works are
rarely encountered in practice. When multiple realisations are available under
two different conditions, one may also extend the canonical correlation analysis
as in [14], although no proof could be found for the offered solution.

All of the aforementioned methods are restricted to the use of (in)dependence
measures based on statistics up to order two. As a consequence, they are optimal
only when second order statistics are also the sufficient statistics (this is the case
for, e.g., normally, log-normally or logistic distributed random variables). In
contrast to standard CCA and its extensions discussed above, we prefer to turn
to higher order statistics in what follows. Even if second order statistics have
proofed their usefulness in many practical applications [8, 9, 12], independence
within sets and dependence between sets are measured more efficiently with
higher order statistics. Indeed, higher order statistics may reveal dependencies
that second order statistics can not detect [15, 2, 5, 4].

2.2. Canonical Correlation Analysis and Least Squares Regression

Linking CCA and Least Squares fitting helps understanding the importance
of canonical correlation analysis as a regression technique and the possible ap-
plications of CDA and its counterparts JBSS and IVA. Consider two datasets
with their associated zero-mean random variables x[!! and x[?! with covariance
matrices 37 and 3o, respectively. After whitening of both of the datasets,
the optimal linear regression parameters Q for regression in the least squares
sense of 35 /*x[2 onto B7/?x[1 are given by Q = arg ming E{|HS; "/ *x1 —
3, /?x[@2}. The associated minimum equals N—|| 57/ B{x! (x[z])T}2;1/2|\%,
where N is the dimension of x[?/. Since the Frobenius norm does not change un-
der orthogonal transformations, we may left and right multiply 21_1/2E{x[1] (X[Z])T}2;1/2
by an arbitrary orthogonal matrix U7, respectively V. If both these matrices
are obtained from its singular value decomposition

T
=2 pxl (x[21) y3; Y2 = URVT |

one finds the canonical correlates R = Diag [(p2 (yz[l] , yzm) )} , where the oper-
K3

ator Diag (-) constructs a matrix with the vector argument on its diagonal. The

minimum of the Frobenius norm may now be rewritten as

N =S

revealing a minimum regression error when the squared canonical correlations
are maximal, i.e., the mutual information is maximal. The goal of this manuscript



is to describe an algorithm which extends this framework for CCA to higher or-
der statistics.

2.3. Source Estimation Using Reference Signals

Some references in literature have attempted to incorporate higher order
independence into the regression model, often by reduction of one of the mea-
surement sets to a reference set for the other set. In the extreme case, one of
the sets contains a single variable, in which case we refer to this set as a ref-
erence variable (signal). A reference signal is called informative if it effectively
shares information about the variable(s) of interest with the observation set.
The reference signal may appear as an additional, independent observation [16]
or as an a priori [17]. If the reference signal provides information about the
observation noise, this would result in adaptive noise cancellation algorithms.
This is probably the most commonly known example and has been treated ex-
haustively in, e.g., [16]. Main drawbacks of this approach lie in the fact that
the noise cancellation focuses on a single reference signal only and restrict the
dependency measure to (joint) second order statistics between the data set and
the reference signal.

Several contributions in literature provide an extension of the former model
to cope with higher order moments to measure the dependencies within the ob-
servation set. Lu and Rajapakse [18, 19] have solved the constrained program-
ming problem wherein a single component of the dataset is assumed maximally
independent with respect to its complement in the dataset (within dataset in-
dependence) [20]. This component is subject to the constraint to lie within the
neighbourhood (with respect to some metric) of the reference signal (depen-
dence between sets). Whereas the estimation of the independent component
does make use of higher order statistics, the measure that delimits the neigh-
bourhood of the reference signal is restricted to second order cross-statistics in
their works. In [21], higher order cross-moments between the reference signal
and the output signal are considered, but now the within dataset independence
is no longer explicitly exploited. More precisely, the covariance between an
even power of the reference signal and an even power of the output signal are
considered. Whereas it can be shown that this objective function does yield
acceptable results for their application, one should question the restriction to a
single cross-statistic of the full (cross-)cumulant tensor, because this is indeed
a very approximative measure for dependence. A similar strategy has been fol-
lowed in [17, 22], where a non-linear function of the data is used in conjunction
with a second order optimisation method. It can be shown that this is equivalent
to estimating an output signal that shows maximal dependence with a reference
signal at higher orders. This method does outperform the second order adaptive
filtering method [16] as well as the aforementioned method [21] whenever the
samples that have a contribution from the latent variable can be properly iden-
tified. Unfortunately, the latter samples can not always be identified easily [22].

The framework of Independent Vector Analysis/Joint Blind Source Separa-
tion/Canonical Dependence Analysis, extends the framework of reference signals
by attributing a symmetric role to each of the datasets. In addition, the same



measure for within set independence and between set dependence is used. This
seems a far more natural setting for joint data analysis than are the combi-
nations of different measures as they have been used in the above references.
IVA/JBSS/CDA allow to alleviate the choice of a threshold for the vicinity
measure [18, 19], the choice of a single cross-cumulant as a measure for depen-
dence [21] or the estimation of the sample indices for which it is known that the
source of interest masks the other sources in amplitude [17].

2.4. Outline of the Manuscript

In what follows, we will first summarise the linear (instantaneous) mix-
ing model. This section also fixes the majority of the notations used in this
manuscript and details the constraints under which we will work. The develop-
ment of this manuscript will be to proceed as for CCA, but with an emphasis on
the necessary extensions needed when moving to higher order statistics. This ex-
plains why we refer to our approach as Canonical Dependence Analysis, despite
the already existing names such as Independent Vector Analysis or Joint Blind
Source Separation that may be found in literature. In Section 4, we give a short
survey on higher order statistics and cumulants, stressing the advantages of the
latter and justifying their presence in CDA. This section also introduces nota-
tions for cumulants of 2K —tuples of variable pairs over different sets. Section 5
will layout the algorithmic approach based on Jacobi iterations and Givens ro-
tations. The results of this algorithmic approach are shown in Section 6, where
we compare ourselves to the already existing JBSS algorithm [4] and show the
behaviour of our specific algorithm, prooving almost sure convergence based on
empirical results. We conclude with the identification of a mixture in the spe-
cial case of non-Gaussian noise environments. This is an active area of research,
and we show that our algorithm obtains good results, without incorporating
knowledge other than having two realisations wherein the sources of interest
are dependent. We conclude the manuscript with a discussion on the results
(Section 7), a conclusion and a brief outline of future research directions (Sec-
tion 8).

