
HAL Id: hal-00997951
https://hal.science/hal-00997951

Submitted on 11 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WSOFT : an automatic testing tool for web services
composition

Dung Cao, Patrick Félix, Richard Castanet

To cite this version:
Dung Cao, Patrick Félix, Richard Castanet. WSOFT : an automatic testing tool for web services
composition. 5th International Conference on Internet and Web Applications and Services, May 2010,
Barcelona, Spain. pp.7-12. �hal-00997951�

https://hal.science/hal-00997951
https://hal.archives-ouvertes.fr

WSOTF: An Automatic Testing Tool for Web Services Composition

Tien-Dung Cao, Patrick Felix, and Richard Castanet

LaBRI - CNRS - UMR 5800, University of Bordeaux 1

351 cours de la libération, 33405 Talence cedex, France.

Email: {cao,felix,castanet}@labri.fr

Abstract—This paper presents an automatic conformance
testing tool with timing constraints from a formal specification
(TEFSM: Timed Extended Finite State Machine) of web ser-
vices composition (WSOTF: Web Service composition, Online
Testing Framework), that is implemented by an online testing
algorithm. This algorithm combines simultaneously idea of test
execution and debug to generate and simultaneously execute
the test cases. In this tool, the complete test scenario (timed
test case suite and data) is built during test execution. This tool
focus on unit testing, it means that only the service composition
under test is tested and all its partners will be simulated by
the WSOTF. This tool also considers the timing constraints and
synchronous time delay. We can also use this tool for debug
that is not easy while we develop a composite of Web service.

Keywords-Web Services Composition, Conformance Testing,
Test Generation, Debugger, Timed Extended Finite State Ma-
chine.

I. INTRODUCTION

As the software system, a web service (WS) can be

tested by traditional software testing techniques such as:

conformance testing, performance testing, availability test-

ing, robustness testing, etc. There is not an exception for

a WS composition. In general, the conformance testing is

firstly applied to verify the conform of an implementation

with its specification after the development of a WS. In the

last years, many approaches and tools are developed for WS

composition conformance testing [6–9, 17, 21, 22]. In these

works, testing consists of there phases: test case generation,

data generation (the complete test scenario is built), test

execution and give the verdict. Here, we call these works

be offline approach, it means that the complete test scenario

is built before test execution. The test purpose is used in

these works to generate test case. In the complex services,

the number of test case suite that can cover all actions is

very large, testing by test purpose is necessary. But with

a service is less complex, this is difficult for tester because

currently, there are not an automatic communication between

the phases of there works. Moreover, testing by test purpose

is not necessary because the number of test case suite that

tester must execute to verify the conformation of a Service

Under Test (SUT) and its specification is not very large. That

can be automatically generated by the execution of N times

and at each state, the next action will be randomly selected

from the next possible action list of current action.

Another hand, the debug is a process of monitoring

(collect the traces) while we develop a software that saves

the execution traces, its data and analyses to find an error,

mistake, failure in a system. Most bugs arise from mistakes

and errors made by people in either a program’s source code

or its design. The debug of a web service composition is very

difficult because a composite of Web service is a runtime

system, its components (partner services) are invoked and

integrated at the runtime.

This paper presents an automatic conformance testing tool

with timing constraints from a formal specification (TEFSM:

Timed Extended Finite State Machine) of web services

composition (WSOTF: Web Service composition, Online

Testing Framework), that combines simultaneously idea of

test execution and debugger to generate and simultaneously

execute the test cases. From the current action, we have

a next possible action list (consists of input/output action

and synchronous timed delay) based on the data value at

the current action. If this list is empty, we arrive a final

state. Else, if the set of input action and synchronous timed

delay are not empty, we will randomly choice an action of

this list, generate the data and execute the correspondent

action (the test execution phase). After that, the current

action will be updated by this action (the debug phase).

The same of output action, we wait a message from SUT,

check it and update current action. We call this be online

testing approach. We choice the formal specification TEFSM

[20] as input format of WSOTF because this formalism is

closely related to timed automata [12] and permits to carry

out timing constraints, clocks, state invariants on clocks and

data variables. The specification of a WS composition as

UML can be translated into TEFSM before using this tool.

