
HAL Id: hal-00997886
https://hal.science/hal-00997886v1

Submitted on 2 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cracking the Cocoa Nut: User Interface Programming
at Runtime

James Eagan, Michel Beaudouin-Lafon, Wendy E. Mackay

To cite this version:
James Eagan, Michel Beaudouin-Lafon, Wendy E. Mackay. Cracking the Cocoa Nut: User Inter-
face Programming at Runtime. UIST 2011: Proceedings of the 24th ACM Symposium on User
Interface Software and Technology, Oct 2011, Santa Barbara, CA, United States. pp.225–234,
�10.1145/2047196.2047226�. �hal-00997886�

https://hal.science/hal-00997886v1
https://hal.archives-ouvertes.fr

Cracking the Cocoa Nut:
User Interface Programming at Runtime

James R. Eagan1,2

eaganj@lri.fr
Michel Beaudouin-Lafon1,2

mbl@lri.fr
Wendy E. Mackay2,1

mackay@lri.fr

1LRI (Univ. Paris-Sud & CNRS); 2INRIA
91405 Orsay Cedex, France

ABSTRACT

This article introduces runtime toolkit overloading, a novel
approach to help third-party developers modify the interac-
tion and behavior of existing software applications without
access to their underlying source code. We describe the ab-
stractions provided by this approach as well as the mecha-
nisms for implementing them in existing environments. We
describe Scotty, a prototype implementation for Mac OS X
Cocoa that enables developers to modify existing applica-
tions at runtime, and we demonstrate a collection of interac-
tion and functional transformations on existing off-the-shelf
applications. We show how Scotty helps a developer make
sense of unfamiliar software, even without access to its source
code. We further discuss what features of future environ-
ments would facilitate this kind of runtime software devel-
opment.

Keywords: user interfaces, meta-toolkits, runtime software
development, runtime toolkit overloading

ACM Classification: H.5.m Information interfaces and pre-
sentation (HCI): Misc.

General terms: Human Factors

INTRODUCTION

Software designers create software with a particular model
in mind of how it will be used. Even in the most thoughtfully
designed systems, however, these assumptions may break in
the face of users’ own constraints and demands. Assump-
tions made by a designer, based on a deep understanding of
hardware, software, and human constraints, may change. As
these constraints evolve, so too must the software, often in
ways not easily reconcilable with its original design.

Even when these constraints do not evolve, users frequently
push their software in ways not anticipated by its design-
ers [20]. A user’s interaction is strongly situated in a par-
ticular context, with particular needs that may arise and dis-

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of UIST’11, http://dx.doi.org/10.1145/2047196.2047226

UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM.

appear spontaneously and in unforeseeable ways [22], even
with the best design practices. As such, there is a gap be-
tween the designers’ conception of how software will be used
and its actual use. These gulfs are likely to continue to grow
as software is used in an increasingly rich, ubiquitous, and
distributed environment.

Different approaches have been taken to bridge these gulfs
by making software more flexible, including giving users
more control over their software’s configuration [16], run-
time behaviors [18, 8] and interfaces [21, 9], or by giving
programmers more control over their language [15]. These
approaches all build on the notion that, although the designer
may have a good understanding of how to create software
that supports the most common use cases, users will push
their software in unintended ways.

Our goal is to bridge the gap between the designed use and
actual needs of software by enabling runtime software devel-
opment. Runtime software developers are third-party devel-
opers who can modify the behavior and/or interface of soft-
ware that nearly satisfies the user’s needs. Runtime devel-
opment is concerned with taking the existing behavior of an
application and changing it in some way, without requiring
access to the application source code.

In this paper, we show how to facilitate this kind of runtime
software development in existing applications, we show how
it can facilitate new interactions, and we argue for changes to
better support it. In particular:

• We present runtime toolkit overloading, a novel approach
that provides high-level abstractions to make the redefini-
tion of program behaviors a first-class operation, without
access to the the application’s source code;

• We describe how to implement this approach using a set
of deep hooks into existing toolkits and runtime systems,
taking advantage of modern programming languages;

• We present Scotty, an implementation of runtime toolkit
overloading in the Mac OS X Cocoa environment, and il-
lustrate its use to modify a set of off-the-shelf applications;

• We provide recommendations to improve support for run-
time development in future user interface toolkits.

RELATED WORK

Some applications are designed with modification as an ex-
plicit design concern and thus offer some kind of plugin,

scripting, or extension mechanism. Most applications, how-
ever, are not designed for such extensibility. For these kinds
of applications, other methods are necessary. In this section,
we examine different approaches to black-box modification
of programs (Figure 1). These approaches are black-box in
the sense that they do not assume that the runtime developer
has any access to the program source code or to its internal
structures.

Scripting, Plugins, and Extensions

Many applications support some degree of extensibility by
users through scripting interfaces and/or plugin and exten-
sion mechanisms. Almost all Mac OS applications, for ex-
ample, offer a scripting interface (through AppleScript) that
gives control over standard functionality such as launching,
quitting, and moving windows [3]. Many web browsers, in-
cluding Safari, Firefox, and Chrome, offer plugin and ex-
tension interfaces, allowing one to write modifications to the
way the browser loads and displays web pages. Scripting and
plugin interfaces can provide varying degrees of control, de-
pending on what internal structures of the application they
expose and what, if any, sandboxing they perform to insulate
the plugin code from the rest of the application. For exam-
ple, the Firefox browser is open enough to enable the Chick-
enfoot [7] plugin to provide a domain-specific scripting lan-
guage with deep access to web pages. Similarly, Google’s
Chrome Frame1 uses Internet Explorer’s plugin system to re-
place the rendering engine with that of the Chrome browser.

These interfaces can potentially offer a high degree of power,
but only if the application developer has included explicit
support for them. Moreover, for complex changes to the
program behavior, it is typically necessary to create ad hoc
modifications on a per-application basis. Thus, they may be
of limited utility for defining new behaviors for all applica-
tions. In order to support runtime software development, we
want a general mechanism to write plugins for any applica-
tion, regardless of whether it was designed with such support
in mind.

