
HAL Id: hal-00997950
https://hal.science/hal-00997950v1

Submitted on 12 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Testing Framework for Web services
Dung Cao, Patrick Félix, Richard Castanet, Ismail Berrada

To cite this version:
Dung Cao, Patrick Félix, Richard Castanet, Ismail Berrada. Online Testing Framework for Web
services. IEEE 3rd International Conference on Software Testing Verification and Validation, Apr
2010, Paris, France. pp.363-372. �hal-00997950�

https://hal.science/hal-00997950v1
https://hal.archives-ouvertes.fr

Online Testing Framework for Web Services Composition

Tien-Dung Cao1, Patrick Félix1, Richard Castanet1 and Ismail Berrada2

1LaBRI - CNRS - UMR 5800, University of Bordeaux 1

351 cours de la libération, 33405 Talence cedex, France.

Email: {cao,felix,castanet}@labri.fr
2L3I, La Rochelle University, 17042 La Rochelle, France.

Email: ismail.berrada@univ-lr.fr

Abstract—Testing conceptually consists of three activities:
test case generation, test case execution and verdict assignment.
Using online testing, test cases are generated and simultane-
ously executed. This paper presents a framework that auto-
matically generates and executes tests “online” for conformance
testing of the Web service composition described in BPEL. The
proposed framework considers unit testing and it is based on
a timed modeling of BPEL specification, a distributed testing
architecture and an online testing algorithm that generates,
executes and assigns verdicts to every generated state in the
test case.

Keywords-Web Services Composition, BPEL, Test Genera-
tion, Timed Extended Finite State Machine, Online Testing,
Conformance Testing.

I. INTRODUCTION

Conformance testing is a commonly used activity to

improve the system reliability. It is a very time-consuming

process that requires a great deal of expert knowledge of

the systems being tested. The use of formal specifications

provides a support for automating this process.

The ways to test a system can be classified into two

basic groups. The most natural way, namely the active

testing approach, consists of carrying out the test derivation

from specifications. Test cases are then executed against

the system under test and verdicts are assigned. Another

possibility is the passive testing approach. The absence of

observations allows only the validation of traces, and thus

this approach checks that a trace of an implementation is a

valid execution of the specification.

Web services testing is a kind of black-box testing where

test cases are designed based on the interface specification

of the Web services under test, not on its implementation. In

this case, the internal logic does not need to be known at all,

whether it’s coded in Java, C# or BPEL. On the contrary,

business process unit (a Web services composition) testing

can be classified in two kinds:

• White-box approach. As BPEL is an executable lan-

guage, the BPEL description of Web services compo-

sition is considered as the source code of the compo-

sition. It can be executed by any BPEL engine (Active

BPEL, Oracle...). Test cases are then designed based

on the internal logic of the service under test.

• Gray box approach (we call gray-box to difference with

black-box testing of Web services because we know

that are the interaction between a service under test and

its partners). In this approach, a composite Web service

can be coded in a different language from the spec-

ification, for instance, a BPEL specification is coded

as a Java program (even BPEL). An implementation

of the composite Web service is then tested without

any information of its internal structure. Test cases are

then generated only from the specification (WSDL and

BPEL).

Testing conceptually consists of three activities: test case

generation, test case execution and verdict assignment. Us-

ing online testing, test cases are generated and simultane-

ously executed [22]. In this paper, we focus on model-

based unit testing [2] of Web services composition given

by BPEL specifications. We consider conformance testing

using the gray-box approach . We present a framework

that automatically generates and executes tests “online” for

Web service composition described in BPEL. In order to

model the BPEL behaviors, the timing constraints, and data

variables, the BPEL specification is transformed into the

Timed Extended Finite State Machines (TEFSM) model.

This formalism is closely related to timed automata [18]

and permits to carry out timing constraints, clocks, state

invariants on clocks and data variables for BPEL message.

From this model, we propose an online testing algorithm

to automatically generate test cases and simultaneously

execute them to issue verdicts based on distributed testing

architecture that is also proposed in this framework.

The rest of paper is organized as follows. Section II

reviews some previous works on Web services composition

testing. In section III, we give the definition of TEFSM

that is used to model BPEL process, and some related

notations. Section IV describes the relationship between

BPEL concepts and TEFSM. Section V presents a frame-

work that includes a timed modeling of BPEL specification,

a test architecture, and an online testing algorithm. Finally,

section VI concludes the paper.