3. The linear, instantaneous mixing model and between set interde-
pendencies

In this manuscript, we consider multiple observation sets {y*/[n],n = 1,2.. . N}, k =
1,2,..., K each containing N observations of random variables over the domains
RP%. The random variables y[¥ linearly depend on source variables sl*! as

g — ABGH 19 K (1)

where we have dropped the index n to simplify notations. We suppose through-
out that the matrix representations of the linear operators Al¥l are of full col-
umn rank such that their left (Moore-Penrose generalised pseudo-)inverses are



uniquely defined. Denoting these left inverses as Al

relationship

, we obviously have the

xH = AT ARG — g — 1 9

where we write x*! for the estimate of sl¥l. If we furthermore assume that the
entries in s/ are independent, then so are the entries of ITAs*| where IT and
A represent an arbitrary permutation and a full rank diagonal scaling matrix,
respectively.

If the s are not of the same dimension, we may assume that there exists
at least one entry in the sl¥! for which we have that sgkl] depends on sng] and
this for all (k1,k2). Consider the specific case where we may assume that the
first I sources show within set dependence over all sets. The source variables
can then be ordered such that

A, 0 < I <min{Dy,,Dg,}: Vi <1, sgkl] and sgkﬂ are dependent, (2)
whilst Vi > I, sgkl} may be assumed independent with respect to sEkQ] and this for
all (k1,k2). As a consequence, we find that for every couple (4, 5),7 # j we have
sz[-kl] is independent from s 2], where k1 and ko are not necessarily distinct. This
is the exact formulation of CCA (see Section 2), but with dependence replacing
the notion of correlation.

Remark that the above formulation is not a necessary condition, but eases
the exposition. A more general and relaxed formulation is to assume that for
each observation set k, there exists at least one k' # k and one index i such
that sgk] shows dependence with s;[k'] for some j.

In what follows, we show how we may identify {s*l, k =1,2,..., K} as well
as {AFl k= 1,2,..., K} in the above model up to the following ambiguities:
xM = blkdiag(M[Ik], M) sl k. Here, M[* represent monomial matrices
(also called generalised permutation matrices) of size (D — I) x (Dy — I) and
the M[Ik] are I x I monomial matrices that share the same permutation factor
but may differ in their scaling factor, i.e.,

M =11, AM

The operator "blkdiag’ forms a block diagonal matrix from its arguments. One

observes that under the model, the components s[lk} , s[Qk], . S[Ik] are bound to be

estimated in the same order for all k. In other words, if the estimate x[Ikl] =

(z[lkll,xg“], . ..z[IkI])T of the set S[Ikll = (s[lkll, 5[2]“}, . .S[Ikl])T is a shuffled and
rescaled version of S[Ikl], then we should encounter the same permutation in the

estimate X[Ikz] of S[Ikzl for all ko.

T T
If we furthermore jointly represent the source variables as s = (sm 1

~ _ (yT, 2T T\ ~ _
the observations asy = (y" |, y* | ...,y and the estimates as x =



T T ™T . . .
(xm cx@0 L xIK ) , then we have the following relationships:
Al o ... o
o AP . o
y=As= . i S (3)
0 0 .. AlK
and
MM o o0 o o o
o MY o o 0 0
o o MM o 0 o
x = Ms = o o o M 0 0 s . (4)
o o o o .. MK o
o o o o .. o M

An alternative representation can be given by regrouping the dependent

source entries by defining an appropriate permutation of the source variables
(assuming Dy, > Dy, whenever ks > k1)
6 = s — (sl1, 2, oK1 G0l
The independent vector structure then indeed becomes apparent and our esti-
mates now become x, = Ilzx = (HdMl'Igl) IT;s. Remark that the permuta-
tion II; is not uniquely defined, since we may arbitrarily reorder the first KT
entries K by K as well as the successive entries K1 + 1 through >, Dy, since
these operations will not affect the vector independence structure. For some
fixed II4, we observe that the ambiguities under the alternative presentation
are given by the monomial matrix HdMl'Igl.

In the remainder of this manuscript, we will assume that the observations
y!* have been corrected for their mean, decorrelated and normalised (whitened)
in their proper observation space, such that their covariance matrices are the
identity matrices, in other words E{yik] yj[k]} = 0;;, where the latter is the Dirac

delta. This whitening does not impose any restrictions on E{yl[kl}ygkz]} for
k1 # ko other than 0 < |E{y[kl]y][-k2}}| < 1. Under our working model, we

K3
also find that |E{s£kﬂs£—k2]}| = |p(s£k1], sg-kﬂ)| I<;(7), where I<; is the indicator
function®.

If the observations are not white, whitening operators W*! may be defined
yielding y* « W[k}T(y[k] — M), such that E{y[k]y[k]T} = Ip,. The vector
My contains the mean values of the observations in the k-th dataset. One
operator that fulfils this condition is the symmetric matrix square root of the
covariance matrix of y*!. The above whitening step is the decorrelation of the
observations in their respective spaces. This is exactly the first step of the CCA.

!The indicator function I<;(¢) is defined as the function that maps its argument i to 1 if
it fulfils the condition ¢ < I, otherwise ¢ is mapped to 0. This function is also known as the
Heaviside step function or the hard thresholding function.



