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Millions of people go to the Web to search for geographical itineraries. Inspecting those map itineraries remains tedious because they seldom fit on screen, requiring much panning & zooming to see details. Focus+context techniques address this problem by displaying routes at a scale that allows them to fully fit on screen: users see the entire route at once, and perform magnified steering using a lens to navigate along the path, revealing additional detail. Navigation based on magnified steering has been shown to outperform pan & zoom for large steering tasks. Yet, this task remains challenging, in part because paths have a tendency to "slip off" the side of the lens. RouteLenses automatically adjust their position based on the geometry of the path that users steer through. Route-Lenses make it easier for users to follow a route, yet do not constrain movements too strictly, leaving them free to move the lens away from the path to explore its surroundings.

INTRODUCTION

Web-based mapping service applications have become the tool of choice for exploring geographical areas and locating points of interest. Millions of people, both novice and expert computer users, go on sites such as Google Maps, OpenStreetMap or Bing Maps to search for itineraries, compare them, and eventually select one. This task remains tedious because map itineraries seldom fit on screen, requiring much panning & zooming of the map to see particular details. For instance, a tourist faced with several alternative itineraries to go from one place to another in a city may want to explore each one at street level to pick the one that passes through the most places of interest. To address this problem, Web-based mapping services feature panning & zooming capabilities, augmented with an overview widget to prevent excessive context loss when zooming in. However, the scale difference between the overview and the detailed view remains limited. Furthermore, decoupling the overview from the detailed view is not necessarily the best-suited strategy to effectively support navigation along itineraries.

Focus+context techniques offer an alternative, well-suited to following lengthy routes at varying levels of magnification. The route is displayed at a scale that allows it to fully fit on screen, and the focus+context technique, typically a fisheye lens [START_REF] Sarkar | Graphical fisheye views of graphs[END_REF][START_REF] Pindat | JellyLens: content-aware adaptive lenses[END_REF], provides an in-place magnification of the locally-bounded region of interest around the cursor. Users see the entire route at once, and perform magnified steering [START_REF] Gutwin | Fisheyes are good for large steering tasks[END_REF] to navigate along the path, displaying -incontext and in more detail -the portion that falls below the lens. Navigation based on magnified steering has been shown to outperform pan & zoom for large steering tasks [START_REF] Gutwin | Fisheyes are good for large steering tasks[END_REF]. Yet, this task remains a challenging one for users, in part because paths have a tendency to "slip off" the side of the lens.

We introduce RouteLens, a new content-aware technique that automatically adjusts the lens' position based on the geometry of the path that users steer through, so as to keep the lens on track in case of overshoot (Figure 1). RouteLens makes it easier for users to follow a route, yet do not constrain movements too strictly. The lens is more or less strongly attracted to the path depending on its distance to it, and users remain free to move the lens away from it to explore its surroundings. RouteLenses only affect the motor behavior of lenses, and can easily be combined with any type of graphical magnification lens [START_REF] Appert | High-precision magnification lenses[END_REF][START_REF] Pindat | JellyLens: content-aware adaptive lenses[END_REF]. After a brief overview of related work, we describe the behavior and implementation of RouteLenses. We then report on a laboratory experiment in which RouteLenses improve user performance over conventional magnification lenses on a path following task, as predicted by steering law [START_REF] Accot | Beyond Fitts' law: models for trajectory-based HCI tasks[END_REF].

RELATED WORK

There are two main ways of showing itineraries in mapping applications: representing them as a list of turn-by-turn driving instructions, or as an overlay on top of an interactive 2D map. The two strategies actually complement one another, and serve different purposes. The former, even if enhanced (e.g., LineDrive [START_REF] Agrawala | Rendering effective route maps: improving usability through generalization[END_REF], Detail Lenses [START_REF] Karnick | Route visualization using detail lenses[END_REF]), is designed to match drivers' cognitive representation of a route they are following in real-time [START_REF] Tversky | Cognitive maps, cognitive collages, and spatial mental models[END_REF]. However, they fail, because of their linear nature, to support the initial exploration and planning phase. The latter strategy better supports this phase, letting users freely explore the area surrounding the points of interest that the itinerary will go through, and plan alternative routes.