II. RELATED WORKS

In the last years, several techniques and tools have been

developed to test Web services. Various approaches for

service composition testing were analyzed by [2] including

unit testing, integration testing, black-box testing and white-

box testing of choreographies and orchestrations.

• Testing BPEL descriptions. Jose Garcia-Fanjul et

al [6] use the SPIN model checker to generate test

cases specification for compositions given in BPEL. In

order to systematically derive test suites, the transition

coverage criterion is considered. Yongyan Zheng and

Paul Krause [7, 9] model each BPEL activity by an

automaton (also referred as Web Service Automaton).

These automata are then transformed into Promela, the

input format of the SPIN model checker. [10] use one

more time the SPIN model checker to verify BPEL

specification. However, the authors do not transform

BPEL directly into Promela as in [6]. BPEL will be

translated to guard conditions which are transformed

to Promela. In all of these methods, test cases are

generated from counterexamples given by the SPIN

model checker. Transforming BPEL into Intermediate

Format Language (IF) is presented in [14] and [15].

Timed test cases are generated using TestGen-IF tool

[28]. [26, 27] present also a framework for white-box

testing . However, the authors do not consider automatic

test case generation [15].

• Testing WSDL descriptions. [4] present a test cases

generation approach based on WSDL descriptions. R.

Heckel and L. Mariani in [20] also present a test cases

generation approach based on the definition of rules

for each service. Some of open source tools for testing

WSDL descriptions of Web services were developed

such as soapUI [30] and TestMaker [31]. In [3], the

authors propose a framework that extends UDDI (Uni-

versal Description, Discovery and Integration) registry

role from the current one of a passive service direc-

tory, to sort of an accredited testing organism, which

validates service behaviour before actually registering

it.

Regarding online testing framework, [22, 23] present the

T-Uppaal tool for model based testing of embedded real-time

systems. T-Uppaal automatically generates and executes

tests from the state machine model of the implementation

under test (IUT) and assumes that environment specifies the

required and allowed observable (real time) behaviors of the

IUT. Finally, in [23] and [25], the authors introduce the TorX

tool which is based on a timed extention of the ioco testing

theory. These works are interested in input/output action

and timing constraints more than the messages value (data).

However, we can not use these frameworks for the web

service composition testing because they do not support the

SOAP message. Moreover, its input format (timed automata,

Promela ...) do not support data variable or its data type is

very poor. Another reason is: they can not also simulate a

partner as a web services.

III. PRELIMINARIES

BPEL specification can be described by means of formal

models such as TEFSM [13, 18] (Timed Extended Finite

State Machine). In this section, we introduce the TEFSM

model and some related definitions.

Clocks and Constraints: A clock is a variable that allows

to record the passage of time. It can be set to a certain value

and inspected at any moment to see how much time has

passed. Clocks increase at the same rate, they are ranged

over IR+, and the only assignments allowed are clock resets

of the form c:=0. For a set C of clocks, and a set V of

variables, the set of clock constraints Φ(C) is defined by the

grammar: Φ := Φ1|Φ2|Φ1 ∧ Φ2,Φ1 := c ≤ m,Φ2 := n ≤ c
where c is a clock of C, and (n, m) are two natural numbers.

P(V) is a set of linear inequalities on V. Next, a n-tuple

(c0, c1, ..., cn) (resp. (v0, v1, ..., vm)) will be denoted by ~c
(resp. ~v).

Definition 1: (TEFSM): A TEFSM M is a tuple, M = (S,

s0, Sf , V, E ∪{τ}, C, Inv, T) where:

• S = {s0, s1, ..., sn}, is a finite set of states;

• s0 ∈ S is an initial state;

• Sf = {sf0, sf1, ..., sfm}, is a finite set of final states;

• V is a finite set of data variables, D
|V |
V is the data

variable domain of V;

• E is a finite set of the events. E is partitioned into:

– Input event of the form ?pl.op.msg: the reception

of the message (msg) for the operator (op) from

the partner (pl);

– Output event of the form !pl.op.msg: the emission

of the message (msg) for the operator (op) to the

partner (pl);

• τ is the internal event.