Let us assume from here on that the observations have been whitened. The
estimates are then related to the observations as x* = Q[k]Ty[k] , where the Q[
belong to the group of (special) orthogonal linear operators [6]. For whitened
observations, the A%l may thus be assumed to belong to the group of (special)
orthogonal linear operators. CCA will find those Q¥ for which the between set
correlations are maximal. Because maximal correlation is not necessarily equiv-
alent to maximal dependence — except for some limited class of distributions —
we will here focus on their higher order equivalents, the cross-cumulants.

4. Cumulants for Multiple Observation Sets

Let us abuse the naming convention and refer to y*2! ks # k; as the mo-
mentary fixed reference sets, containing information about the sources we would
like to estimate from a given set y[*1]. Remark that the fixed set is not given as
a set of independent variables, but as a set of raw observations and thus possi-
bly also contain non-informative contributions with respect to the variables of
interest. Let us have a closer look at how these fized observation sets interplay
with the observation set y(k1l.

Thereto, let us first introduce some further notations. General cumulants
of order R will be denoted as Cum{y;,, Yip,--., Yin}, Where indices may be
repeated. Adopting the notation by Kendall [23] for cumulants of a T —tuple
YV = Wirs Yins Yigs- - Yi, )T with no two repeated indices, we write

“leZ...pT :Cum{yila-'-a Yivy Yiase-os Yioyeooy Yipy---) yiT} . (5)

Xp1 Xp2 XprT

Define the 2K-tuple yy; ; def (yzm, y}l], y?}, ][.2], cee yZ[K}, ][-K]). To adapt
the above notation to multiple sets we will define the following notation for the
joint cumulants of this 2K -tuple:

HZﬂ[;,ﬂj’.’Ls(kl) = Z Cum{ygkl] b ygkl]) AR 7y£kl]a y‘gkl]’ y‘gkl]’ MR ) ‘Ekl] b yik] ) ygk]’ A 7y£k] y‘gk] b y_gk]’ M y_gk]}
—_—
kstk1

Xp Xq Xr X s

where k; is the set that momentarily gets our attention. For our zero-mean and
whitened observations y!*! and fixing k; = 1, we then have, for all i and j,

K
i35 k
Rysie) = > B{yllylyy
k=2
K
A = DBy el o - Bl oM el o)
k=2

~B{y Bl o) - B Y B )

where we have used the fact that our observations have been whitened. For
notational simplicity, we will drop the indices (, j) in the superscript as well as
the reference to the set of interest if this does not lead to ambiguity.

10



Taking any pair of indices (,7), ¢,j < min{Dy} defines a tuple for which
it is easy to verify that under the working model the only non-zero entries
in the R—th order source cumulant tensor are given by K7 .,.00 K0.r.000
for any pair r1,79 > 0 for which r; + 7 = R (and this for any set k; of
interest). For x to be an estimate of the sources we thus require that the entries
Kipy 79,0,00 K0,0,m1 190 Ky 0,0, AR K7 . 0 o vanish for any 71, rg strictly positive
and 71 +7r2 = R. In addition, we find that Ky rorgrg = 0 for all r1, 79,73, r4(r1 +
ro + r3 + r4 = R) amongst which at maximum one is zero. In other words,
for any tuple x[; ;;, the sum of the squares of all these entries should vanish.
Since we also have that the sum of the squares of all entries in the cumulant
tensor of a given degree is an invariant under orthogonal transformations of the
variables [24, 6], the aforementioned minimisation problem is equivalent to a

S Lo x
maximisation of the sum of the squares of the entries x5, ¢ ,, o and g, o, for
k]

0,72
which 7, + ro = R over the group of orthogonal transformations acting on x!
and this for every reference set ki in the calculation of the cumulants for the
tuples x; ;. It is worth noting that for & € {1,2} one may indeed pass from
Koy ,0,r2,0 S0 K3 1y 0., Dy @ simple change of the set of interest.
Let us focus on the case of two observation sets. All of the above holds
when ¢ < j < min{D;, Do, I}. But, what if the variables are supposed in-
(1] 2] (i <
J J =
I < j < min{Dy, D2}), or, the variable 552] does not have a counterpart
(1t < D1 < j < D3)? In the former case, the model puts restrictions on
Koy 0,0 a0d K5 since they now also need to be zero with 1 + 72 = R
for any r1,72 > 0. For the latter case, things are slightly more complicated.
To ease the exposition, we choose to formally extend the first set by introduc-
ing phantom variables DEH and D7 < i < Ds, completing as such (at least
formally) the smallest observation set to be of the same size of the largest
dataset. In practice, this may be implemented by adding extra variables with
distribution &g, although a such naive implementation would result in unnec-
essary computations. For the entries in the cumulant tensor of order R, we
will use the same symbol to denote that we are dealing with a phantom vari-

able rather than an observable, which will lead to the following equivalent
(21, ol g2 (21 (21, ol 5121 (21
mpa i

4 i —_ J e 07 — x — X
notations Kry,ra,rs,rg = K”I‘1,D,7‘3,’I‘4 = KT1,D,T3,T4 = Hrl,rz,rg,,ma and
(1]

(x; ,DE-”,ZCEQ],.Z‘E?]) = X[;,;) = X. The last equivalence relations are very im-

dependent, i.e., the variable s;° does not depend on the variable s

K3
plicit representations, but they will allow us to maintain a general notation,

without explicit bookkeeping of the phantom variables. Remark that o has no
attributed value and thus the summing restriction in our example reduces to
r1 +r3 +rq4 = R, instead of 1 + 19 + r3 + 74 = R for the general case.