With a BPEL specification (the real implementation may be

another language as Java, .NET, PHP, etc), we can use the

rules in [10] to translate into TEFSM. This tool focus on unit

testing, it means that only the service composition under test

is tested and all its partners will be simulated by WSOTF.

When WSOTF receives a request from SUT (partner invoke),

it will randomly generate the correspondent SOAP message

with its structure and returns it to SUT. This tool can also

be used to debug a WS composition while its development.

The rest of paper is organized as follows. Section II,

we give the formal definition of TEFSM and conformance

notation. Section III presents the detail of the WSOTF

tool. A test application of Loan Approval Service using

the WSOTF is shown in the section IV. Finally, section V

concludes the paper and the future works.

II. PRELIMINARIES

In this section, we present some definitions about Timed

Extended Finite State Machine (TEFSM), that we use as in-

put format of WSOTF, and the conformance notation that is

applied in WSOTF to automatically check the conformation

of an implementation of Web service composition with its

specification.

Clocks and Constraints: A clock is a variable that allows

to record the passage of time. It can be set to a certain value

and inspected at any moment to see how much time has

passed. Clocks increase at the same rate, they are ranged

over IR+, and the only assignments allowed are clock resets

in the form c:=0. For a set C of clocks, and a set V of

variables, the set of clock constraints Φ(C) is defined by the

grammar: Φ := Φ1|Φ2|Φ1 ∧ Φ2,Φ1 := c ≤ m,Φ2 := n ≤ c
where c is a clock of C, and (n, m) are two natural numbers.

P(V) is a set of linear inequalities on V, (c0, c1, ..., cn)

(resp. (v0, v1, ..., vm)) will be denoted by ~c (resp. ~v).

Definition 1: (TEFSM): A TEFSM M is a tuple, M = (S,

s0, V, Eτ , C, Inv, T) where:

• S = {s0, s1, ..., sn}, is a finite set of states;

• s0 ∈ S is an initial state;

• V is a finite set of data variables, D
|V |
V is the data

variable domain of V;

• Eτ is a finite set of events. Eτ is partitioned into:

– Input event ?a (EI);

– Output event !b (EO);

– τ is the internal event.

• C is a finite set of clocks including a global clock gc
(never reset);

• Inv: S 7→ Φ(C) is a mapping that assigns a time

invariant to states;

• T ⊆ S ×Eτ × P (V)∨Φ(C)× 2C × µ× S is a set of

transitions where:

– P (~v)&φ(~c): are guard conditions on data variables

and clocks;

– µ(~v): Data variable update function where µ :

V 7−→ D
|V |
V ;

– X ⊆ 2C : Set of clocks to be reset;

• M is a deterministic machine;

A transition t = (s < e, [g], {f ; c} > s′) ∈ T represents

an edge from state s to state s′ on event e. g is a set of

constraints over clocks and data variables, f is a set of data

update function, and c is a set of clocks to be reset.

For a ∈ EI ∪ EO, we write s
a
→, iff ∃s′ ∈ S such that

s
a
→ s′. We write s

a1,...,an

−→ s′ iff ∃s1, s2, ..., sn−1 ∈ S
such that s

a1→ s1
a2→ s2...sn−1

an→ s′. We write s
a
⇒, iff

∃s′, s′′, s′′′ ∈ S such that s
τ,...,τ
−→ s′′

a
→ s′′′

τ,...,τ
−→ s′. We

define Γ = (EI ∪ EO × IR+) as the set of observable

actions (actions and delays) and Γτ = (Eτ × IR+) as

the set of observable actions including internal actions.

A timed sequence σ ∈ Seq(Γ) is composed of actions a

and non-negative reals d such that: s
(a,d)
→ s′ ⊕ d, where

d is a timing delay. Let Γ′ ⊆ Γ and σ ∈ Seq(Γ) be a

timed sequence. πΓ′(σ) denotes the projection of σ to

Γ′ obtained by deleting from σ all actions not present in

Γ′. The observable timed traces of an IUT is defined by:

Trace(IUT) = {πΓ(σ)|σ ∈ Seq(Γτ) ∧ s0
σ
⇒}.