Changing Program Behavior

When the application does not provide explicit support for
runtime modifications, other approaches are necessary. The
most basic of these approaches is to operate on the surface
representation of a window. The surface representation is the
part of the application directly exposed to the user, such as
the collection of pixels on the screen, but it could also include
auditory, haptic, or other modalities.

Surface Representations A typical example of this approach
is VNC [19], which teleports the pixels of an entire desktop
from one machine to another, allowing the user to remotely
use the entire desktop. While such remote-use capabilities
have long been embedded in the design of some window-
ing systems (e. g. X Windows), this approach grafts runtime
capabilities into the desktop environment, allowing arbitrary
applications to be used remotely. WinCuts [23] uses a similar
approach to allow the user to create proxy windows based on
just a relevant region of a window. Both of these approaches
provide a user with the means to change the display of ex-

1www.google.com/chromeframe, 20 April 2011.

WinCuts Façade Prefab SubArctic Scotty

Access to
Surface Rep

√ √ √ √ √

Can change
surface rep.

√ √ √ √

Access to
widgets

√ √ √ √

Can change
widgets

(via I/O
redirection)

(via I/O
redirection)

√ √

Access to
program model

(only parts that
touch toolkit)

√

Can change
program model

(only parts that
touch toolkit)

√

Works with
multiple platforms

√ √

Modifications are
typically “safe/

robust”
√ √ √

Figure 1: Summary of the capabilities and character-
istics of different approaches to runtime modification.

isting applications at runtime. They rely on the fact that the
modification environment does not need to know about the
deeper semantics of the application. It suffices to simply
transport or transform the display and let the user make sense
of it. Because no semantic information is available, however,
the transformations are therefore limited.

Augmented Surface Representations It is possible, though,
to augment the surface representation with supplemental se-
mantic information. Façade [21], for example, integrates
with the X Windows system to gather information about the
widget hierarchy. With this additional information, Façade is
able to operate at a finer granularity than WinCuts and can
even change the behavior of individual widgets.

Prefab [9, 10] takes a different approach to augmenting its
understanding of the surface representation of widgets: it
uses a vision-based system to recognize widgets using their
visual appearance and to create visual stand-ins for them.
This has the advantage of being able to operate in a multi-
platform environment, simultaneously operating on, e. g., na-
tive Windows widgets, Mac OS and X Windows widgets via
a VNC connection, and Flash widgets embedded in a web
page. Nonetheless, it can only handle widgets it has been
trained to recognize.

All of these approaches face the same limitation: Even with
supplemental information about, e. g., the widget hierarchy,
widgets are still opaque objects. The system may know, for
example, that a collection of pixels on the screen corresponds
to a pull-down menu with n items, but it cannot know that
widget’s relation to other program objects beyond what can
be inferred from its surface representation.

Toolkit Integration Integrating with the underlying toolkit
can provide deeper access to interactive software. Because
this approach works at the toolkit level, it has access to pro-
gram objects that interact with the toolkit interfaces. Modify-
ing the toolkit can thus allow all applications built using that
toolkit to use those changes. However, those changes will

www.google.com/chromeframe

only apply to applications that were built using that toolkit.
Thus, changes made to Java’s Swing will not apply to Mac
OS or web applications and vice versa.

SubArctic [11] uses this approach to add output modification
hooks to Java’s AWT. It uses a combination of subclassing
and wrapping to make the graphics capabilities of SubArctic
applications extensible. With these hooks, developers can
write new modules that transform the way objects are drawn.
The design of the toolkit allows these new modules to be
added without explicit support by the application developer.

JAMM [5] uses a clever approach that alters Java’s serial-
ization mechanism to swap out certain classes in the seri-
alization stream with collaboration-aware subclasses. This
approach makes it possible to completely or partially replace
the behavior of existing classes as long as they support seri-
alization and have not previously been serialized. It does not,
however, support the replacement of non-serializable classes
or the dynamic modification of classes after serialization,
since the remote end would have already received a previ-
ous version of the object’s class name.

In a different area, Chromium [14] replaces the OpenGL back-
end of an application to automatically distribute rendering to
a cluster of graphics cards and displays without recompila-
tion. Mercator [12] uses a similar approach to infer semantic
information about user interfaces in order to create auditory
interfaces for blind users. The first part of this approach, like
Façade, involves monitoring the communications between
the application and the window server. The second part in-
volves modifying the low-level toolkit libraries so that they
communicate additional accessibility-related semantic infor-
mation. While this does not require modifying the source
code, it does require relinking the application.

If a toolkit is available as a shared library, however, it may be
possible to avoid relinking by creating a binary-compatible
stand-in for that library. This approach has been used by the
WINE project2 to create a reverse-engineered implementa-
tion of the Windows APIs for Linux. Besacier and Vernier [6]
have also combined this technique with the wrapping tech-
nique used by SubArctic to create dynamic library stand-ins
that partially override the behavior of a toolkit, such as re-
placing check boxes with crossing-enabled [1] variants.

The World Wide Web Web-based applications are built upon
a combination of the HTML document object model (DOM),
Javascript, and the HTTP client-server protocol. The open
nature of this model lends itself to runtime modifications of
web pages, in particular through browser extensions such as
Greasemonkey.3 However, any computation performed on
the server remains opaque. Additionally, many programmers
have taken to obfuscating their Javascript code, either to pre-
vent human comprehension or to support code compression.

RUNTIME TOOLKIT OVERLOADING

In order to create a general solution for runtime software de-
velopment, we need the power of an unrestricted plugin ar-
chitecture, the generality of toolkit integration, and the abil-

2www.winehq.org, 20 April 2011.
3www.greasespot.net. 20 April 2011.

Hook Description Cocoa Method Overridden

windowCreated Gives access to window after it has
been created but before it appears

on screen.
NSWindow -init..:

windowDidAppear Called after window appears on
screen.

(built-in)

windowIsUpdating Gives access to previous window
contents, just before redraw.

NSWindow -flushWindow

windowDidUpdate Called during the rendering loop, just
after actual drawing occurs.

NSWindow -flushWindow

windowWillHide Gives access to window just before it
is removed from the screen.

NSWindow -orderOut:

windowDidHide Called with the ID of a window after it
has been removed from the screen.