5. Algorithmic Approach

In this manuscript we show how the use of Givens’ rotations and Jacobi
iterations can be used successfully in the updating of the estimates of the

orthogonal matrices. The rotation matrix Q = MA-! can be written as

11



blkdiag(QM, ..., QIX), which means that only pairs (4,5) should be con-
sidered that belong to the same observation space. Indeed, we actually have an
observation space RP* @ RP> @ ... ® RPx, where the rotations Q¥ act on the
respective subspaces. Now, for an index pair (7,) with ¢ < j < maxg(Dy) we
have the associated quadruple x; ;7. Thus, once the pair (7,7) and the current

4]
set of interest k1 has been fixed, we may limit our focus to the maximisation of
the squares of the entries x, g, o(k1) and &3 ., o, (k1) for 71 + 7 = R in the

cumulant tensor of order R, as we have derived above.
Each rotation matrix in SO(Dy) can be expressed as a (non-unique) series

of Dy (D, —1)/2 planar rotations as Q¥ = [l s Qy;] (95-] ). As a consequence,
we may write the cumulants of the output x as a function of the cumulants of

the observations y and the parameter set {91[51} [6]. Since rotations in spaces of

dimension larger than two are not commuting, the set {95]} is necessarily an
ordered set.

To simplify notations, we use the updating scheme as described in Algo-
rithm C.1. The updating scheme calculates the current optimal planar rotation
by maximisation of a contrast function depending solely on 95-}, where k refers
to the current set of interest. The observations are subsequently updated ac-
cordingly and we continue our iterations by taking the next index triple (i, j, k)
determining yy; ;) and 91[;?]. Because of the non-uniqueness of representation,
once all triples have been exhausted, we need to re-initiate a sweep over all
triples. This needs to be repeated until convergence.

[Table 1 about here.]

The updates involve trigonometric functions that may be expressed as ra-

tional polynomials in tan (OEII]) Setting the derivatives of the sum of squared

cumulants to 0, we obtain a polynomial in tan (9?) of degree 2R that is re-

ducible. If the polynomial has a symmetry, the reduced form of the polynomial is
of order R and analytic solutions are available for its roots whenever R < 4. Un-
fortunately, if ¢ < I the polynomial looses its symmetry and seems irreducible.
Thus, analytic solutions are not available. The rooting of these polynomials
is done numerically by using the eigenvalue decomposition of the companion
matrix (see Appendix B). For many datasets I ~ ming{D;} < max;{Ds},
resulting in an affordable number of pairs associated with a polynomial of the
latter kind (for example, when a single reference variable is available for a set of
observations). The coefficients of the polynomials as a function of the observa-
tion cumulants for a given quadruple x|; ;; are given in Appendix A. We observe
that quadruples for which I < i < j result in the polynomials underpinning the
CoM2 algorithm for Independent Component Analysis [6].

Remark 1. If we follow the above algorithmic construction for statistics of
order two, we have 2R = 4 and thus fourth order polynomials only. This
leads to closed form analytic solutions at each iteration. Indeed, the above
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reasoning reduces to the typical form of canonical correlation analysis for which
an algebraic solution is known to exist.

Canonical Dependence Analysis can thus be summarised in the following
algorithm:

[Table 2 about here.]

6. Results on Simulated Datasets

6.1. Performance FEvaluation

In order to evaluate the outcome of our simulations we use performance
indices based on the Moreau-Amari [25, 26] performance index, defined as

2N(N —-1) < \ maxy |!]zd| maxf |gfn|
(6)
To evaluate the fixed permutations for the first I source variables in both
observation sets, we introduce the following connection matrix (only valid for
K =2): P = (GI) G = (A)" QU (Q®)" A2, matching the source
estimates of the first observation set to those of the second observation set. Our
model requires P to be of the form

pP— Pu P\ _ [ o 0rx D, (7)
Py Pa Op,x1 G (po—1yx(Di—1) ’
where Il represents an arbitrary permutation matrix and o is a diagonal I x I

matrix with +1’s and —1’s on its diagonal. We propose the following adapted
performance index (for Dy = Ds):

llzdiag(P11)]|1 + [|P12]l1 + [|P21]l1 + C1 PI(P22)
Co ’

where Cy = 2(Dy —I)(Dy — I — 1) and Cy = D1(D; — 1) are constant scaling
factors, zdiag(-) results in a zeroing of the diagonal elements of its matrix argu-
ment and || - ||; is the sum of the absolute values of the entries of its argument.
This measure proofs essentially useful whenever I < D; = D5 and thus a dis-
tinction should be made between the dependent subspace and the independent
subspace.

Another useful measure, is that of the joint Inter Symbol Interference (ISI;)
index as introduced in [12]:

ISL,({Q1)) = PI (Z}Q[k]AW}) , ©)
k

Plpca(P) = (8)

where PI(-) again refers to the Moreau-Amari performance index PI of Equa-
tion (6). This measure proofs essentially useful whenever Dy, = I for all k.
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Remark 2. When we compare to the JBSS algorithm, we will always refer to
the version exploiting all N? slices of the cumulant tensor. If not explicitly
stated, it is assumed that the quadratic cross cost has been minimised followed
by a refinement step based on a gradient descent on the whole objective function.
This is the fairest comparison with respect to the CDA method, which acts on
all of the entries in the fourth order cumulant tensor.

A summary of the experiments and their results is given in Table C.3.

[Table 3 about here.]

6.2. Multivariate Laplace distributions

A first step in the validation of the proposed algorithm is to repeat part
of the experiments proposed in [4]. The experiment of interest is that of the
observed instantaneous mixtures of multivariate Laplace distributed variables.
Multivariate Laplace variables can be generated starting from independently
exponentially distributed ’yz ~ Exp(1 ) and independently normally distributed
Mo N (0,1). If we pose s \/_ 2k , we have a multivariate Laplace distri-
bution for s [2]. Since the multlvanate Laplacian is a symmetric distribution,
we have that all odd order cumulants vanish. In addition, we find E{ss”} =1,
which is a consequence of the independence of all the variables 7; and zz[k] in-
volved, from which it results that CCA can not be used here to identify the
mixtures or the canonical correlates.