Definition 2: (Conformance Relation): An implementa-

tion of Web services under test (denotes IUTI) is conform

to its specification (denotes IUTS) ⇐⇒ ∀Trace(IUTI),
∃Trace(IUTS) such that Trace(IUTI) ⊆ Trace(IUTS).

An implementation of Web services under test is con-

form to its specification, Iff for each timed trace that are

generated by the implementation, we must find at least a

timed trace (from initial state s0 to a final state) belonging

to its specification. A fault verdict will be immediately

assigned for current trace if exists an output or delay

that are not belong to any observable timed traces of its

specification (i.e. ∃Trace(IUT I),∀Trace(IUT S) such

that Trace(IUT I) /∈ Trace(IUT S)).

III. WSOTF: AN AUTOMATIC TESTING TOOL

This section presents an overview of WSOTF tool that

consists of a test architecture, a test algorithm, the archi-

tecture of WSOTF and finally an experience example using

WSOTF.

A. Test architecture

It is straightforward to derive a test architecture that

describes the test environment consisting of simulated ser-

vices. A Web service Under Test (SUT) and its partners

(including also the client) communicate by exchanging input

and output SOAP messages. When the SUT is being tested

(unit testing), the tester plays the role of the environment

(i.e. its partner services). In WSOTF, we use a central test

architecture that the client and its partners will be simulated

by only tester. This tester will send and receive the SOAP

message to/from SUT and it is concentratelly controlled by

a controller. The controller will generate the test case and

give the verdict. The figure 1 shows an abstract model of

SUT (A) (a client and two partners) and a correspondent

central test architecture (B).

B. Test algorithm

In WSOTF, we distinguish two following transition types:

• The action transition (discrete transition), denoted by

s
a
→ s′ such that s

a[g]{u}
−→ s′ ∈ T , indicates that

if the guard (on variables and clocks) g is true, then

the automaton fires the transition by executing the

Figure 1. The abstract model of SUT and Central Test Architecture

input/output action a, changing the current values of the

data variables by executing all assignments, changing

the current values of the clocks and timers by executing

all time setting/resetting, updating the buffers contents

of the system by consuming the first signal required by

input actions and by appending all signals required by

output actions, where u is a set of update functions,

and moving into the next state s′.
• The timestamps transition (timing transition), denoted

by s
c=d
→ s′ where c is a local clock (or s

gc=dl
→ s′

where gc is a global clock), indicates that TEFSM will

move to state s′ when local clock c reaches a time

duration d (or global clock gc reaches a deadline (dl)),

for example, the transition of the wait activity.

As we present in the introduction section, from the current

action, we have a next possible transition list (consists of

action transitions and timestamps transitions) based on the

data value at the current action. If this list is empty, we arrive

a final state. Else, if the set of input action and synchronous

timed delay (timestamps transitions) are not empty, we will

randomly choice a transition (note t) of this list, generate the

data and execute the correspondent action (the test execution

phase) if t belongs to the set of input action, else (t belongs

to the set of timestamps transitions) we do a synchronous

time. After that, the current action will be updated by this

action (the debug phase). The same of output action, we

wait a message from SUT, check it (give a fail verdict if

the receivable message is not correct) and update current

action. A timeout verdict is also given if we do not receive

a message after a duration. After execution of each transition

action (input/output), we must update the data variable with

values of the SOAP message. The detail of algorithm is

provided in [10]. In the current version, we process the

activities of a flow activity as the sequence activities. The

next version, we will improve this algorithm to process

simultaneously the activities of a flow activity.

C. WSOTF architecture

The detail architecture of WSOTF is shown in the figure 2

that consists of five main components: loader, data genera-

tion, data update function, executer and test execution.