• C is a finite set of clocks including a global clock (never

reset);

• Inv: S 7→ Φ(C) is a mapping that assigns a time

invariant to states;

• T ⊆ S × E × P (V) ∨ Φ(C) × 2C × µ × S is a set of

transitions where:

– P (~v)&φ(~c): are guard conditions on data variables

and clocks;

– µ(~v): Data variable update function where µ :

V 7−→ D
|V |
V ;

– X ⊆ 2C : Set of clocks to be reset;

A transition t = (s < e, [g], {f ; c} > s′) ∈ T represents

an edge from state s to state s′ on event e. g is a set of

constraints over clocks and data variables, f is a set of data

update, and c is a set of clocks to be reset.

Definition 2: (Partial of TEFSM): Let M be a TEFSM.

The partial machine of M is defined by PM = (S, sin, Sout,

V, E, C, Inv, T) where: (S, sin, V, E, C, Inv, T) is a TEFSM

and Sout ⊂ S.

A partial of TEFSM is a TEFSM extended by input

state sin (representing the entering state of the partial

machine and which replaces the initial state s0) and a set of

output states, Sout (representing the exit state of the partial

machine).

IV. RELATIONSHIP BETWEEN BPEL CONCEPTS AND

TEFSM

BPEL [1] provides constructs to describe complex busi-

ness processes that can interact synchronously or asyn-

chronously with their partners. A BPEL process always

starts with the process element (i.e the root of the BPEL

document). It is composed of the following children: part-

nerLinks, variables, activities and the optional children:

faultHandlers, eventHandlers, correlationSets. These chil-

dren are concurrent. In our framework, we only model the

activities of a BPEL process because we are only interested

in the input/output messages and the conditions specification

of input variables. An internal fault will be assigned a fail

verdict. We use a stop variable for activities machine to

terminate (assign to true) the rest activities if the termination

is activated by an exit activity or the throw activity. The

scope activity will be modeled as a process.

A. Messages

A BPEL variable is always connected to a message from a

WSDL description of partners. In BPEL, a Web service that

is involved in the process is always modeled as a porType

(i.e. abstract group of operations (noted op) supported by

a service). These operations are executed via a partnerlink

(noted by pl). In our formalism, for instance, the input

message ?pl.op.v denotes the reception of the message op(v)

(constructed from the operation op and the BPEL variable

v) via the channel pl.

B. Basic activities

A basic activity can be one of the following: receive, reply,

invoke, assign, wait, empty, exit, throw. Each basic activity

is described by a partial machine (denotes the event of

transition belong to {τ}).

Receive Activity: <receive partnerLink=pl portType=pt op-

eration=op variable=msg>
PM = ({sin, sout}, sin , {sout}, {v, stop}, {?pl.op.msg},

{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,<?pl.op.msg,[stop=false],{c,v=msg}>,sout)

Reply Activity: <reply partnerLink=pl portType=pt opera-

tion=op variable=msg>

PM = ({sin, sout}, sin , {sout}, {stop}, {!pl.op.msg},

{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,<!pl.op.msg,[stop=false],{c}>,sout)

Assign Activity: <assign> <from> v2 </from> <to> v1

</to> ... </assign>
PM = ({sin, sout}, sin , {sout}, {v1,v2,...,vn,stop}, ∅, {c},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c, v1=v2,...}>,sout)

Wait Activity: <wait (for=d | until=dl)>.

• <wait for=d>: PM = ({sin, sout}, sin , {sout}, {stop},

∅, {c}, {(sin,c≤d),(sout, true)}, {t1})

– t1=(sin,< ,[c=d & stop=false],{c} >,sout)

• <wait until=dl>: PM = ({sin, sout},sin , {sout},

{stop}, ∅, {gc}, {(sin,gc≤dl), (sout, true)}, {t1})

– t1=(sin,< ,[gc=dl & stop=false],∅ >,sout)

Throw Activity: <throw faultName=fault/>
PM = ({sin, sout}, sin, {sout}, {stop}, ∅, ∅, {(sin, true),

(sout, true)}, {t1})

• t1=(sin,<!fault,[],{stop=true}>,sout)

Exit Activity: <exit/>
PM = ({sin, sout}, sin , {sout}, {stop}, ∅, ∅, {(sin, true),

(sout, true)}, {t1})

• t1=(sin,< ,[],{stop=true}>,sout)

Invoke Activity: <invoke partnerLink=pl portType=pt oper-

ation=op inputVariable=msg in outputVariable=msg out>
PM = ({sin, s1, sout}, sin , {sout}, {v in, v out,

stop}, {!pl.op.msg in, ?pl.op.msg out}, {c}, {(sin, true),
(s1, true) (sout, true)}, {t1, t2})