(built-in)

Figure 2: Window hooks available in our Scotty
demonstrator. Widget hooks are similar.

ity of surface representation approaches to operate without
access to a program’s source code. To accomplish this, we
propose a technique called runtime toolkit overloading that
relies on dynamically loading code into an existing applica-
tion. Since we do not want to require a runtime developer
to reverse engineer the internal structure of every program,
we provide a set of high-level abstractions that runtime de-
velopers can use to create a rich variety of modifications to
an application’s existing behavior. Together with the exist-
ing underlying toolkit, these abstractions form an extensible
toolkit that allows a runtime developer to build on the inter-
face and functionality already present in the application.

Runtime toolkit overloading uses a model in which devel-
opers create plugins that integrate into existing applications,
modifying their interface and/or behavior in arbitrary ways.
These plugins use the abstractions described below to modify
program behavior without having to inspect the underlying
program implementation unless necessary. They are differ-
ent from the plugin interfaces in many applications in that
they have full, unrestricted access to the application’s pro-
gram space. We now describe the six abstractions that we
have found useful to support runtime development.

Window and Widget Hooks In order to transform how win-
dows and widgets appear on the screen, we need to be able
to intercept and modify windows before they appear on the
screen, such as by adding or removing widgets, changing
their layout, or changing attributes such as having a title bar
or being minimizable. We have defined a set of window
hooks (Figure 2) that go beyond standard notifications to tap
into the window creation and drawing systems. Unlike Sub-
Arctic [11], which uses subclasses to wrap the native drawing
system, our approach incorporates its hooks directly into the
native drawing system. In other words, rather than deriving
an extensible toolkit, we transform a non-extensible toolkit
into an extensible one.

Window notifications are a standard part of most UI toolkits
that allow a programmer to react to window creation, update,
and dismissal. These notifications, however, are not designed
with program modification in mind and do not provide the
necessary hooks. For example, window creation notifications
are typically posted after a window has been exposed to the

www.winehq.org
www.greasespot.net

screen. Any changes made to that window, then, will appear
only after the window has already been drawn once, creat-
ing an undesirable flashing effect. By contrast, our window
hooks are also called before the window appears or disap-
pears from the screen (Figure 2).

Similarly, window update notifications are often posted after
a window has already been updated. These events thus occur
after any window redrawing operations have been completed,
precluding operations that need to be performed within an
active drawing state such as those that alter the graphics con-
text. Additionally, if these notifications are posted after re-
drawing has already been completed, any modification that
depends on the previous state of the window will need to
cache the previous contents of the window. With our hooks,
however, a plugin can query and even alter the window graph-
ics state just before the repaint is posted to the screen.

In the Web environment, applications do not have access to
low-level drawing of elements. Instead, the content of the
DOM tree, together with the style sheet, define how elements
are drawn. Window update events therefore do not make
sense. However standard DOM events track the changes to
the DOM structure and therefore can be used to implement
the widget appearance and disappearance hooks.

Event Funnels Many toolkits, including Java Swing, Mac
OS Cocoa, and the DOM, use an event model in which inter-
action events are delivered through an application, window,
and widget hierarchy to a callback appropriate to the event.
In Cocoa, for example, a mouse press event on a widget is
dispatched to its -mouseDown: method4 and a mouse release
event to its -mouseUp: method. We want to be able to in-
tercept all events sent to a widget, window, or application,
regardless of event type. In Cocoa and Swing, there is a sin-
gle method to capture all events sent to an application, but
not for all events sent to a particular window or widget.

An event funnel is a metaclass that intercepts any standard
event (e. g. mouse, keyboard, tablet, cursor) and dispatches it
to a single general-purpose event handler. This handler pro-
vides a way to selectively intercept all events sent to an object
while maintaining the context of the object, eliminating the
need for plugin developers to re-write each callback by hand
and decreasing the likelihood that they might accidentally
omit a stray event (e. g., a tablet event). Furthermore, they
relieve the programmer from having to replicate the complex
event dispatch chain when redirecting events.

Glass Sheets Glass sheets are transparent layers drawn on
top of whatever the software has already drawn. These sheets
can be affixed to a given widget, a window, or the screen as a
whole. When attached to a widget or window, the sheet will
automatically reposition and resize itself as expected with its
widget or window. Transparent overlays are a standard fea-
ture of the Java Swing toolkit but are not present in other
common toolkits such as Mac OS Cocoa or the DOM.

Glass sheets allow the developer to create a drawing surface
that is tied to a widget but independent of the widget’s draw-

4Objective-C purists who object to our use of the term “method” should
read “message handler” in its place.

1 @scotty.replaceMethod(NSWindow.flushWindow)

2 def scottyFlushWindow(self):

3 try:

4 # ... trigger window pre−draw hooks here ...

5 finally:

6 # This next line invokes the original flushWindow code

7 self.scottyFlushWindow()

Figure 3: Replacing the implementation of NSWindow’s
-flushWindow method. The decorator on line 1
adds a new method, scottyFlushWindow, to the
NSWindow class’s method table, containing the code
in lines 2–7. It then swaps the two implementations,
such that when scottyFlushWindow is later called
(line 7), it invokes the original Cocoa implementation.

ing methods. Thus, a developer can create, e. g., an overlay
above a video player where the overlay only redraws when
it needs to change. (If the overlay does need to synchronize
with drawing of the underlying view, it can use the afore-
mentioned window hooks.) Additionally, a glass sheet that is
attached to the screen instead of a particular window or wid-
get can be used for displaying content that is independent of
any widget or window’s position on the screen.

Dynamic Code Support Runtime software development fun-
damentally relies on being able to dynamically load code into
the program space of an existing program and on being able
to change the implementation of its objects. First, we au-
tomate this code loading process using a plugin model. As
described in the next section, a programmer simply writes a
plugin. Loading it is handled automatically by our toolkit.

Second, we need to be able to override and overload method
implementations in existing classes. Even in languages such
as Objective-C that provide explicit support for doing so, this
support may be cumbersome to use. We provide explicit sup-
port to simplify this process. The example in Figure 3 is used
to implement some of the window hooks described earlier.
Beyond Objective-C, we have implemented proof-of-concept
versions of such method-swapping (also called method swiz-
zling) that work on public methods in Java and on their equiv-
alent in Javascript.