We have the following expression for the fourth order cumulants:

Cum{s , kZ] s [k“]} =

714

61'171'251'3,1'461'1,1'3 (6k17k26k37k4 + 6k1,k36k2,k4 + 6k1,k46k2,k3) € {0, 1, 3} ,

indicating the possible usefulness of fourth orders statistics in an estimation
algorithm for the identification of both the mixtures and the latent variables.

6.2.1. Convergence Analysis

Let us first focus on the empirical convergence of the algorithm on this
dataset. Thereto we evaluate the outcome of 1000 Monte Carlo runs through the
joint ISI performance index. Each Monte Carlo realisation draws 10% samples
for ~; and zz[k] as defined above and a random orthogonal mixing matrix A
structured as in Equation (3). The evolution of the performance index over 10

sweeps is shown in Figure C.1 for Dy = Dy =1 = 3.
[Figure 1 about here.]

To analyse the convergence for varying dimensions D; = Dy = I, we sub-
mitted the performance indices obtained from consecutive sweeps to the non-
parametric statistical test of Kolmogorov-Smirnov (KS). The KS test determines
whether two distributions differ significantly (H1) against the null hypothesis
(HO) that the performance indices in both consecutive sweeps have the same
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underlying distribution. A difference in distribution is judged significant if the
p-value — the probability of observing the obtained value for the test statistic
under HO — is sufficiently small?. In Table C.4 we show the p-values when com-
paring the distributions of the performance indices over consecutive sweeps. We
observe that for a given number of sources D1 = Dy = I, there exists some ¢t
at which convergence in distribution can be assumed, since no longer can we
attribute any significance to the observed difference (p =~ 1).

[Table 4 about here.]

6.2.2. Performance Comparison on Theoretical Cumulant Tensor

A first performance study reports on both the JBSS algorithm in its differ-
ent forms and the Jacobi/Givens-based CDA algorithm when we assume to have
the population statistics. In other words, the algorithm will take the theoretical
cumulant values as their input. We limit the study to the case of two observa-
tion sets, but results may be extrapolated to more sets as in [4]. We exclude
the IVA algorithm from the comparison because of the local convergence and
permutation issues raised in [4, 27], since these issues indeed result in consistent
inferior performance for all sample sizes reported.

In this study, we construct a smooth path from the exact unmixing matrix
for the second set to a matrix at distance 7/2 in SO(D3) (see Appendix C for its
parametrisation and its generation). The initialisation of the demixing matrix
of the first set is taken to be the exact unmixing matrix. But, this choice is of
little to no importance, since, in both algorithms the demixing matrix of the
first set is updated first, based on the current estimate of the demixing matrix
of the second set. It is only when the gradient search has been isolated from
the cross-cost minimisation initialisation [4] that this initialisation will indeed
effect the performance. Because we have chosen to start at the exact unmixing
matrix for the first set and since we are moving smoothly away from the exact
unmixing matrix for the second set (i.e., no abrupt permutation), this should
not have any negative effect on the performance.

In Figure C.2, we show the mean of 100 Monte Carlo runs for 100 homoge-
neously spread values of the geodesic distance € € [0,7/2]. Each Monte Carlo
Run repeats all values of ¢ for a given random realisation of the sources s (as
detailed above) and generates a random orthogonal mixing matrix A as given
in the model of Equation (3). The dimensions of the sets are Dy = Dy = I = 3.

[Figure 2 about here.]

6.2.3. Performance comparison for Finite Large Sample Size
The same experiment has been repeated, but now for a limited number of
samples drawn from the distributions specified in Subsection 6.2.2. The number

20ne refers also to this probability as the probability that the operator makes an error
upon rejection of the hypothesis HO.
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of samples is 10%, introducing moderate bias and variance in the estimates of
the cumulants up to order four. The results of this experiment are shown in
Figure C.3.

[Figure 3 about here.]

6.3. Non-Gaussian noise perturbations

Often in practice we encounter an environment in which the complementary
(nuisance) sources or the noise do not have a Gaussian distribution. In this case,
simple source separation algorithms are not appropriate to estimate the mixing
matrix. When a second observation set is available wherein the variables of
interest are present, but now with independent nuisance sources or noise, then
we might expect that both JBSS, CCA and CDA may help in recovering the
mixing matrix. To evaluate the performance in this setting, we concentrate on
the following generative model, extending the model of Equation (1) to:

yM = Ay BFp = AlK] [s +v (AW)_1 B[’“]n““]} =AM k=12,

(10)
where s has unit variance non-Gaussian entries, I of which are common to both
observation sets. The remaining Dy, — I variables are specific to the observation
set. v is a free variable that can be used to obtain a desired signal-to-noise
ratio. We choose to limit our case studies to v = 0 or v = 1. n*! contains nui-
sance sources or noise, which may be of Gaussian or non-Gaussian nature. In
the simulations, all random variables (S[k] ’s and nl¥! ’s) are identically and inde-
pendently distributed with entries drawn either from the uniform or the doubly
exponential (Laplacian) distribution. Whether an entry in the random variables
is uniform or Laplacian in its marginal distribution is determined by drawing a
random variable from a Bernoulli distribution (p = 0.5) and attributing either
one of the outcomes to one of the distributions. A Gaussian distribution for
1™ has not been considered here, since these would not effect the higher order

cumulants.
(K]

T
The random variable /¥ has entries s, + v (cgk]) nl*! where cgk] is the

_ T
i—th column of v [(A[k]) ! B[k]} . This random variable thus contains depen-

dent entries whenever v # 0 and the columns of A and B are not aligned. By

T
choosing the 7! non-Gaussian, (cgk])

n*l will be non-Gaussian. In fact, its
distribution would tend to that of a normal distributed variable only for large
Dy, (by the central limit theorem). For reasonably small Dy, its distribution is
at least as Gaussian as the most Gaussian among the marginal distributions of

n*l, albeit rarely Gaussian.
6.3.1. Convergence

The empirical convergence for 1000 Monte Carlo runs (D; = Dy = I) for 10%
samples and v = 1 (nuisance sources and sources of interest with equal power)
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are shown in Figure C.4. At each Monte Carlo iteration, all latent variables are
randomly drawn as defined above. The orthogonal mixing matrices are drawn
randomly following the model of Equation (3).

