
HAL Id: hal-00997862
https://hal.science/hal-00997862

Submitted on 11 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing Web Services Composition using the TGSE Tool
Dung Cao, Patrick Félix, Richard Castanet, Ismaïl Berrada

To cite this version:
Dung Cao, Patrick Félix, Richard Castanet, Ismaïl Berrada. Testing Web Services Composition using
the TGSE Tool. WS-Testing 2009, Jul 2009, Los Angeles, United States. pp.187-194. �hal-00997862�

https://hal.science/hal-00997862
https://hal.archives-ouvertes.fr

Testing Web Services Composition using the TGSE Tool

Tien-Dung Cao1, Patrick Félix1, Richard Castanet1 and Ismail Berrada2

1LaBRI - CNRS - UMR 5800, University of Bordeaux 1

351 cours de la libération, 33405 Talence cedex, France.

Email: {cao,felix,castanet}@labri.fr
2L3I, La Rochelle University, 17042 La Rochelle, France.

Email: ismail.berrada@univ-lr.fr

Abstract

This paper proposes an approach to test (actively and

passively) Web services composition described in BPEL

using TGSE (Test Generation, Simulation and Emulation),

that is a tool for generating test cases for Communicat-

ing Systems (CS). TGSE implements a generic generation

algorithm allowing either test cases derivation or traces

checking. It supports the description of one or several com-

ponents with data and temporal constraints. First, in order to

model the BPEL behaviors, the timing constraints, and data

variables, the BPEL specification is transformed into the

Timed Extended Finite State Machines (TEFSM) model. As

our framework can handle both active and passive testing,

on the one hand test cases are obtained by stimulating the

CS. In this case, the exploration is guided by the use of test

purposes modeled by TEFSM (a test purpose is considered

as a part of the CS). On the other hand, TGSE can check

whether a trace is valid according the specification or not.

Finally, the Loan Web Service is used as a case study.

1. Introduction

BPEL (Business Process Execution Language) [1] is an

emerging standard language to describe web service com-

position behavior. A BPEL process implements one Web

service by specifying its interactions with other Web services

(called partner services). The ways to test Web services

composition can be classified into two basic groups. The

most natural way, namely the active testing approach, the

active testing is a testing method that interacts with the

system under test by injecting test cases and analyzing

the answers of the system regarding the expected results.

Another possibility is the passive testing approach. The

passive testing is a testing method based on a probe on

the system in execution. There is no interaction with the

system under execution. This method operates by checking

properties on the logs provided by the probe.

Various approaches for Web services composition testing

were analyzed by [2], including unit testing, integration

testing, black box testing and white box testing of chore-

ographies and orchestrations. For active testing, several test

cases generation methods have been recently proposed for

BPEL Web services [5, 6, 8, 9] even with timed constraints

[15, 16]. These testing methods have given pertinent test

cases. However, for passive testing, to our knowledge,

the temporal constraints of Web services have not been

considered. The methods proposed in [20, 21] focus only

on monitoring techniques and semantic faults diagnosis of

BPEL services.

A. Bucchiarone et al. [2] have defined two approaches for

Web services composition testing:

• White box approach: As BPEL is an executable lan-

guage, the BPEL description of Web services compo-

sition is considered as the source code of the compo-

sition. It can be executed by any BPEL engine (Active

BPEL, Oracle...). Classical structural coverage criteria

based on the source code can then be applied.

• Black box approach: In this approach, a composite Web

service is actually coded in a different language from

the specification. For instance, a BPEL specification

is coded as a Java program. An implementation of

the composite Web service is then tested without any

information of its internal structure. Test cases are

generated only from the specification.

In this paper, we focus on model-based testing of Web

services composition given by BPEL specifications, and we

consider the black-box approach.

Firstly, we present a timed modeling of BPEL speci-

fication based on Timed Extended Finite State Machine

(TEFSM). The TEFSM formalism allows handling not only

BPEL behaviors but also data and temporal constraints. In

this model, we assign a time invariant for each timed activity

of BPEL (for example: wait). We also describe how to

translate BPEL specification into TEFSMs.