• t1=(sin,<!pl.op.msg in,[stop=false],{c}>,s1)

• t2=(s1,<?pl.op.msg out,[stop=false],{c,

v out=msg out}>,sout)

Empty Activity: <empty/>
PM = ({sin, sout}, sin , {sout}, {stop}, ∅, {c},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c}>,sout)

C. Structured activities

Structural activities are the sequence, while, switch, flow,

pick, repeatUntil, if and scope. They take some partial

machines PMi,i∈[0,n] and combine them to have a new

partial machine. The partial machines (set of states and

transitions) of structural activities (sequence, while, switch

and pick) are shown in Fig 1. The set of variables, events,

clocks are:

V = {v0, .., vm} ∪ V0 ∪ ... ∪ Vn,

E = {e0, .., el} ∪ E0 ∪ ... ∪ En,

C = C0 ∪ ... ∪ Cn

In our framework, the repeatUntil activity will be modeled

as a while activity. The conditional behavior if will be

Figure 1. Modeling structural activities

also modeled as a switch activity, and the eventHandler

activity will be model as a pick activity. The flow activity

allows describing one or more concurrent activities [1]. It

specifies the parallel execution of flow corresponding to

partial TEFSMs. The partial machine of a flow finishes

when all of its sub-partial machine finish. So when a sub-

partial machine finishes, it changes into a temporary state

to wait the rest of sub-partial machine finish before moving

into sout. We choice this temporary state is sin of flow’s

partial machine. This is easy to check the output actions

of a flow activity from service under test and carry out

its by a sequence because the test framework can work as

a sequence upon time order while it receives the parallel

requests. We use a boolean variable for each sub-partial

machine to examine the termination of each machine. The

initial value of these variables is false. The links defined in

the flow activity allow to enforce precedence between these

activities, i.e. it allow synchronization. We add a transition

to enforce precedence between these partial machines. The

partial machine of a flow activity and link variables are

shown in Fig 2.

Figure 2. Modeling Flow activity and Link variables

D. Limitations

Our framework has the following limitations: The at-

tributes joinCondition, supressJoinFailure of the flow activ-

ity are not treated. An activity with correlation property will

be modeled by adding a variable status of properties as in

[14]. In many case, may be we do not use the correlation

property because we test only single session.

V. ONLINE TESTING FRAMEWORK

A. Conformance Relation

In order to capture the notion of conformance between

implementations under test (IUT) of a Web service and its

specification, we will use a conformance relation. Before

doing this, we need some additional notations:

• The action transition (discrete transition), denoted by

s
a
→ s′ such that s

a[g]{u}
−→ s′ ∈ T , indicates that

if the guard (on variables and clocks) g is true, then

the automaton fires the transition by executing the

input/output action a, changing the current values of the

data variables by executing all assignments, changing

the current values of the clocks and timers by executing

all time setting/resetting, updating the buffers contents

of the system by consuming the first signal required by

input actions and by appending all signals required by

output actions, where u is a set of update functions,

and moving into the next state s′.
• The timestamps transition (timing transition), denoted

by s
c=d
→ s′ where c is a local clock (or s

gc=dl
→ s′

where gc is a global clock), indicates that TEFSM will

move to state s′ when local clock c reaches a time

duration d (or global clock gc reaches a deadline (dl)),

for example, the transition of the wait activity.

For a ∈ E, we write s
a
→, iff ∃s′ ∈ S such that s

a
→ s′.

We write s
a1,...,an

−→ s′ iff ∃s1, s2, ..., sn−1 ∈ S such that

s
a1→ s1

a2→ s2...sn−1
an→ s′. We write s

a
⇒, iff ∃s′, s′′, s′′′ ∈

S such that s
τ,...,τ
−→ s′′

a
→ s′′′

τ,...,τ
−→ s′. We define Γ = (E ×

IR+) as the set of observable actions (actions and delays) and

Γτ = (Eτ × IR+) as the set of observable actions including

internal actions (i.e. Eτ = E ∪{τ}). A timed sequence σ ∈
Seq(Γ) is composed of actions a and non-negative reals d

such that: s
(a,d)
→ s′⊕d, where d is a timing delay. Let Γ′ ⊆ Γ

and σ ∈ Seq(Γ) be a timed sequence. πΓ′(σ) denotes the

projection of σ to Γ′ obtained by deleting from σ all actions

not present in Γ′. The observable timed traces of an IUT is

defined by: Trace(IUT) = {πΓ(σ)|σ ∈ Seq(Γτ) ∧ s0
σ
⇒}.