But interactive maps usually require users to perform a lot of panning and zooming actions to both see the complete itinerary and look at particular details, possibly causing some disorientation. One option to address this issue consists in displaying portions of the itinerary at different scales, for instance using PolyZoom [START_REF] Javed | PolyZoom: multiscale and multifocus exploration in 2D visual spaces[END_REF], a visualization that organizes multiple linked views of the same map at different scales in a hierarchical manner, letting users pan & zoom any of those. The technique has been shown to outperform pan & zoom for some multi-scale search tasks, but can be cognitively demanding as it requires users to manage and mentally relate numerous spatially-disconnected views.

Focus+context techniques address this latter issue by smoothly integrating a zoomed-in representation of the current area of interest into a smaller-scale overview of the entire map [START_REF] Appert | High-precision magnification lenses[END_REF]. The wired fisheye lens [START_REF] Yamamoto | Wired fisheye lens: A motion-based improved fisheye interface for mobile web map services[END_REF] lets mobile users explore their surroundings on a map by tilting their device. But the technique ties the lens to a particular point on the map using a rubber-wire-like mechanism, and does not help steer along paths [START_REF] Accot | Beyond Fitts' law: models for trajectory-based HCI tasks[END_REF]. JellyLenses [START_REF] Pindat | JellyLens: content-aware adaptive lenses[END_REF] adapt their shape to the geometry of the objects they magnify, so as to optimize the visual representation of the focus, context, and transition areas. However, they are only concerned with optimizing the visual representation when performing magnified steering, and do not consider the motor aspects of the task. High-Precision Magnification Lenses [START_REF] Appert | High-precision magnification lenses[END_REF] do look into the motor aspects of lens positioning, but do not provide support for steering.

While fisheyes have been shown to perform well for large steering tasks [START_REF] Gutwin | Fisheyes are good for large steering tasks[END_REF], those tasks remain challenging ones, in part because paths have a tendency to "slip off" the side of the lens. This specific problem could be addressed by combining lenses with LinkSliding [START_REF] Moscovich | Topology-aware navigation in large networks[END_REF], a technique for navigating large networks that strictly constrains movements to the path itself. However, as it translates the viewport (and thus the context view) whenever the cursor moves, it makes exploration of a route's surroundings impractical.

ROUTELENS

A RouteLens facilitates steering along a route by behaving as if it were attracted by it. This behavior is achieved by decoupling the lens' position from the cursor's position, following an approach similar to that of Semantic Pointing [START_REF] Blanch | Semantic pointing: improving target acquisition with control-display ratio adaptation[END_REF], that enlarges targets of interest in motor space by decoupling the latter from its visual counterpart. When using a RouteLens, all route segments whose distance to the system cursor is less than ∆ apply an attraction force to the lens. The lens' position L is computed as a function of the system cursor's position C by using a weighted mean between all attracting route segments:

L = C + dmin • n i=1 wi • Ai n i=1 wi
where Ai is the force vector that route segment i applies at position C to attract the lens (see below) and dmin is the distance between the cursor and the closest route segment. To ensure continuous lens movements when a route segment starts or stops having an influence on the lens, wi is set to ∆ -dc,i, where dc,i is the distance between the cursor and route segment i.