Figure 2. Architecture of WSOTF

1) loader: loads the input format and analyses the wsdls

to get the informations of partners;

2) data generation: we reuse the code of SoapUI [24]

to generate SOAP format. The data for each field of

SOAP message is randomly generated or use a default

value. This depends on the configuration file;

3) data update function: define the update functions for

the variables;

4) executer: implementation of online testing algorithm

to generate test case, control test execution and assign

the verdict. It uses the data generation module and

the data update function module to generate SOAP

message and update value of variables;

5) test execution: this consists of two components: a

http client to invoke the request into SUT (the client

request or partner callback in the case asynchronous

services, the result is return on a different port) and

http server to receive and return the message from

SUT on the same port. When test execution receives a

SOAP message from SUT, it sets this message into a

queue to wait a processing of the executer. It receives

directly SOAP messsage from the executer and sends

it to SUT;

D. Testing a web service using the WSOTF

To test a Web service composition, before we must trans-

late its specification (UML, BPEL, etc.) into the input format

of WSOTF. The figure 3 shows an input format example of

WSOTF. This format consists of partner section that declares

the partners name and location of wsdl specification, vari-

ables list (variable types are: int, boolean or message type of

SOAP that is defined in WSDL), local clock, initial state, and

a list of transitions. Each transition consists of seven fields:

source state, target state, event name, guard on variable,

guard on clock, data update function and local clock to be

reset. In WSOTF, we use the form ?pl.pt.op.msg to represent

a format of an input action that means the reception of

the message (msg) for the operator (op) of the portTyte pt

from the partner (pl) and the form !pl.pt.op.msg represents a

format of an output action (resp. the emission of the message

(msg) for the operator (op) of the portTyte pt to the partner

(pl)). The result of WSOTF (traces including interval time

between two actions and its correspondent verdict) is saved

in a xml file. This tool allows declare (an enumeratation) the

value of some fields of SOAP message in an enumetation

file that can use to test by purpose (fix the condition for

each branch), correlation data (current version not support

yet the correlation data functions) or to debug. At each

excution time, WSOTF requests a number N (integer) and

it repeats N times to generate N traces if there is not error

and the correspondent verdict is PASS. WSOTF will stop

immediately if it finds an error (message receive incorrect,

or timeout).

Figure 3. Input format of WSOTF

E. Using the WSOTF as a debugger

After developement of a web service composition, sup-

pose the implementation has conformed with its specifica-

tion, a question is: how does it run? to solve this question,

in general, we execute it and use a debugger to monitor its

behaviour (collect the traces). To do this in a web service

composition is very difficult because: 1) a composite of Web

service is a runtime system, its components (partner ser-

vices) are invoked and integrated at the runtime. Moreover,

the data of partner services will be effected while we execute

the web service composition. 2) we must install the prope

on the server to collect the traces. In WSOTF, all partner

services are simulated by the WSOTF. This allows us use

WSOTF to execute a web service composition without effect

to its partners. The WSOTF collects a set of traces after it

executes on the service. This is a reason to use the WSOTF

as a debugger.

IV. APPLICATION: LOAN APPROVAL SERVICE

This example consists of a simple loan approval service

[2]. Customers of the service send loan requests, including

personal information and amount being requested. Using

this information, the loan service executes a simple process

resulting in either a ”loan approved” message or a ”loan

rejected” message. The decision is based on the amount

requested and the risk associated with the customer. For

low amounts of less than 10 a streamlined process is used.

In the streamlined process low-risk customers are approved

automatically. For higher amounts, or medium and high-

risk customers, the credit request requires further processing.

For each request, the loan service uses the functionality

provided by two other services (Approval and Assessment).

In the streamlined process, used for low amount loans, a

risk assessment service is used to obtain a quick evaluation

of the risk (low or high) associated with the customer. A

full loan approval service (possibly requiring direct involve-

ment of a loan expert) is used to obtain assessments when

the streamlined approval process is not applicable. In this

example, to test with a synchronous time delay, we use the

approval service as an asynchronous service. It means that

loan approval service will send the request into approval

service on a port and receives the response on another port.

A fault will be sent to client if there is not a response

under a duration (20 seconds). We deploy this service on

the Active-Bpel engine [25] and use WSOTF to test it.