Definition 3: (Conformance Relation): An implementa-

tion of Web services under test (denotes IUTI) is conform

to its specification (denotes IUTS) ⇐⇒ ∀Trace(IUTI),
∃Trace(IUTS) such that Trace(IUTI) ⊆ Trace(IUTS).

An implementation of Web services under test is conform

to its specification, Iff for each timed trace that are generated

by the implementation, we must find a least of timed trace

belong to its specification.

B. Test architecture

Usually, to perform unit testing of a composite Web

service, it is necessary to simulate its partners. This is due

to following reasons [27]:

1) In unit testing phase, some of the dependent partner

services are still under development.

2) Some partner services are developed and governed by

other enterprises. Sometimes it is impossible to obtain

the partner services’ source code and related modules,

and set up the running environment for the testing.

3) Even we have had some partner services ready for use,

simulated ones are sometimes still preferred because

they could generate more interaction scenarios with

less effort.

4) Another case, we cannot test directly some partner

services that are ready for use because it generates

the data perturbation.

It is straightforward to derive a test architecture that de-

scribes the test environment consisting of simulated services.

A Web service under test (SUT) and its partners (including

also client) communicate by exchanging input and output

messages. When the SUT is being tested, the tester plays

the role of the environment (i.e. its partner services).

In our work, we consider the tester as a Web service

because the partners of SUT are also Web services. A Web

service tester contains one controller component and a set of

test execution components that represent the partner services

of SUT. The controller will generate test cases (sequences

of input/output message and timing delays) and send/receive

input output message to/from each test execution component.

Each test execution component may receive a message from

the controller and sends it to SUT, or receives a message

from SUT and forward it to the controller. The controller

analyses the result and assigns a verdict to the test case

execution. We assume here that SUT has N partner services

and one client. The test architecture is shown in figure 3.

Figure 3. The test architecture

C. Online testing algorithm

In offline testing, test cases are generated from the model

where the complete test scenarios and verdicts are com-

puted before execution. In contrast, online testing [22–25]

combines test generation and execution: only a single test

primitive is generated from the specification at a time, and

executed on the SUT. An observed test run is a timed

trace consisting of an alternating sequence of input/output

messages and timing delays.

The tester can perform two basic actions: either send an

input to the SUT, or wait for an output for a duration d. If

the tester observes an output at time d′ ≤ d, then it checks

whether this is legal according to the specification. If not,

a timeout fault will be raised as a fail verdict. In the case

of flow activity, may be have many output for a duration d.

So that, we use a queue (Q) to save all of output. The tester

will wait an output by checking this queue either empty. The

variable values will be updated by the data from input/output

message. Note that, in a given state, the guard condition of a

transition has one of three values: true, false or undefined
when the variables values on guard are undefined. If the

invariant of the state s is c ≤ m (c is a local clock),

then the value of the function invariant(s) will be m (i.e.

invariant(s) = m). The online testing algorithm for Web

services composition is shown in the figures 4 and 5. This

algorithm will generate a fault verdict if exists an output

or delay that are not belong to any observable timed traces

of its specification (i.e. ∃Trace(IUT I),∀Trace(IUT S)
such that Trace(IUT I) /∈ Trace(IUT S)).

Procedure getNextAction(State s) // list of transitions

BEGIN

result := ∅; // transitions list

queue := {t ∈ T |t.src = s ∧ t.guard! = false};

WHILE queue 6= ∅ DO

trans := queue.pop()
T := T \ {trans};
IF trans is an input output transition or a

timestamps transition THEN

result.add(trans);
ELSE

temp := {t ∈ T |t.src = trans.target
∧t.guard! = false};

queue.add(temp);
OD

return rerult;
END

Figure 5. Test generation and execution (part 2/2)

D. Testing framework design

In this section, we present an example of the framework

implementation design. We have implemented our frame-

work on a local machine (i.e. the test execution components

and the controller component are installed on the same

machine). The architecture is shown in Fig 6. The framework

consists of six main elements:

1) compiler: loads and compiles input format (TEFSM);

2) analyzer: analyze the WSDLs to extract informations

of partner services about: operator, port, synchronous,

asynchronous etc;

3) test execution that sends and receives the SOAP mes-

sages to/from the SUT;

4) data generation from the WSDLs and XML Schema;

5) data update function API; and

6) the controller managing the test execution components

and the data generation.