Secondly, for both active and passive testing, the TEFSMs

corresponding to the BPEL specification and TGSE tool

will be used. In fact, TGSE (Test Generation, Simulation

and Emulation) [18, 19] is a toolkit developed by LaBRI

within the RNRT Avrroes project and the European project

Marie Curie RTN TAROT (MCRTN 505121). It contains

a test cases generator supporting communicating systems

modeling and implementing a generic test generation al-

gorithm. It supports the passive and active testing (with

test purpose) of one or several components with data and

temporal constraints. For active testing, test cases generation

is based on simulation where the exploration is guided by

test purposes. The TEFSM of BPEL specification and the

test purpose will be modeled by a communicating system

that is the input of the TGSE tool. For passive testing, the

TGSE tool is used to check that a trace of an implementation

is a valid execution of the BPEL specification. This trace is

also modeled as a TEFSM and it is a component of the CS.

Finally, by presenting the Loan Web service case study,

we show how our framework can be used in practice.

The remainder of this paper is organized as follows.

Section 2 reviews some previous works on Web services

composition testing. Section 3, we give some definitions

about: TEFSM that is used to model BPEL process, a

partial of TEFSM and a Communicating System. The sec-

tion 4 describes the relationship between BPEL concepts

and TEFSM. How to test a service composition using the

TGSE tool is presented in the section 5. Section 6 reports

our experimental result with the Loan Web Service. Finally,

section 7 concludes the paper.

2. Related Works

In the last years, there are several techniques and tools

that have been developed to test Web services. Various

approaches for service composition testing were analyzed

by [2] including unit testing, integration testing, black

box testing and white box testing of choreographies and

orchestrations. Jose Garcia-Fanjul et al [5] use the SPIN

model checker to generate test cases for compositions given

in BPEL. In order to systematically derive test suites, the

transition coverage criterion is considered. Yongyan Zheng

and Paul Krause [6] model each BPEL activity by an

automaton (also referred as Web Service Automaton). These

automata are then transformed into Promela, the input format

of the SPIN model checker. [9] use one more time the SPIN

model checker to verify BPEL specification. However, the

authors do not transform directly BPEL into Promela as

in [5]. BPEL will be translated to guard conditions which

it is transformed to Promela. In all of these methods, test

cases are generated from counterexamples generated by the

SPIN model checker. Transforming BPEL into Intermediate

Format Language (IF) is presented in [16]. Timed test cases

are generated using TestGen-IF tool. [23, 24] present also a

framework for white-box testing . However, the authors do

not consider automatic test case generation [16].

Regarding passive testing, several methods have been

proposed. [20, 21] propose a model-based approach to diag-

nose orchestrated Web service process. Firstly, the authors

convert the Web service orchestration language, BPEL, into

synchronized automata (discrete-event systems) as a formal

description of the topology. Secondly, after an exception is

thrown, the techniques in Artificial Intelligence provide ways

to monitor and diagnose the execution trajectory based on

the formal model and the observed evolution of the business

process. However, timing constraints were not considered in

these works.

3. Preliminaries

BPEL specification can be described by means of formal

models such as TEFSM [14] (Timed Extended Finite State

Machine). In this section, we introduce the TEFSM model

and some related definitions.

Clocks and Constraints. A clock is a variable that allows

to record the passage of time. It can be set to a certain value

and inspected at any moment to see how much time has

passed. Clocks increase at the same rate, they are ranged

over IR+, and the only assignments allowed are clock resets

of the form c:=0. For a set C of clocks, and a set V of

variables, the set of clock constraints Φ(C) is defined by the

grammar: Φ := Φ1|Φ2|Φ1 ∧ Φ2,Φ1 := c ≤ m,Φ2 := n ≤ c

where c is a clock of C, and (n, m) are two natural numbers.

P(V) is a set of linear inequalities on V. Next, a n-tuple

(c0, c1, ..., cn) (resp. (v0, v1, ..., vm)) will be noted ~c (resp.

~v).