Object Proxies When adapting existing user interfaces it is
common to need to modify a single instance object. For ex-
ample, one might wish to change what happens when the
user hovers over one particular button but not others. Object
proxies provide a way of performing such an operation.

An object proxy is a metaclass that allows a developer to
override, overload, or add new methods to a particular in-
stance object. It uses an existing instance object to dynam-
ically create a subclass of that instance’s class. Any meth-
ods in the resulting proxy class invoke their equivalent in the
proxied object, yielding its result if any. In this way, a devel-
oper can effectively replace a method’s implementation at the
object level rather than the class level. Object proxies thus
permit the runtime wrapping of existing program objects.

While object proxies rely on the capabilities of the under-
lying object model and are used, for example, in some dis-
tributed environments, we use them to transform behavior

rather than to merely distribute it. To the best of our knowl-
edge their use in the context of user interface toolkits is novel.

Code Inspection For some modifications, such as the Scrib-
bler example below, it may be sufficient to be familiar with
the programming toolkit used (e. g. Cocoa on Mac OS X,
Swing for Java, jQuery or other Javascipt frameworks for
Web applications) and the toolkit’s inherent design patterns.
For deeper modifications, however, a strong understanding of
the toolkit is not sufficient. A third-party programmer must
be able to discover certain aspects of the organization of the
underlying code. For example, to modify the behavior of a
particular button, it is necessary to know what method is in-
voked when it is clicked. While DOM inspection tools exist
in some browsers, e. g. Safari and Firefox, to help debug web
applications, they are not found in traditional toolkits.

To aid this discovery process, we provide several run-time
inspection tools: a hierarchy browser to explore the appli-
cation’s window and widget hierarchy (Figure 7); an object
inspector to list the class and methods of an arbitrary object;
a widget picker that maps a click in the interface to the code
object backing the clicked widget; and an interactive inter-
preter (Python) that runs inside the program, allowing inter-
active probing and inspection of the application, much in the
same way as the original Smalltalk environment supported
code inspection [13].

Together, these tools help decrease the complexity of mak-
ing sense of an existing application. To the extent possible,
our goal is to reduce the task of writing a third-party modi-
fication to that of writing a small program in the underlying
programming environment.

Summary

The six abstractions described above can be grouped into two
classes: those that let third-party developers create modifi-
cations to existing programs without deep understanding of
their internal structures, and those that help them to make
sense of and deeply integrate with the underlying implemen-
tation of the program. Event funnels, window hooks, and
glass sheets fall into the former category, permitting devel-
opers to “bolt on” new behaviors. Dynamic code support,
object proxies, and code inspection tools fall into the latter
category, helping developers to figure out what parts of an
existing program need to be modified and providing ways to
do so in minimally-invasive ways.

THE SCOTTY DEMONSTRATOR

Scotty5 is our reference implementation of runtime toolkit
overloading. Its goal is to demonstrate the viability and util-
ity of this approach in creating deep modifications to soft-
ware applications without access to their source code. Scotty
adds a plugin architecture to existing, unmodified Cocoa ap-
plications on Mac OS X. Runtime developers can use this
toolkit to write plugins that augment, enhance, or otherwise
modify the application at runtime. End users can then use
these plugins to transform their interaction with the original
application.

5Scotty is named after the miracle-working engineer on Star Trek and
is available from insitu.lri.fr/Projects/Scotty.

Figure 4: The Scribbler plugin running in the Mac OS
Finder. The user activates the Scribbler instrument
(left), and uses it to draw an annotation (right).

When a Cocoa application launches, Scotty bootstraps itself
into the existing application environment. We describe how
this bootstrap works in more detail in the Implementation
section below. The first step of this bootstrap process is to
confirm with the user that she wishes to activate Scotty, along
with an option to remember that choice for the specified ap-
plication. If the user chooses to activate Scotty, the available
plugins will be looked up in the user’s Library folder.

Scotty plugins are based on a model of instrumental inter-
action [4], where plugins define interactive instruments that
augment the capabilities of the underlying application. A
predefined plugin adds the Scotty button (the fourth button
from the left in the titlebar in Figure 4) to the application
windows. Clicking this button activates the current instru-
ment, while pressing and holding it shows the Scotty menu,
which lists the available instruments.

In the remainder of this section, we present a selection of
plugins created using Scotty. We created these plugins out of
real-world needs that have arisen in our own use, and also to
show a breadth of the capabilities of these abstractions.

Creating a Plugin: Scribbler Plugins are simply folders that
contain a description of the plugin, the plugin code, and any
plugin resources. To give an idea of what it is like to create
such a plugin, we describe how to create a simple Scribbler
plugin that allows the user to draw annotations on a win-
dow. These annotations will be attached to the window, so
that they move as the window moves. First, we create a
folder, Scribbler.instrument, containing an Info.plist
file. This file uses an XML structure to describe meta-data
about the plugin, such as its name, associated code files, etc.

When a plugin loads, Scotty loads the code specified in the
Info.plist. It then looks for any Instrument subclasses
defined in the loaded code. For each new instrument (a plu-
gin may define many), it invokes the registerInstrument
class method, which, among other things, registers the in-
strument with the Scotty menu.

To create a Scribbler instrument, then, involves creating a
Python file that defines an Instrument subclass, such as
shown in Figure 5. When the user selects the instrument
from the pulldown menu (Figure 4, left), Scotty queries the
instrument to see if it needs a glass window (line 9). If it
does, then it automatically creates one or reuses an exist-

insitu.lri.fr/Projects/Scotty

1 class ScribblerInstrument(Instrument):

2 @classmethod

3 def registerInstrument(cls, instrumentID):

4 # ... register for notifications if needed ...

5 super(ScribblerInstrument, cls).registerInstrument(...)

6 def init (self):

7 # ... setup scribbler data ...