For a given route segment, the attraction vector is computed as:

A = α(dc) • (Rc -C)/dc
where Rc is the point on the route closest to the cursor, and dc the distance between the cursor and the route segment. α is a power function of dc that parameterizes the force vector a route segment applies to the lens:

α(dc) = 1 -dc ∆ p if dc ≤ ∆ 0 otherwise.
Figure 2 illustrates the progressive attraction effect of a straight route on the lens' position. As the cursor gets away from the route, the lens moves away from it more slowly than the cursor does. It then progressively moves faster, so as to match the cursor's position as soon as the latter leaves the attraction area. This area corresponds to a tunnel of diameter ∆ centered on the route. Power parameter p is used to fine-tune the attraction effect, controlling how quickly the lens leaves the route to match the cursor's position. The solid and dashed black lines in Figure 2 illustrate two different p values. Our composition of different attraction forces is in the spirit of techniques that rely on force vectors to adapt control-display gain [START_REF] Ahlström | An evaluation of sticky and force enhanced targets in multi target situations[END_REF][START_REF] Fung | Kinematic templates: end-user tools for content-relative cursor manipulations[END_REF][START_REF] Hurst | Dirty desktops: Using a patina of magnetic mouse dust to make common interactor targets easier to select[END_REF]. Among these, Kinematic Templates [START_REF] Fung | Kinematic templates: end-user tools for content-relative cursor manipulations[END_REF] are the closest to our approach, as they consider fixed field vectors around an arbitrary path to create visual magnetic guides that can be combined together to generate artistic effects in a mouse-operated drawing application. Our approach is also related to that employed in Snap-and-go [START_REF] Baudisch | Snap-and-go: Helping users align objects without the modality of traditional snapping[END_REF]. But while this technique works well for 1D line snapping, it is not straightforward to generalize to arbitrary 2D routes. It also makes users feel like the cursor temporarily stops and potentially causes exaggerated movements compared to the more progressive transitions that RouteLens enables.

When steering along a magnified route, users want to minimize the distance d l between the lens' center and the route. In Accot & Zhai's steering law [START_REF] Accot | Beyond Fitts' law: models for trajectory-based HCI tasks[END_REF], d l represents the movement's variability along the tunnel centered on the route, i.e., the tunnel's width. The law stipulates that the larger the variability, the easier the movement. Figure 2 shows how RouteLens makes steering easier than a regular fisheye lens does, by allowing for a wider variability in usercontrolled cursor movements. To keep a regular lens at a distance d l from the route, users have to keep the cursor at a distance dc = d l . With a RouteLens, this distance can be larger: dc = d l + dc • α(dc).

With a regular fisheye lens, keeping the route visible in the flattop requires that variability d l be less than F M (half of the tunnel width according to the steering law), where F is the radius of the flat-top, and M the magnification factor. With a RouteLens, the tunnel width can be larger if the radius of the attractive area goes beyond F M (the actual tunnel width is 2 p+1 F •∆ p M ). Preliminary testing and pilot studies showed that setting ∆ = 2F

M and p = 2 yield a good balance between the magnitude of the attraction and the smoothness of the transition, resulting in an overall lens behavior that is hardly noticed by users. Figure 2 illustrates how these values make the maximal variability of the cursor movement ∼ 1.6 larger than a regular fisheye lens does.

EVALUATION

RouteLenses' motor behavior can be implemented with any type of lenses, including the shape-shifting JellyLenses [START_REF] Pindat | JellyLens: content-aware adaptive lenses[END_REF] that adapt their geometry to that of objects of interest or the high-precision magnification lenses [START_REF] Appert | High-precision magnification lenses[END_REF] that address problems of quantization at high magnification factors. In this study we consider conventional fisheye lenses as a baseline to both isolate the benefits of Route-Lenses' motor behavior and keep a reasonable experiment length for participants. The experimental task consisted in following a route with a lens, always keeping the route visible in the flat-top (Figure 3). We hypothesized that RouteLens outperforms Regular-Lens on this route following task, since the former facilitates the underlying steering task [START_REF] Accot | Beyond Fitts' law: models for trajectory-based HCI tasks[END_REF], as discussed above.

Participants

12 volunteers (6 female), all right-handed, aged 23 to 39 years-old (average 28.2, median 27), daily mouse users, participated in the experiment. 11 use mapping applications frequently. 7 of them are familiar with magnifying lenses, and 5 with fisheye lenses.