In our framework, we use the TEFSM as an in-

put specification. Hence, we develop a prototype (called

BPEL2TEFSM) using rules of section IV to transform the

BPEL description into a TEFSM specification.

Figure 6. Online testing framework architecture

1) Test execution component: Each test execution compo-

nent represents a partner service (i.e. simulating partner ser-

vice). However, we do not know its internal structure, so, we

will generate automatically its output messages (of partner

services) based on the message type of WSDL specification.

Constraints on variable will be applied on these output

messages to satisfy a test case selection. In our framework,

the role of each test case execution is very simple. Each test

execution component receives the SOAP message from the

controller and sends it to SUT by setting SOAP message

into the queue Q, and it receives a SOAP message from

SUT and forward it to the controller. All of test execution

components have the same role, but we created one test

execution component for each partner service because it has

a different address. These test execution components are

created by the controller based on the partner link number

of BPEL specification.

2) Data generation: We use the Bai et al [4] method,

based on XML Schema data type, to generate test data with

constraints on input variables from tester. Typically the data

constraints only cover a part of the required data. The rest

can be derived automatically or by patterns using random

data generation tools. This component will be controlled by

the controller within the generate data() function of figure

4.

3) Controller: The controller implements the online test-

ing algorithm of figures 4 and 5. As the tester is a web

service (asynchronous), we need a WSDL specification

for the tester. In this WSDL specification, we define two

functions:

1) start(TEFSM M, int N, int tmax) to receive a

test request from the client with three parameters: a

TEFSM M , test execution number N , and network

timeout, tmax, for synchronous action;

2) finished() to return the result that is a list of test

case and its verdict;

Online Testing Algorithm

Input: - M = (S, so, Sf , V, E, C, Inv, T) //specification of the SUT

- Test execution number : N .

- Time to wait for an output message from the SUT: tmax; //network timeout

Output: Timed test cases suite and its corresponding verdicts.

BEGIN

state := s0; //current state

counter := 0;

tcList := ∅; // a test case list

tc := ∅; // a test case

Q := ∅; // a queue to keep all SOAP message that are forwarded by test execution components

WHILE counter ≤ N DO

- acList := getNextAction(state); //list of transitions, see part 2

IF acList = ∅ THEN

IF tc 6= ∅ THEN //found a test case

- tcList.add(tc);
- tc.empty();

- state := s0 //restart (search a new test case)

- counter + +;
ELSE

IF itList = {acList.inputTrans() ∪ acList.timedTrans()} 6= ∅ THEN

- randomly choose t ∈ itList;
IF t ∈ acList.inputTrans() THEN

- i msg := generate data(t.action); //generate data for input message

- randomly delay n times units based on guard condition of t on clock

- send to test execution(i msg); // send an input message to SUT

- update variable(i msg); // update variables with the input message value

- tc.add(i msg, n)
ELSE // t ∈ acList.timedTrans() (i.e. timestamps transition)

- delay d times units

- tc.add(delay = d) //add delay into test case

- state := t.target // moving into new state

ELSE //waiting an output message from the SUT

- d := invariant(state) = true?tmax : invariant(state)
- sleep for d time units or wake up if Q is not empty at d′ ≤ d
IF (o msg = Q.pop()) is not null THEN

//find a transition t such that t.action = o msg from current state;

IF search(o msg, state) = true THEN

- update variable(o msg);
- state := t.target // moving into new state

- tc.add(o msg, d′)
ELSE

- exit(); //current test case is fails

ELSE

- exit(); //current test case is fails (clock constraints)

OD

END

Figure 4. Test generation and execution (part 1/2)

E. An example of online testing result

In this section, we illustrate our framework using the

Loan Web Service (fig. 7). This process receives an input

from the client. If this input is less than 10, it invokes the

synchronous Assessment Service and receives a risk result.

In the case, this risk is low, so it sends a yes response yes to

the client. Otherwise (i.e. input≥10 or risk!=low), it invokes

the asynchronous Approval Service by sending a request and

uses a BPEL pick activity for one of the following cases: (1)

to receive an asynchronous response from the partner service

and send this response to client; (2) to send a timeout fault

to client if there is not response from the partner service

after a duration (e.g. 60 seconds).