8 self.stateMachine = self

9 def wantsGlassWindow(self):

10 return True

11 def newGlassViewForGlassWindow(self, glassWindow):

12 parent = glassWindow.parent()

13 view = ScribblerGlassView(parent.frame(), self)

14 return view

Figure 5: Scribbler instrument. The class method
registerInstrument (lines 2–5) is called when the
instrument plugin is first loaded to, e. g., register for
window creation notifications. In the constructor, the
instrument registers itself as a state machine (line 8).
This state machine (not shown) describes how the in-
strument translates input events into drawing on its
glass view. Line 9 registers that the instrument will
draw to a glass window, which will automatically be
created. Line 14 returns a view (not shown) that will
be added to that window to handle all drawing.

ing one. It then asks the instrument for a view to add to the
glass window (lines 11–14). This view is responsible for any
drawing that will be overlaid. Glass windows are themselves
event funnels, redirecting all input events sent to the glass
window to the associated instrument’s state machine (set on
line 8). The state machine describes which events are inter-
cepted and how to handle each event. For brevity, we do not
show the state machine itself. It describes a simple click-
and-drag interaction to draw arbitrary shapes and remembers
these shapes to redraw them when the window refreshes its
content. The description of state machines uses a technique
inspired by the Swing States library for Java [2].

Teleporting Windows to a High-Resolution Wall Display

When the user activates the window teleportation instrument,
clicking on the Scotty button toggles a window’s teleporta-
tion state (Figure 6). When a teleported window repaints, it
must send a raster or vector representation of its content to
a remote host, depending on which mode is active. Send-
ing a raster representation is easily achieved by accessing the
backing of the window. But in order to take advantage of
the size and resolution of a wall display, we need a vector
representation of the teleported window.

A vector representation describes a window’s objects such as
fonts, lines, primitive shapes, and more complex bezier paths
in a resolution-independent way. SubArctic’s graphics object
wrapping approach works well in Java, where all drawing
goes through an instance of a Graphics object that defines
how each graphical object is drawn to the screen. On Mac OS
X, however, there are several different kinds of drawing con-
texts: high-level Cocoa drawing contexts that use an object-
oriented API, low-level Carbon contexts that use a C API,
and OpenGL contexts. Because toolkit overloading operates
on the object-oriented runtime layer, it cannot overload the
lower-level C drawing operations; it only has access to the
Cocoa-based drawing contexts. As such, we cannot easily

(a) Teleporting Preview, the Mac OS PDF viewer

CrackingCracking

eviousevious NextNext ZoomZoom
(b) Close-up of the title bar in raster and vector mode

ABSTRACT

Various techniques
velopers to transform
without access to its
niques are often limited(c) Close-up of some text in raster and vector mode

Figure 6: (a) Teleporting the Preview PDF viewer. En-
larged detail regions are typeset directly from their win-
dow backings. (b) Bitmap data is scaled up as chunky
pixels, but the icon remains crisp because it is backed
by a higher-resolution image. (b) Rasterized text that
would otherwise be difficult to read remains clear.

create a wrapped version of the drawing contexts that saves
the vector data of objects drawn to the screen. Instead, we
need another approach.

Fortunately, Cocoa includes printing hooks that access the
lower-level vector representation of the contents of a window
suitable for printing.6 A programmer can thus use Scotty’s
window repaint notification to trigger the appropriate calls
to this printing system, yielding a PDF representation of the
window that can then be sent to a remote client (Figure 6).

This example illustrates two of the challenges involved in
runtime software development. First, the programmer must
be able to make sense of an existing program or, in this case,
toolkit. For many kinds of modifications, as in this case, it is
sufficient to know the toolkit used to build the application.

Second, access to the underlying program objects may some-
times be insufficient: Pragmatic choices made at design time
or during the evolution of the software may restrict the op-
erations that can be readily performed. As a result, it is
sometimes easier to operate at a lower level of abstraction.
For example, to transmit only the raster representations of
windows or even widgets, surface representation-based ap-
proaches may be more appropriate. Indeed, when teleporting
raster representations, Scotty uses a similar approach by ac-
cessing the window backings. When deeper access to the un-
derlying program components is necessary, however, those
methods fall short, and higher-level access is required.

6In practice, the printing system is much slower than drawing to the
screen, but we have still been able to maintain interactive local frame rates
on a 5-year-old 2 GHz Intel Core Duo laptop.

Figure 7: The hierarchy browser revealing the struc-
ture of the QuickTime Player window on the top and
the methods available to the selected view below. Se-
lected views in the browser are highlighted in the run-
ning application (not shown).

Adding Subtitles to DRM-encumbered Movies We want to
integrate external subtitles into the standard Mac OS Quick-
time Player, which is capable of playing the DRM-locked
videos purchased from the iTunes Store. In order to properly
handle the subtitles, the text must be properly laid out on the
screen, even if the user resizes the window. The subtitles
must also stay synchronized with the video, even if the user
skips around in the video.

A solution to this problem must solve two challenges: to dis-
play subtitles on top of Quicktime Player’s video playback
view, and to keep them synchronized with the video play-
back as the user plays, pauses, and scrubs through the video.
A programmer will thus not only have to figure out how to
solve the tasks of his problem domain, i. e., fetching the sub-
titles, but also how to integrate with an unfamiliar codebase.

The first part of this problem is easy to solve by attaching a
glass window to the video playback widget. Glass windows
automatically register for resize notifications on their parent.
By tracking these notifications, the glass window will auto-
matically resize with the parent, keeping its contents (in this
case, the subtitles) in a consistent location on the screen, even
as the user resizes the window or enters and exits fullscreen
mode. The programmer need only determine to which wid-
get to attach the glass window, in this case using the widget
hierarchy browser (Figure 7).

The second challenge is in keeping the subtitles synchronized
with the video playback. Using the hierarchy browser, the
developer identifies the method of the playback view (MG-
MoviePlaybackView) that gives access to the video con-
troller object (MGMoviePlaybackController) . With access
to the underlying video controller, the developer can directly
handle changes to the video playback properties, regardless
of whether the user presses a button on the screen, uses a
keyboard shortcut, or a remote control to play, pause, or skip
around in the video. The key is that instead of reacting to
input events, we interact with their associated logical opera-
tions at the controller level, e. g. play or skip.

Adding New Toolbar Commands Most video players offer
the ability to make playback windows float on top, with the
notable exception of the Quicktime Player in recent versions
of Mac OS. For this and other applications, it would be use-

ful to be able to add a new window button that toggles this
floating property. More generally, we want to be able to dy-
namically create new buttons for windows and toolbars and
even to redefine the behaviors of existing buttons.