[Figure 4 about here.]

To test the convergence for varying dimensions D = Dy = I, we submitted
the obtained performance indices of consecutive sweeps to a KS-test, see higher
for details. The results are reported in Table C.5.

[Table 5 about here.]

6.3.2. Performance Analysis

We here investigate the sensitivity of the algorithm to a mismatch in the prior
on I and judge its performance with respect to both the JBSS and CCA method.
Indeed, we may suspect that the results undergo an influence of whether I (the
number of common sources in the realisations) can sufficiently well be approx-
imated through I (the value for I that is used in the algorithm). Results for
I =1,2,3 and I= 0,1,2,3 (remark that I=0 corresponds to the regular
CoM2 ICA algorithm [6]) acquired from 1000 Monte Carlo runs are given in
Figure C.5 and are compared to the results obtained by JBSS and CCA. Per-
formance is measured both through the performance index PIcpa (P) as given
in Equation (8) and the joint ISI of Equation (9).

[Figure 5 about here.]

7. Discussion

In this manuscript, we have introduced an original approach to canonical
dependence analysis, based on Jacobi iterations. Whilst the concept of CDA
is in its principle not different from that of JBSS, it has been shown that the
algorithmic approach taken in this paper has certain advantages over the already
existing methods in literature.

7.1. Convergence of the Jacobi algorithm

First of all, we have established the empirical convergence properties. Fig-
ure C.4, shows the evolution of the measure PIcpa with respect to the iteration
number. The results in Tables C.4 and C.5 for different random variable sizes
Dy =Dy =1€{2,3,5,10} show that the performance indices indeed converge
in distribution over the iterations. In addition, the final distribution of the
performance measures (for ¢ — 4+00) shows an acceptable performance for our
algorithm (Figure C.1).
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7.2. Performance on Synthetic Datasets

Indeed, as shown in Figures C.2 and C.3, the CDA approach seems to slightly
outperform JBSS when we consider multivariate Laplace distributions. This is
the case for both the population statistics as well as a limited sample size of 10*
samples. As has been reported in [4], the optimisation function may contain
a lot of local optima, resulting in the poor performance of the gradient only
approach and the limited increase in performance when the gradient step is used
as a refinement step following the optimisation of the quadratic cross function.
Important to notice is that the CDA approach displays invariant performance
(up to what is most likely due to numerical approximation errors) with respect
to the chosen initialisation. This seems not to be the case for the JBSS approach.
When theoretical values for the cumulant tensors are used, we observe a slight
decrease in performance when the initialisation is taken further away from the
global optimum. This may be due to the fact that the multi-linearity of the
cumulant tensor is not fully exploited in JBSS, limiting the optimisation to
cumulant tensor slices and as such introducing bias in the solution.

When we focus on a limited sample size (10 samples), we observe that
the CDA approach is completely invariant with respect to the initialisation as
parametrised by ¢ (at least on the studied interval [—7, 7]). The JBSS approach
now shows an invariant character in the neighbourhood of the solution (up to
le| = 37/4). A striking observation is that the cross-cost optimisation may alter
the performance, since its approximate solution can not be corrected by the
subsequent gradient approach, as observed in the close vicinity of the optimal
solution, Figure C.3(bottom). The poor performance of the gradient approach
may be due to the fact that the manifold structure is not respected in its updates,
using a re-projected gradient approach.

For limited sample sizes the minimum cost function no longer corresponds
to the optimal separator, see Figure C.3(top). Indeed, the variances of the esti-
mators of the fourth order statistics do no longer allow to identify the unmixing
matrix with the global minimum of the cost function, although the solution for
10* samples has an acceptable —30dB ISIj performance index.

Figure C.5 clearly shows the influence of the prior on the performances, as
well as the performance gain over CCA and JBSS for the case D1 = Dy =1 = 3.
The proposed method identifies the unmixing matrix when the variables of inter-
est are available in multiple observation sets that are corrupted by independent
non-gaussian noise. Unfortunately, this performance gain is compromised for
I =2,D, = Dy = 3, especially with respect to CCA, which might be explained
by the fact that a single direction per observation set is non-informative (with
respect to the common variable entries of interest). These directions can be
linearly separated from the subspace spanned by the two remaining, dependent
sources.

As we might expect, it is better to overestimate I, since sources that are not
matching up in the different sets do not influence negatively on the end result.
This may be explained by zero cross-cumulants, remaining zero under linear
combinations within the observation spaces. Note that the model is essentially
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under determined and that the estimates of the mixing matrices (Al¥) do not

permit to estimate the sources s/*!. Instead, we are limited to the estimates of
glk]
stel,

7.8. Computational Issues

The number of sweeps required for convergence (in distribution) is of the
same order of magnitude as D1 = Dy (Tables C.4 and C.5). This is a small
overhead compared to the 2 + /Dy + /D2 = 2(1 + +/Dy) of sweeps generally
required by the CoM2 algorithm when ran on each of the sets [6]. This makes
the slightly more expensive eigenvalue decomposition of the companion matrix
an acceptable investment. The Jacobi algorithm permits a parallel implemen-
tation [7, Sec. 8.4.6], allowing for an efficient implementation on multi-core or
multi-processor architectures.

7.4. Future Research Directions

Future research will be devoted to a more efficient manifold based optimi-
sation approach [28] that is not based on sweeps over all possible pairs and the
extension of the proposed manifold based optimisation approach to the case
of non-orthogonal matrices, omitting the prewhitening step as well as to the
complex (non-circular) case.