From this specification of this service, we model manually

it specification by a TEFSM in the figure 4. Because the

return value of risk assessment service is either low or high,

so we declare the value of this field in the enumeration file

(risk = low;high). We also declare the min and the max of

integer to generate amount are 0 and 20. The other field will

be randomly generated. The figure 5 shows the test result

of Loan Approval Service using the WSOTF tool with the

parameter N = 10. With ten traces in the figure 5, we found

four different traces that is four test cases. So that, we can

increase the value of parameter N to repeat many times to

cover all possible test cases (in this example is five).

* Note: we also apply this tool to test the Travel Reserva-

tion Service of Netbean. The xsd chemas of this application

is very complex with many option fields. The receivable

result is less effect because the branch conditions based

on the appearance of these option fields while WSOTF

Figure 4. A formal specification of Loan Approval Service (TEFSM)

generates a SOAP message either with all option fields or

not.

V. CONCLUSIONS AND FUTURE WORKS

To address the problem of Web services testing, this paper

proposes a testing tool for web services composition from

a formal specification that combines simultaneously idea of

test execution and debugger to generate and simultaneously

execute the test cases. In the WSOTF tool, the complete

test scenario (timed test case suite and data) is built during

test execution. This tool focus on unit testing, it means that

only the service composition under test is tested and all

its partners will be simulated by the WSOTF. The timing

constraints and synchronous time delay are considered in

this tool.

In the future works, we will extend TEFSM with a

set of state properties (SP): S → {on, off , null} is

a mapping that assigns a property to states. A state has

the property on represents sin of flow activity (resp. off
represents sout). And next, we improve the algorithm to

process simultaneously the activities of a flow activity. When

a state has the property be on, all of next actions will

be simultaneously processed instead of randomly select an

action and only process it. Otherwise, a graphic version will

be developed to easy design input format and easy review

1.?checkRequest[amount = 5] →!assessmentRequest
→?risk[low] →!checkResponse

2.?checkRequest[amount = 12] →!approvalRequest
→?approvalResponse →!checkResponse

3.?checkRequest[amount = 8] →!assessmentRequest
→?risk[low] →!checkResponse

4.?checkRequest[amount = 15] →!approvalRequest
→ delay = 20 →!checkResponse

5.?checkRequest[amount = 9] →!assessmentRequest
→?risk[low] →!checkResponse

6.?checkRequest[amount = 1] →!assessmentRequest
→?risk[high] →!approvalRequest → delay = 20
→!checkResponse

7.?checkRequest[amount = 10] →!approvalRequest
→ delay = 20 →!checkResponse

8.?checkRequest[amount = 16] →!approvalRequest
→ delay = 20 →!checkResponse

9.?checkRequest[amount = 6] →!assessmentRequest
→?risk[low] →!checkResponse

10.?checkRequest[amount = 8] →!assessmentRequest
→?risk[high] →!approvalRequest → delay = 20
→!checkResponse

Figure 5. The test result of Loan Approval Service

the result.

ACKNOWLEDGMENT

This Research is supported by the French Na-

tional Agency of Research within the WebMov Project

http://webmov.lri.fr

REFERENCES

[1] Web Services Description Language 1.1.

http://www.w3.org/TR/wsdl

[2] OASIS. Web Services Business Process Execution Lan-

guage (BPEL) Version 2.0, April 2007. http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html

[3] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing

Service Composition”, In Proceedings of ASSE07, Mar

del Plata, Argentina, August 2007.

[4] A. Bertolino, A. Polini, “The Audition Framework for

Testing Web Services Interoperability”, Proc of the 31st

EUROMICRO Conference on Software Engineering and

Advanced Applications, 2005.

[5] Arthur Gill, “Introduction to the Theory of Finite-State

Machines”, Published by McGraw-Hill Book Co.., New

York, 1962.

[6] Jose Garcia-Fanjul, Javier Tuya, Claudio de la Riva,

“Generating Test Cases Specifications for BPEL Com-

positions of Web Services Using SPIN”, International

Workshop on Web Services Modeling and Testing. WS-

MaTe 2006.