Scotty integrates an interactive Python interpreter into exist-
ing Cocoa applications. Using this interpreter, the runtime
developer can interactively enter code, define new classes
and even add or replace methods on existing classes. She can
interactively develop and test a new feature, such as making a
window float above others using an NSWindow’s -setLevel:
method, a standard method in the Cocoa API, but one that
few applications make available in their interface. Once re-
fined, she can add a new window button for that function.
She can first test the button by writing the code that creates
it interactively in the code window, and then integrate it into
the plugin code. Once part of the plugin, that button will
be added to all new windows with title bars via a window
creation hook. In some sense, this is akin to creating But-
tons [17], but within the application.

In addition to adding new buttons to a window, we can also
redefine button actions. For example, when sending a mes-
sage in Apple’s Mail program, we would like to inspect the
contents of the message to verify that the user has not for-
gotten to attach a referenced document. We do not want to
merely intercept pressing the Send button, but also its equiv-
alent interactions such as a menu item or keyboard shortcut.

Cocoa uses a target-action pattern for callbacks. In a well-
written program, the action associated with a button is writ-
ten in a generic action handler that is shared across each of
these different triggers. The runtime developer therefore first
needs to find the callback invoked when the button is pressed.
She then needs to perform her domain-specific modification
to access the email body and attachments.

To find the callback associated with the send button, she
could use the hierarchy browser to find the button. Alterna-
tively, she could activate the widget picker instrument, which
maps a click to a widget, giving access to its target and ac-
tion. Thus, the programmer can simply click on the Send
button using the widget picker instrument to reveal that she
needs to modify the -send: method of the MailDocument-
Editor class. Further exploration of the methods listed in
this class reveals how to access the message body and attach-
ments in the associated message. Using the interactive in-
terpreter, the programmer can confirm that these methods do
indeed yield the anticipated results. After refining her code,
she then saves the modifications so that they will be applied
in subsequent program invocations.

SCOTTY IMPLEMENTATION

Runtime toolkit overloading relies on two primary elements:
the ability to dynamically replace method implementations at
the object-oriented dispatch level and a well-defined object-
oriented toolkit built on that object system. Object-oriented
programming languages such as Python, Java, Smalltalk, Obj-
ective-C, Javascript, and even C++7 all use dynamic dispatch
in method invocation. This dynamic dispatch is governed by

7when the virtual keyword is used

a small runtime component that maps the name of a method
to the code that implements it, usually based on the type of
the object invoked. It is this runtime component that ensures
that the code widget.trigger(sender) will invoke the ap-
propriate trigger code regardless of whether the widget is a
button, a menu item, or a text field. By dynamically redefin-
ing these mappings, we can change the behavior of a class.

We implemented Scotty on Mac OS X using Cocoa, which
implies the use of Objective-C. One feature of this language
is that it provides access to this runtime component in the lan-
guage. In other languages, the difficulty of this task depends
on how well-defined the runtime component is, whether it
is standardized across compilers, and whether the language
provides hooks to access it. We have successfully imple-
mented method swizzling in both Java (for Swing) and in
Javascript (for web applications). In Java we use the in-
trospection API to change the implementation of any pub-
lic method. In Javascript, we use the delegation model to
achieve the same effect.

Scotty is implemented in Python using the Python/Objective-
C bridge, PyObjC8. Although one is interpreted and the other
is compiled, Python and Objective-C have a very compati-
ble runtime object system. PyObjC provides a two-way dy-
namic bridge, allowing classes in either language to subclass
those defined in the other. As such, we can take advan-
tage of Python’s introspective capabilities to interact with the
Objective-C environment.

Bootstrapping

In order to use our runtime modifications in existing pro-
grams, we need a way to be able to dynamically modify the
object-oriented method and class tables. We need to be able
to run our modifications in the same program space as an ar-
bitrary Cocoa application. We use an old feature of the Cocoa
runtime, called Input Managers, that enables applications to
change the way that Cocoa handles user input. Through this
mechanism, another process can gain access to the underly-
ing Objective-C runtime of the host application.9

A similar result can be achieved in other environments. One
solution is to take advantage of the dynamic loading of shared
libraries, an approach used by Besacier and Vernier in the
Windows environment [6]. In the web environment, Grease-
monkey, among others, uses the extension capabilities of mod-
ern browsers such as Firefox and Safari to inject code into
any loaded page. We have successfully used a modified class
loader in Java and browser extensions in Javascript to demon-
strate that bootstrapping works for both Swing applications
and web applications.

Once loaded inside of the program space, Scotty first creates
a ScottyController, a singleton manager that governs the
loading of Scotty plugins, preferences, etc. This manager
then grafts itself into the Cocoa environment, overloading
the implementations for NSWindow’s -flushWindow method
(Figure 3) and the windows’ initializers (not shown). These

8PyObjC: pyobjc.sourceforge.net, 20 April 2011.
9SIMBL, the Smart Input Manager Bundle Loader, uses this same pro-

cess. www.culater.net/software/SIMBL/SIMBL.php, 20 April 2011.

methods provide access to Cocoa’s window creation and ren-
dering operations. It also taps into the event dispatch system
to intercept UI events sent to the application but not associ-
ated with a particular window, such as mouse motion events
over the desktop when the application is active.

Obviously, replacing methods of an existing application is
dangerous. The replacement method will be called in place
of the original one, so it must not break any of the implicit or
explicit assumptions made by the application designers. It is,
therefore, a brittle operation that requires care and defensive
coding practices. To reduce the risk of breaking applications,
we minimize the number of methods that are replaced and we
provide developers with higher-level abstractions and wrap-
pers that are safer than directly replacing methods.

DISCUSSION

The examples we have developed with Scotty illustrate how
runtime toolkit overloading can help a runtime developer to
alter the behavior and interface of existing applications, build-
ing on the interface and functionality that are already present
in the application. The Scribbler example shows how to add
a new capability without deep understanding of the toolkit.
The teleportation example shows how to make deeper mod-
ifications on the toolkit level. In both cases, the user need
only be familiar with the standard toolkit API and the Scotty
abstractions. Sometimes, however, deeper integration with
a particular application is necessary, as shown in the ad hoc
modifications to Quicktime Player and Mail.