8. Conclusions

In this manuscript we have shown the advantages of Jacobi iterations to
solve the problem of Canonical Dependence Analysis. The proposed method has
shown excellent performance on the problem of the separation of multivariate
Laplace distributed variables. Indeed, the proposed algorithm shows an invari-
ance with respect to its initialisation and outperforms the joint Blind Source
Separation on these datasets. However, the main advantage of the proposed
method can be found in the identification of the mixing matrices of multiset
observations when the variables that are linearly dependent between the sets
are corrupted by non-Gaussian noise. We have indeed an empirical proof of
the superior performance of the proposed algorithm both with respect to the
joint Blind Source Separation and the Canonical Correlation Analysis. The rel-
atively high computational cost when dealing with large dimensions can easily
be counterbalanced by the fact that Jacobi algorithms are perfectly well suited
for a parallel implementation.
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Appendix A. Polynomial coefficients

The contrast function for canonical dependence analysis is maximised by
updating the current observations in the first observation space, switching to
the second observation space and repeating. We may thus focus on y! without
loss of generality. Writing the orthogonal matrix QU as a series of planar
rotations QEI;} and fixing the current index pair to (i,j), we may denote with
K bed = nZ}Z”Q,d(OEP) the cumulants of the estimates and by &, , . ; = nZ}Z’fC],d
the cumulants of the current observations. The planar rotation matrix ng-}
then is the identity matrix, except for the entries (i,i), (¢,7), (4,4) and (4,7)
which are respectively given by cos(@z[;]), - sin(@z[;] ), sin(egl) and cos(@z[;]). The
pairwise contrast of order R = 4 reads:

1 xX X X X xX
‘I’CDA(ez['j]) = (K¥0,00) +4(K50,1,0)° +6(K3020)° +4(KT03.0)° + (K5 0,40)° -
+ (540,07 T4(KE301)% +6(KF202)° +4(K51,03)° + (55 0,0,4)°
(A1)

The multi-linear relation between the cumulants of the estimates and the cu-
mulants of the current (transformed) observations gives us

x y y 2.y 3.y 4.,y 2\2
k1000 = (K1o00—4tkK3100F068 K3o00—4t" Kigp0tt 50,4,0,0) /(141t2)

3/2

x y y 2 Yy 3 y 2
K000 = (K010 3t83 11038 W o010~ 1> K 31,0)/ (1+17)

y

2

0202t K 100+ t? H%’,z,zo) /(1412)
)1/2

H)z(,o,z,o =
Y030t “g,l,s,o) /(1412

2
100t At K] 500687 K500+ 410 K g0+t K gg0) / (1+1%)

)3/2

X
k1,030 =

3,01 T 3t ’%,2,0,1 +3 2 55,1,0,1 + “§,0,0,1) / (1 + 12

2,02 T 2t ’%,1,0,2 + 12 ’ig,o,o,z) / (1 + t2)
)1/2

X

Ko0,3,01 =
X

Ko,2,02 =

)

1,03 Tt “?,0,0,3) /(14

(
(
(
(
Moo = (%
(
(
(

o< O O« O«

X
K0,1,03 =

1]

ij
y 2 x 2 _ (Y 2 . :

(K0.0.4,0)" and (K& 004)° = (K0,004)° i€, they remain invariant under the

planar rotation over an angle 91[-;}. Plugging the above equalities back into the

expression for the pairwise contrast function (A.1), we obtain a polynomial in
t= tan(O[?) of the form

%

where we have used ¢t = tan (9 Furthermore, we have that (k% 40)° =

agtg + a7t7 + agtﬁ + a5t5 + a4t4 + a3t3 + a2t2 + a1t + ag

TERDE (A4-2)

1]y _
‘I’CDA(HM ) =

where the coefficients a; are obtained by putting all terms on the common
denominator (1 + ¢?)%. One sees that if no associated data is available for the
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current pair of observations (i.e., I < i < j and thus yy; ;) = (yl[l],ygl], D?], []22])),

the contrast reduces to
‘I’CDA(QE]) = (K10,00)° + (K8 400)° = \I/COIV[2(91[';])

which is exactly the rational polynomial function of the CoM2 contrast [6]. Its
minima and maxima can be obtained analytically by zeroing its derivative, since
both the denominator and the numerator contain polynomials of degree 2R in ¢
having the symmetry p(t) = t*#p(—t~1). This means they can be reduced to a
polynomial of degree R(< 4) in £ by the change of variable ¢ = t—t~1. However,
if matching signals are available in the associated dataset, the polynomials do no
longer exhibit this symmetry and the zeros of the derivative need to be sought
through an iterative procedure such as the root finding algorithm based on the
eigenvalue decomposition of the companion matrix (see Appendix B).

Appendix B. Companion Matrix

The companion matrix of a monic polynomial p(r) = ag(x® + ag_12%~ 1 +
..t a22® + a1 + ap) is given by [7]

000 ... 0 =—a
100 ... 0 -—-a
C(p): 01 0 ... 0 —az
000 ... 1 —ap_y

The eigenvalues of this matrix are given by {\; det(C(p)—AIgr) = 0}. Developing
the determinant, we observe that the eigenvalues are indeed the solutions to
p(x) = 0, as required.