Figure 7. The Loan Web Service

The figure 8 introduces the TEFSM of the Loan Web

Service, where c is a local clock. We assume here that:

1) all types of messages are integers;

2) the value of the input messages (i.e. input msg, risk,

response) and timing delay for each input message are

randomly generated;

3) the test execution number is five (i.e. N=5).

The algorithm will finish either when there is a fault or the

test execution number reaches the limit. We have a following

timed test cases list with the format (message name (value),

timing delay) (Fig 9):

VI. CONCLUSIONS

To address the problem of Web services testing, this

paper proposes an online testing framework for Web services

composition described in BPEL. We mainly covered four

Figure 8. TEFSM of the Loan Web Service

1. (?input(8), 0) → (!invoke1 msg out(8), 2) →
(?risk(1), 2) → (!invoke2 msg out(8), 0) →
(?response(1), 30) → (!output(1), 30)

2. (?input(1), 0) → (!invoke1 msg out(1), 2)
→ (?risk(0), 2) → (!output(1), 2)

3. (?input(5), 0) → (!invoke1 msg out(5), 5)
→ (?risk(1), 6) → (!invoke2 msg out(5), 0)
→ (delay = 60) → (!output(−1), 1)

4. (?input(10), 0) → (!invoke1 msg out(10), 2)
=⇒ FAIL.

Figure 9. Test Result

topics: modeling BPEL specification by a TEFSM, a test

architecture, an online testing algorithm which generates and

executes test cases, and an example of testing framework

design. We focus on unit testing of an implementation of a

Web services composition, based on gray-box approach and

conformance testing.

These are some of limitations in our framework. Several

test cases can be not selected because the algorithm ran-

domly selects the test cases. Moreover, it is limited by the

time execution number. In the case of flow activity, if the

service invokes many actions on parallel and it valides the

timing contraints. May be these timing contraints are not

valided because our framework works (with a flow activity)

as a sequence.

In future works, we plan to work on integration testing

[2] that it is aimed at exercising the interaction among

components and not just single units. Hence, an integration

test case involves the execution of several components.

ACKNOWLEDGMENT

This Research is supported by the French Na-

tional Agency of Research within the WebMov Project

http://webmov.lri.fr

REFERENCES

[1] OASIS. Web Services Business Process Execution Lan-

guage (BPEL) Version 2.0, April 2007. http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html

[2] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing

Service Composition”, In Proceedings of ASSE07, Mar

del Plata, Argentina, August 2007.

[3] A. Bertolino, A. Polini, “The Audition Framework for

Testing Web Services Interoperability”, Proc of the 31st

EUROMICRO Conference on Software Engineering and

Advanced Applications, 2005.

[4] X. Bai, W. Dong, W.T. Tsai, Y. Chen, “WSDL-Based

Automatic Test Case Generation for Web Services Test-

ing”, Proc of the IEEE International Workshop on

Service-Oriented System Engineering (SOSE), pp 207

- 212, Beijing October 2005.

[5] Arthur Gill, “Introduction to the Theory of Finite-State

Machines”, Published by McGraw-Hill Book Co.., New

York, 1962.

[6] Jose Garcia-Fanjul, Javier Tuya, Claudio de la Riva,

“Generating Test Cases Specifications for BPEL Com-

positions of Web Services Using SPIN”, International

Workshop on Web Services Modeling and Testing. WS-

MaTe 2006.

[7] Y. Zheng, P. Krause, “Automata Semantics and Analysis

of BPEL”, International Conference on Digital Ecosys-

tems and technologies. DEST 2007.

[8] Y. Zheng, J. Zhou, P. Krause, “A Model Checking based

Test Case Generation Framework for Web Services”,

International Conference on Information Technology.

ITNG 2007.

[9] Y. Zheng, J. Zhou, P. Krause, “An Automatic Test Case

Generation Framework for Web Services”, JOURNAL

OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007.

[10] X. Fu T. Bultan J. Su, “Analysis of Interacting BPEL

Web Services”, International Conference on World Wide

Web. May 17 - 22, 2004, New York, USA.

[11] A. Wombacher, P. Fankhauser, and E. Neuhold, “Trans-

forming bpel into annotated deterministic Finite state

automata for service discovery” Procs of ICWS04, 2004.