In both the Quicktime and Mail examples, the developer must
figure out what parts of code to interact with without hav-
ing a published API to help. In both cases, the fact that
the user interface provides a human-interpretable interface
to the underlying program objects gives the programmer a
tractable starting point. Using either the window hierarchy
browser or the widget picker, she can get a handle on the
program object associated with an arbitrary widget. She can
then browse the list of that object’s methods similarly to an
(undocumented) API summary listing. In this way, when a
developer does need to deeply integrate with the core of an
application, Scotty helps guide that search based on the ex-
ternally visible parts of the software, that is, the interface.

The various examples show a cross-section of the kinds of
modifications that runtime toolkit overloading makes possi-
ble. Augmented surface representation approaches could po-
tentially support some of these modifications. Façade, for
example, could modify a window’s position in the window
hierarchy to have it float over all other windows. Sikuli’s
visual scripting interface [24] could be used to create au-
tomated tasks. For window teleportation, however, surface
representation methods do not have access to the underlying
structures to send an alternative vector representation.

Interacting with the underlying application logic is simply
not possible with surface representation approaches. Check-
ing for missing Mail attachments and properly synchronizing
subtitles in the Quicktime video player requires inspecting
the underlying application models. While such deep integra-
tion may be more challenging than surface modifications, it
enables modifications that were previously impossible.

pyobjc.sourceforge.net
www.culater.net/software/SIMBL/SIMBL.php

Runtime Program Modification

More generally, approaches to runtime program modification
can be characterized along two dimensions: depth of integra-
tion with the underlying application and generality of the ap-
proach. Depth of integration refers to how much access the
technique provides to a program’s underlying objects. The
generality of the approach describes how well the technique
applies to all applications or to specific ones. The work pre-
sented in this paper offers both deep integration and general-
ity across a toolkit.

Approaches such as scripting and extension interfaces can be
deeply integrated with the application and can offer a rich
degree of modification. These interfaces allow a third-party
programmer to create rich modifications to the underlying
behavior of the program, but with the risk that those mod-
ifications could cause instability, data corruption, or unex-
pected interactions with the program. They are powerful, but
with this power comes a higher risk. To mitigate this risk,
the abstractions we have used reduce the surface area of the
underlying application requiring modification.

At the other end of the spectrum are shallow integration tech-
niques, including surface representation approaches and their
augmented variants. Their lower integration footprint helps
make them less fragile, but they are still not without risk.
For example, if a bug in a surface level modification sends
multiple mouse release events without an intervening mouse
press event, the application may crash. Furthermore, these
approaches often cannot completely graft a new behavior
into an existing application or toolkit. They may be able to
create close approximations, but they lack the tight integra-
tion necessary to handle edge cases, and they cannot handle
cases that require deeper semantic understanding of program
objects.

Surface level approaches, however, are typically more gen-
eral across applications built with different toolkits. Façade
can handle any X Windows applications, regardless of what
toolkit it uses, because it integrates with the underlying win-
dows on which those toolkits are built. Prefab can handle any
widget it has been previously trained to recognize, regardless
of whether it is running locally, inside of a remote VNC con-
nection, a virtual machine, embedded in a Flash application,
or just simply in a screenshot. As such, they can potentially
offer more general, toolkit-independent solutions, but with a
limited understanding of the underlying program.

Deciding which approach to use involves weighing the needs
of the particular modification against the risk involved in
modifying an application’s behavior. One of the advantages
of the abstractions we have developed is that they support
a similar degree of input/output hijacking as existing sur-
face representation approaches. Runtime program modifi-
cation using our abstractions therefore faces a risk similar to
surface-level approaches, with the important difference that
it runs inside the application. This approach may therefore
offer the best of both worlds when using a single toolkit.

FACILITATING RUNTIME SOFTWARE DEVELOPMENT

Runtime software development relies on the ability to exam-
ine and modify live objects in program space, and the abil-

ity for the runtime developer to make sense of those objects.
The first of these relies on three technical abilities: to run ar-
bitrary code in program space, to modify class and method
tables at runtime, and to intercept and redirect input events
before delivery. While our demonstrator is implemented in
Cocoa, we have implemented proofs of concept in both Java
and Javascript, demonstrating the generality of the approach.

In all three cases however, we rely on specific and some-
times obscure features of each environment. A much better
approach would be for the UI toolkit itself to directly sup-
port the type of extensibility we have described. Window
Hooks, Event Funnels, and Glass Sheets can easily be na-
tively supported by new toolkits. Dynamic Code Support
and Object Proxies require proper runtime support at the pro-
gramming language level, but could be explicitly supported
by the toolkit for its own objects and methods. The bootstrap-
ping process could use the same approach as applications that
support plugins, i. e. to load the content of a well-known di-
rectory at start-up.

Finally, Code Inspection is mostly a human issue: how to
help a runtime developer make sense of someone else’s pro-
gram. Even with access to source code, the task is difficult.
The inspection tools in Scotty go some way to helping make
sense of the code, but could be improved. This task is simpler
than general code comprehension because it only involves
methods and objects connected to elements of the user inter-
face. Since the user interface is intended to be human under-
standable, it should support the exploration process, as we
have done with the simple widget picker.

CONCLUSIONS & FUTURE WORK

The goal of runtime software development is to support the
extension and adaptation of existing software applications
without access to their source code. While some tools exist,
they are usually somewhat limited, and programming exten-
sions and adaptations proves difficult.

We have presented runtime toolkit overloading, an approach
that makes it possible to perform powerful adaptations on
existing applications without modifying to their source code.
Specifically, we have shown how Window Hooks, Event Fun-
nels, Glass Sheets, Dynamic Code Loading, Object Proxies,
and Code Inspection help to augment or replace behaviors
of existing program objects. We have demonstrated Scotty,
a prototype system that implements these abstractions in ex-
isting Cocoa applications in Mac OS X. We have shown how
Scotty can be used to implemented a variety of modifications,
including teleporting vector or raster representations of win-
dows, adding subtitles to a video player, and dynamically
adding or redefining toolbar buttons.