Apparatus

We conducted the experiment on a Mac Pro workstation running Mac OS X, equipped with an ATI Radeon HD 5870 video card driving a 30" LCD monitor (2560×1600, 100 dpi), and a standard optical mouse (800 dpi resolution) set with the default system acceleration. The software was implemented in JavaScript and We-bGL using three.js (http://threejs.org/) and ran in Google Chrome. We used fisheye lenses with a magnification factor of 4, a lens size of 260 pixels and a flat top size of 180 pixels.

Design and Procedure

Our goal was to evaluate the motor aspects of the magnified steering task, focusing on the interaction technique itself. We thus decided not to use a real map to avoid any noise and bias due to the additional information that it would have featured. Instead, we operationalized the task using quantitative description factors. We could better control those, while still ensuring that the task was sufficiently representative of actual route following.

The experiment is a 2×2×2×4 within-subjects design with factors: TECH, ANGLE, DISTRACTOR, and DIR. TECH is the primary factor with two values: RegularLens and RouteLens. ANGLE and DISTRACTOR are secondary factors that define characteristics of the route, illustrated in Figure 3: ANGLE (Acute = π/4 and Obtuse = 3π/4) defines the angle between two route segments. DISTRAC-TOR defines the presence or absence of distractor routes, that also attract the cursor. When DISTRACTOR = With, additional (grey) routes are added at each turn of the (black) target route. DIR defines the direction of steering: left-to-right, right-to-left, top-to-bottom, or bottom-to-top. This factor was introduced for ecological reasons, and we do not consider it further in our analyses.

To start a trial, participants have to click on a black circle at the beginning of the first segment of the route. They then follow the target route and click on a rectangle located at the route's other endpoint. They are instructed to keep the route visible in the lens' flat-top all the way. As soon as the route leaves the flat-top, participants get notified on-screen and have to restart the whole steering task until they succeed. For each trial, we record (i) the (successful) task completion time TCT; (ii) the number of failed attempts, NumError; and (iii) the average distance from the lens to the target route.

We grouped trials into 2 blocks, one per technique, half of the participants starting with RouteLens. A block contains four subblocks of 16 trials corresponding to all ANGLE × DISTRACTOR × DIR conditions, presented in a random order. The first sub-block is for training purposes only. We collect measures for analyses during the three other sub-blocks. The overall experiment lasts about 50 minutes, including final debriefing and questionnaire. TECH has a significant effect on TCT: RouteLens is significantly faster than RegularLens, a difference of ∼ 15%. We also observe significant effects of DISTRACTOR and ANGLE on TCT: tasks are ∼ 5% faster with distractors than without, and ∼ 6% faster with Acute angles than with Obtuse angles.

Results

More importantly, we observe a significant TECH × DISTRAC-TOR interaction (Figure 4-b). Post-hoc t-tests with Holm correction for multiple pair comparisons reveal that RouteLens is faster than RegularLens, both with distractors (p < 0.0001) and without (p = 0.0002). However, distractors have a stronger impact on RouteLens. RouteLens is significantly faster with distractors than without, but this DISTRACTOR effect is not significant for Regular-Lens (p = 0.1420). The presence of distractors actually improves TCT for RouteLens without introducing more errors (p = 0.98). This may be due to the specific route layout we considered: the presence of a distractor route in the middle of the turn may make the turning movement easier. This middle route applies additional force vectors, resulting in a stronger global attraction towards the route at the end of the turn.

Regarding the number of errors NumError, we observe a significant difference for ANGLE only. Participants made more errors (Figure 4-c) with Obtuse than with Acute angles (p = 0.0072). Thus, participants were both slower (see above) and made more errors in the Obtuse condition. It may appear as a surprising result, as movements that involve highly curved portions are generally slower [START_REF] Viviani | Trajectory determines movement dynamics[END_REF] than straighter movements. We attribute this to the more frequent mouse clutching actions the operator noticed for Obtuse angles, the path being lengthier in the direction of steering (see Figure 3).