[12] R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed

modeling and analysis in web service compositions”,

The First International Conference on Availability, Re-

liability and Security, vol. Volume 0, pp. 840 846, 2006.

[13] M. Lallali, F. Zaidi, A. Cavalli, “Timed model-

ing of web services composition for automatic test-

ing”, The 3rd ACM/IEEE International conference on

Signal-Image technologie and internet-Based Systems

(SITIS’2007), China 16 - 19 december 2007.

[14] M. Lallali, F. Zaidi, A. Cavalli, “Transforming BPEL

into Intermediate Format Language for Web Services

Composition Testing”, The 4th IEEE International Con-

ference on Next Generation Web Services Practices,

October, 2008

[15] M. Lallali, F. Zaidi, A. Cavalli, Iksoon Hwang, “Au-

tomatic Timed Test Case Generation for Web Services

Composition”, Sixth European Conference on Web Ser-

vices. Dublin, Ireland, Nov 12 - 14, 2008.

[16] T. D. Cao, P. Felix, R. Castanet, I. Berrada, “Testing

Web Services Composition using the TGSE Tool”, IEEE

3rd International Workshop on Web Services Testing

(WS-Testing 2009), July 7, 2009, Los Angeles, CA,

USA.

[17] C. Bartolini, A. Bertolino, E. Marchetti, A. Polini,

“WS-TAXI: a WSDL-based testing tool for Web Ser-

vices”, International Conference on Software Testing

Verification and Validation, April 1 - 4, 2009, Denver,

Colorado - USA.

[18] R. Alur, D. L. Dill, “A Theory of Timed Automata”,

Theory of Computer Science .vol 126, no 2, pp 183 -

235 , 1994.

[19] ChangSup Keum, Sungwon Kang, In-Young Ko Jong-

moon Baik and Young-Il Choi “Generating Test Cases

for Web Services Using Extended Finite State Machine”,

TestCom 2006, New York, NY, USA, May 16 - 18, 2006

[20] R. Heckel and L. Mariani, “Automatic conformance

testing of web services”, Fundamental Approaches to

Software Engineering, pp. 34 - 48, LNCS 3442, 2 - 10

April, 2005.

[21] H. Huang, W. T. Tsai, R. Paul, Y. Chen, “Auto-

mated Model Checking and Testing for Composite

Web Services”, Eighth IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing

(ISORC’05), pp.300-307, 2005.

[22] M. Mikucionis, K. G. Larsen, B. Nielsen, “T-UPPAAL:

Online Model-based Testing of Real-time Systems”,

19th IEEE International Conference on Automated Soft-

ware Engineering, pp 396 - 397. Linz, Austria, Sept 24,

2004.

[23] K. G. Larsen, M. Mikucionis, B. Nielsen, “Online

Testing of Real-time Systems Using UPPAAL”, Formal

Approaches to Testing of Software. Linz, Austria. Sept

21, 2004

[24] G. J. Tretmans and H. Brinksma “TorX: Automated

Model-Based Testing”, First European Conference on

Model-Driven Software Engineering, Nuremberg, Ger-

many, Dec 11 - 12, 2003.

[25] H. Bohnenkamp and A. Belinfante, “Timed Testing

with TorX”, Formal Methods 2005, LNCS 3582, pp. 173

- 188, 2005.

[26] P. Mayer, “Design and Implementation of a Framework

for Testing BPEL Compositions”, Master thesis, Leibniz

University, Hannover, Germany, Sep 2006.

[27] Z. Li, W. Sun, Z.B. Jiang, X. Zhang, “BPEL4WS

Unit Testing: Framework and Implementation”, Proc

of the IEEE International Conference on Web Service

(ICWS’05), pp 103 - 110, 2005.

[28] A. Cavalli, Edgardo Montes De Oca, W. Mallouli,

M. Lallali, “Two Complementary Tools for the Formal

Testing of Distributed Systems with Time Constraints”,

12th IEEE International Symposium on Distributed Sim-

ulation and Real Time Applications, Canada, Oct 27 -

29, 2008.

[29] BPELUnit - The Open Source Unit Testing Framework

for BPEL. http://www.se.uni-hannover.de/forschung/soa

/bpelunit/

[30] EVIWARE. soapUI. http://www.eviware.com/

[31] PushToTest. TestMaker. http://www.pushtotest.com/