We have shown how to create and use runtime toolkit over-
loading in the Cocoa environment and have created proofs of
concept in two other application environments: Java/Swing
and web applications. We further argue that new toolkits can
better support runtime development by directly incorporating
these abstractions into their design.

In future work, we will study how this approach can better
foster adaptation as a core design concept, facilitating the

development of applications that not only support users at
altering their interaction and behavior, but also by incorpo-
rating runtime adpatation as an explicit design element.

ACKNOWLEDGEMENTS

This work was supported in part by the French ANR grant

“iStar” (#2007-TLOG-009-03) and by the Digiteo/Région Île-
de-France grant “WILD” (#2008-25D).

REFERENCES

1. J. Accot and S. Zhai. More than dotting the i’s —
foundations for crossing-based interfaces. In CHI ’02:
Proceedings of the SIGCHI conference on Human
factors in computing systems, 73–80, New York, NY,
USA, 2002. ACM.

2. C. Appert and M. Beaudouin-Lafon. SwingStates:
adding state machines to Java and the Swing toolkit.
Softw. Pract. Exper., 38(11):1149–1182, 2008.

3. Apple Computer Inc. AppleScript Language Guide.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1994.

4. M. Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-wimp user
interfaces. In CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems,
446–453, New York, NY, USA, 2000. ACM.

5. J. M. A. Begole. Flexible collaboration transparency:
supporting worker independence in replicated
application-sharing systems. PhD thesis, Virginia
Polytechnic Institute and State University, Blacksburg,
VA, 1998.

6. G. Besacier and F. Vernier. Toward user interface
virtualization: legacy applications and innovative
interaction systems. In EICS ’09: Proceedings of the
1st ACM SIGCHI symposium on Engineering
interactive computing systems, 157–166, New York,
NY, USA, 2009. ACM.

7. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered
web pages. In UIST ’05: Proceedings of the 18th
annual ACM symposium on User interface software
and technology, 163–172, New York, NY, USA, 2005.
ACM Press.

8. A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,
D. Maulsby, B. A. Myers, and A. Turransky, editors.
Watch what I do: programming by demonstration.
MIT Press, 1993.

9. M. Dixon and J. Fogarty. Prefab: implementing
advanced behaviors using pixel-based reverse
engineering of interface structure. In CHI ’10:
Proceedings of the 28th international conference on
Human factors in computing systems, 1525–1534,
New York, NY, USA, 2010. ACM.

10. M. Dixon, D. Leventhal, and J. Fogarty. Content and
hierarchy in pixel-based methods for reverse
engineering interface structure. In Proceedings of the
2011 annual conference on Human factors in
computing systems, CHI ’11, 969–978, New York, NY,
USA, 2011. ACM.

11. W. K. Edwards, S. E. Hudson, J. Marinacci,
R. Rodenstein, T. Rodriguez, and I. Smith. Systematic
output modification in a 2d user interface toolkit. In
UIST ’97: Proceedings of the 10th annual ACM
symposium on User interface software and technology,
151–158, New York, NY, USA, 1997. ACM.

12. W. K. Edwards, E. D. Mynatt, and K. Stockton.
Providing access to graphical user interfaces—not
graphical screens. In Assets ’94: Proceedings of the
first annual ACM conference on Assistive technologies,
47–54, New York, NY, USA, 1994. ACM.

13. A. Goldberg and D. Robson. Smalltalk-80: the
language and its implementation. Addison-Wesley
Longman Publishing Co., Boston, MA, USA, 1983.

14. G. Humphreys, M. Houston, R. Ng, R. Frank,
S. Ahern, P. D. Kirchner, and J. T. Klosowski.
Chromium: a stream-processing framework for
interactive rendering on clusters. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques,
693–702, New York, NY, USA, 2002. ACM.

15. G. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

16. W. E. Mackay. Triggers and barriers to customizing
software. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems,
153–160. ACM Press, 1991.

17. A. MacLean, K. Carter, L. Lövstrand, and T. Moran.
User-tailorable systems: pressing the issues with
buttons. In CHI ’90: Proceedings of the SIGCHI
conference on Human factors in computing systems,
175–182, New York, NY, USA, 1990. ACM Press.

18. B. A. Nardi. A small matter of programming:
perspectives on end user computing. MIT Press, 1993.

19. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 2(1):33–38, Jan/Feb 1998.

20. M. Robinson. Design for unanticipated use... In
ECSCW ’93: Proceedings of the third conference on
European Conference on Computer-Supported
Cooperative Work, 187–202, Norwell, MA, USA,
1993. Kluwer Academic Publishers.

21. W. Stuerzlinger, O. Chapuis, D. Phillips, and
N. Roussel. User interface façades: towards fully
adaptable user interfaces. In UIST ’06: Proceedings of
the 19th annual ACM symposium on User interface
software and technology, 309–318, New York, NY,
USA, 2006. ACM.

22. L. A. Suchman. Plans and Situated Actions: The
Problem of Human-Machine Communication.
Cambridge University Press, December 1987.

23. D. S. Tan, B. Meyers, and M. Czerwinski. Wincuts:
manipulating arbitrary window regions for more
effective use of screen space. In CHI ’04 extended
abstracts on Human factors in computing systems,
1525–1528, New York, NY, USA, 2004. ACM.

24. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using
gui screenshots for search and automation. In UIST
’09: Proceedings of the 22nd annual ACM symposium
on User interface software and technology, 183–192,
New York, NY, USA, 2009. ACM.

	ABSTRACT
	Introduction
	Related Work
	Scripting, Plugins, and Extensions
	Changing Program Behavior
	Surface Representations
	Augmented Surface Representations
	Toolkit Integration
	The World Wide Web

	Runtime Toolkit Overloading
	Window and Widget Hooks
	Event Funnels
	Glass Sheets
	Dynamic Code Support
	Object Proxies
	Code Inspection

	Summary

	The Scotty Demonstrator
	Creating a Plugin: Scribbler
	Teleporting Windows to a High-Resolution Wall Display
	Adding Subtitles to DRM-encumbered Movies
	Adding New Toolbar Commands

	Scotty Implementation
	Bootstrapping

	Discussion
	Runtime Program Modification

	Facilitating Runtime Software Development
	Conclusions & Future Work
	Acknowledgements
	REFERENCES