Appendix C. Geodesic Distance on SO(n)

The geodesic distance on a Lie group is given by d(Q1, Qz2) = || 1og(QT Qs)|| .
The special orthogonal group SO(n) may be represented by the skew sym-
metric matrices ‘Skew(n)’ as SO(n) = 5%V(")_ Every skew symmetric ma-
trix has n(n — 1)/2 degrees of freedom, uniquely determined by its upper
(or, lower) triangular elements. As a consequence, a skew symmetric ma-
trix may be represented as S(r), where r € R™™~1/2 is the vector contain-
ing the upper triangular elements. It follows that for an orthogonal matrix
Q: (L Q) = [[log(Q)3 = [ log(eS®)[2. = [SE|3 = 2[r]3. Multiplying
r by ¢ is equivalent to multiplying S(r) by & and thus results in a distance
el|S(r)||F = €, where we have taken ||S(r)||r = 2||r||3 = 1. If the optimal sep-

aration matrix corresponds to Q¥ = A[k]T, then we have d(Q, QlFle=S(®)),
For SO(2), we have no choice but to take r = r = £1, which (for r = 1):

ea(? *é) _ ( cose —sine )

sine cose
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Figure C.1: The evolution of the performance indices PIcpa of Equation (8) and ISIy of
Equation (9) as a function of the sweep index ¢. The observations are based on 10* samples
of two linear mixtures of Multivariate Laplace distributed variables (see subsection 6.2 for
details). The results of each of the 1000 Monte Carlo realisations are represented by a light
gray line and the overlay contains the median (black, continuous), the 1lst and the 99th

percentile (black, dashed).
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Figure C.2: (top) Performance measure and (bottom) JBSS cost function values at conver-
gence when the algorithms take the theoretical cumulant values as an argument. Perturbation
of the optimal solution is obtained by displacing the initialisation of the algorithms over a
distance € on SO(3). Results are taken as the mean over 100 Monte Carlo runs.
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Carlo runs.

27




8 10 0 2 8 10

4 6 4 6
Sweep Index ¢ Sweep Index ¢
Figure C.4: The evolution of the performance indices PIcpa of Equation (8) and ISIy of
Equation (9) as a function of the sweep index t. There are three observations for three
nuisance sources per observation set (v = 1) with three shared variables between the sets,
see subsection 6.3 for the generative model. The results of each of the 1000 Monte Carlo
realisations are represented by a light gray line and the overlay contains the median (black,
continuous), the 1st and the 99th percentile (black, dashed).
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Figure C.5: The performance measured through Plcpa (P) of Eq. (8) and ISIy of Eq. (9)
as a function of the algorithm (0, 1,2,3: CDA with estimated number of common sources
I=0,1,2,3, JBSS [4] and CCA [9]) and the actual number of matched sources I. Each set is
composed of I sources common to both observation sets, (3 — I') sources proper to each of the
observation sets and 3 nuisance sources, according to model (10) with v = 1. The results are
given in box-whiskers plots, containing the 25th and 75th percentile as the box extremities
and the median as the horizontal line within the box. Outliers (crosses) are those samples
that are outside the interval [pctos — %(pct75 — pctys), pctrs + %(pct75 — pctys )], where pct,
is the ¢% percentile. Data has been collected over 1000 Monte Carlo runs.
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Table C.1: Pseudocode to calculate the optimal rotation matrices Q¥ such that Q =
blkdiag(Ql, Q2 ..., QIK]) = MA—1

initialize Q¥ = I,
while no convergence do

for k=1— K do

for i =1 — maxg(Dg) — 1 do
for j =i+ 1 — maxy(Dy) do
] [k]

calculate 95 = argmax, Ueopall, j)
ij ’

2 2
= Zrl +ro=R (H7)‘c1 ,0,1“2,0(91['_];’] )) + (H)Oc,rl ,0,72 (ey;] ))
(see Appendix A, Eq. A.2)

—~

update the observations as x; jj < X; ;1 (HZU;])

update QI Q} (01} QM
end for
end for
end for
end while
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Table C.2: The CDA algorithm

Require: Datasets X[*! of equal samples size N

return Canonical Dependence Components Y ¥

Unmixing matrices WI* | such that Xl = Ay

for k=1— K do
{make the observations zero-mean and pre-whiten on a dataset level (1
is a column vector of N ones)}
X X — kg T
Compute SVD X = UnFvyT
Xm<_\ﬁv(gm)”(ungxw

end for

Estimate the rotation matrices Q*! using the algorithm in Table C.1
Y = XI* {Y is equal to X at the last iteration}

Am:Umgm@mf
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Table C.3: A summary of the experiments and the results that can be found in this manuscript.
Lap and Uni denote respectively Laplacian and Uniformly distributed variables. Details about
the experiments can be found in the referred sections. D and D2 refer to the dimensions of

the datasets, I to the number of sources they have in common.

section results D; Do I noise distribution sample size objective

6.2.1 Fig. C.1 3 3 3 no Lap 10% convergence
6.2.1 Table C4 T I 2,3,5,10 no Lap 104 convergence
6.2.2 Fig. C.2 3 3 3 no Lap 00 performance
6.2.3 Fig. C.3 3 3 3 no Lap 10% performance
6.3.1 Fig. C4 3 3 3 yes Lap/Uni 10* convergence
6.3.1 Table C.5 [T I 23,51 yes Lap/Uni 104 convergence
6.3.2 Fig. C5 3 3 1,2,3 yes Lap/Uni 104 performance
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Table C.4: The p-values issued from a Kolmogorov-Smirnov test on the similarity between the
distributions of the performance indices over two consecutive sweep numbers ¢t — 1 and ¢. Data
are drawn from multivariate Laplace distributions as described in subsection 6.2. The table
is truncated at the seventh iteration, since convergence has been reached for all dimensions.

I\t] 2 3 4 5 6 7
2 0 263103 1.00 1.00 1.00 1.00
3 0 0.00 1.00 1.00 1.00 1.00
5 0 0 6.55107° 1.00 1.00 1.00
10 0 0 0.00 1.00 1.00 1.00
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Table C.5: The p-values issued from a Kolmogorov-Smirnov test on the similarity between
the distributions of the performance indices over two consecutive sweep numbers ¢t — 1 and ¢t.
Data are drawn from the non-Gaussian noise model defined in subsection 6.3. The table is
truncated at the eighth iteration, since convergence has been reached for all dimensions.

INt] 2 3 4 5 6 7 8

2 0.00 1.6510°7 9.9310~' 1.00 1.00 1.00 1.00
3 0 3.35107° 11710t 1.00 1.00 1.00 1.00
5 0 0.00 41110716 307 107! 1.00 1.00 1.00
10 0 0.00 0.00 439107° 56510°' 9.9610°!' 1.00
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