As expected, RouteLens' attraction effect also makes users steer along the route with a movement that exhibits less variability. The average distance from the lens' center to the route is significantly lower for RouteLens than for RegularLens (F 1,11 = 331, p < 0.0001). The distance is 13.3 ±0.9 pixels for RouteLens and 33.3 ± 1.7 pixels for RegularLens (expressed with respect to the flat-top's coordinate system).

At the end of the experiment, we collected qualitative feedback using a post-hoc questionnaire. Three participants did not even notice the difference between the regular fisheye and RouteLens. Among the nine participants who did notice a difference, three participants said they had no idea what that difference was (they just felt like they could go faster with RouteLens) and seven had a preference for RouteLens (only one had a preference for RegularLens).

CONCLUSION

RouteLenses are designed to make it easier for users to follow map itineraries by dynamically adapting properties of the motor space, based on both cursor position and route geometry. This is achieved without constraining users, who remain free to explore the itinerary's surroundings without having to perform any explicit action to either engage or disengage the modified motor behavior. In our laboratory experiment, RouteLens better helped users stay close to the path they follow than a regular fisheye did, without making the lens stick too strongly to it. Future work will evaluate RouteLens' performance beyond steering, e.g., when disengaging from the route to explore its local surroundings. We would also like to further study the effect of the number and geometrical configuration of distractors routes present at intersections. We also plan to investigate the combination of RouteLenses' motor behavior with techniques designed for high magnification factors [START_REF] Appert | High-precision magnification lenses[END_REF] and dynamic visual adaptation [START_REF] Pindat | JellyLens: content-aware adaptive lenses[END_REF].
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Figure 1 :

 1 Figure 1: Following an itinerary. (a) Conventional lens: the user overshoots at a right turn in Harrisburg; losing the route that falls in the distorted region. (b) RouteLens: the route's attraction compensates the overshoot; the lens remains closer to the route, which remains in focus.

Figure 2 :

 2 Figure 2: Position of the cursor (grey line), and of the Route-Lens (black line), that is vertically attracted (p = 2) by the route (bold blue line). The dashed black line shows the positions of the RouteLens when p = 6. In this figure, ∆ is equal to the lens' flat-top diameter in motor space, and the black (resp. grey) circles show the part of the context displayed in the RouteLens' (resp. regular fisheye lens') flat-top.

Figure 3 :

 3 Figure 3: The four path configurations used in the experiment. The target route (black) always consists of 5 segments, 300 pixels in length each. Distractor routes are painted gray.

Figure 4

 4 Figure 4 shows trial completion time TCT for each TECH by DIS-TRACTOR, and the results of the ANOVA for the full factorial model TCT ∼ TECH × DISTRACTOR × ANGLE × Rand(PARTICIPANT).TECH has a significant effect on TCT: RouteLens is significantly faster than RegularLens, a difference of ∼ 15%. We also observe significant effects of DISTRACTOR and ANGLE on TCT: tasks are ∼ 5% faster with distractors than without, and ∼ 6% faster with Acute angles than with Obtuse angles.More importantly, we observe a significant TECH × DISTRAC-TOR interaction (Figure4-b). Post-hoc t-tests with Holm correction for multiple pair comparisons reveal that RouteLens is faster than RegularLens, both with distractors (p < 0.0001) and without (p = 0.0002). However, distractors have a stronger impact on RouteLens. RouteLens is significantly faster with distractors than without, but this DISTRACTOR effect is not significant for Regular-Lens (p = 0.1420). The presence of distractors actually improves TCT for RouteLens without introducing more errors (p = 0.98).

Figure 4 :

 4 (a) ANOVA for the full factorial model TCT ∼ TECH × DISTRACTOR × ANGLE × Rand(PARTICIPANT). (b) TCT by TECH×DISTRACTOR condition. (c) Average number of errors by trial, by TECH × ANGLE condition. Error bars show the confidence interval for the mean over all trials.