[7] Y. Zheng, J. Zhou, P. Krause, “A Model Checking based

Test Case Generation Framework for Web Services”,

International Conference on Information Technology.

ITNG 2007.

[8] Y. Zheng, J. Zhou, P. Krause, “An Automatic Test Case

Generation Framework for Web Services”, JOURNAL

OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007.

[9] T. D. Cao, P. Felix, R. Castanet, I. Berrada, “Testing Web

Services Composition using the TGSE Tool”, IEEE 3rd

International Workshop on Web Services Testing (WS-

Testing 2009), July 7, 2009, Los Angeles, CA, USA.

[10] T. D. Cao, P. Felix, R. Castanet, I. Berrada, “Online

Testing Framework for Web Services Composition”,

IEEE 3rd International Conference on Software Test-

ing, Verification and Validation, April 6-9, 2010, Paris,

France. (submitted)

[11] C. Bartolini, A. Bertolino, E. Marchetti, A. Polini,

“WS-TAXI: a WSDL-based testing tool for Web Ser-

vices”, International Conference on Software Testing

Verification and Validation, April 1 - 4, 2009, Denver,

Colorado - USA.

[12] R. Alur, D. L. Dill, “A Theory of Timed Automata”,

Theory of Computer Science .vol 126, no 2, pp 183 -

235 , 1994.

[13] M. Mikucionis, K. G. Larsen, B. Nielsen, “T-UPPAAL:

Online Model-based Testing of Real-time Systems”,

19th IEEE International Conference on Automated Soft-

ware Engineering, pp 396 - 397. Linz, Austria, Sept 24,

2004.

[14] K. G. Larsen, M. Mikucionis, B. Nielsen, “Online

Testing of Real-time Systems Using UPPAAL”, Formal

Approaches to Testing of Software. Linz, Austria. Sept

21, 2004

[15] G. J. Tretmans and H. Brinksma “TorX: Automated

Model-Based Testing”, First European Conference on

Model-Driven Software Engineering, Nuremberg, Ger-

many, Dec 11 - 12, 2003.

[16] H. Bohnenkamp and A. Belinfante, “Timed Testing

with TorX”, Formal Methods 2005, LNCS 3582, pp. 173

- 188, 2005.

[17] P. Mayer, “Design and Implementation of a Framework

for Testing BPEL Compositions”, Master thesis, Leibniz

University, Hannover, Germany, Sep 2006.

[18] Z. Li, W. Sun, Z.B. Jiang, X. Zhang, “BPEL4WS

Unit Testing: Framework and Implementation”, Proc

of the IEEE International Conference on Web Service

(ICWS’05), pp 103 - 110, 2005.

[19] A. Cavalli, Edgardo Montes De Oca, W. Mallouli,

M. Lallali, “Two Complementary Tools for the Formal

Testing of Distributed Systems with Time Constraints”,

12th IEEE International Symposium on Distributed Sim-

ulation and Real Time Applications, Canada, Oct 27 -

29, 2008.

[20] M. Lallali, F. Zaidi, A. Cavalli, “Timed model-

ing of web services composition for automatic test-

ing”, The 3rd ACM/IEEE International conference on

Signal-Image technologie and internet-Based Systems

(SITIS’2007), China 16 - 19 december 2007.

[21] M. Lallali, F. Zaidi, A. Cavalli, Iksoon Hwang, “Au-

tomatic Timed Test Case Generation for Web Services

Composition”, Sixth European Conference on Web Ser-

vices. Dublin, Ireland, Nov 12 - 14, 2008.

[22] Lina Bentakouk, Pascal Poizat, Fatiha Zadi, “A Formal

Framework for Service Orchestration Testing Based on

Symbolic Transition Systems”, TESTCOM/FATES 2009,

Nov 2-4 2009, Eindhoven, the Netherlands.

[23] BPELUnit - The Open Source Unit Testing Framework

for BPEL. http://www.se.uni-hannover.de/forschung/soa

/bpelunit/

[24] EVIWARE. soapUI. http://www.eviware.com/

[25] Active Endpoints. The Active-Bpel engine.

http://www.activevos.com/community-open-source.php