Definition 1: (TEFSM): A TEFSM M is defined as a

sextuple, M = (S, s0, V, E ∪{ǫ}, C, Inv, T) where:

• S = {s0, s1, ..., sn}, is a finite set of states;

• s0 ∈ S is an initial state;

• V is a finite set of data variables;

• E is a finite set of the events. E is partitioned into: :

– Input event of the form ?pl.op.msg: the reception

of the message (msg) for the operator (op) from

the partner (pl);

– Output event of the form !pl.op.msg: the emission

of the message (msg) for the operator (op) to the

partner (pl);

• C is a finite set of clocks including a global clock (never

reseted);

• Inv : S 7→ Φ(C) is a mapping that assigns a time

invariant to states ;

• T ⊆ S × E × P (V) ∧ Φ(C) × 2C × µ × S is a set of

transitions relation where:

– P (~v)∧φ(~c): are guard conditions on data variables

and clocks;

– µ(~v): Data variable update function;

– X ⊆ 2C : Set of clocks to be reset;

A transition t = (s < e, [g], {f ; c} > s′) ∈ T represents

an edge from state s to state s′ on event e. g is a set of

constraints over clocks and data variables, f is a set of data

update functions, and c is a set of clocks to be reset.

Definition 2: (Partial of TEFSM): Let M be a TEFSM.

The partial of M is defined by PM = (S, sin, Sout, V, E,

C, Inv, T) where: (S, sin, V, E, C, Inv, T) is a TEFSM and

Sout ⊂ S.

A partial of TEFSM [14] is a TEFSM extended by

input state sin (representing the entering state of the partial

machine and which replaces the initial state s0) and a set of

output states, Sout (representing the exit state of the partial

machine). A TEFSM can also have a graphic format (see

Fig 1).

Definition 3: (Communicating System): A Communicat-

ing System (CS) is a 5-tuple CS=(SP, SV, R, Mi,1≤i≤n, TP)

where:

• SP is a finite set of shared parameters;

• SV is a finite set of shared variables;

• Mi = (Si, s0i, Vi, Ei, Ci, Invi, Ti) is a TEFSM ;

• TP is a TEFSM representing the test purpose;

• R is a finite set of synchronization rules where each

rule ~r is a vector n+1 elements;

A Communicating System declares a set of shared re-

sources (parameters and variables), a set of automata, a set

of rules describing the different possible synchronizations

between the entities, and a test purpose modeled by an

automaton.

4. Relationship between BPEL concepts and

TEFSM

BPEL [1] provides constructs to describe complex busi-

ness processes that can interact synchronously or asyn-

chronously with their partners. A BPEL process always

starts with the process element (i.e the root of the BPEL

document). It is composed of the following children: part-

nerLinks, variables, activities and the optional children:

faultHandlers, eventHandlers, correlationSets. These chil-

dren are concurrent.

In our framework, we model a BPEL process as a commu-

nicating system with three automaton (activity, faultHandler,

eventHandler). The synchronization rules will describe syn-

chronous actions between them. We use a stop variable

for activities machine to terminate (assign to true) the rest

activities if the termination is activated by an exit activity

or the faultHandler. The scope activity will be model as a

process. But in a scope activity, a compensationHandler can

exist. In that case, a CS has four automaton.

4.1. Messages

A BPEL variable is always connected to a message from a

WSDL description of partners. In BPEL, a Web service that

is involved in the process is always modeled as a porType

(i.e. abstract group of operations (noted op) supported by

a service). These operations are executed via a partnerlink

(noted by pl). In our formalism, for instance, the input

message ?pl.op.v denotes the reception of the message op(v)

(constructed from the operation op and the BPEL variable

v) via the channel pl.

4.2. Basic Activities

A basic activity can be one of the following: receive,

reply, invoke, assign, wait, empty, exit, throw. Each basic

activity is described by a partial machine. To synchronize

the faults with faultHandler machine, we add two transitions

!fault and ?done into each partial machine if faultHandler

activity of process exists.

The Receive Activity: <receive partnerLink=pl

portType=pt operation=op variable=msg>

PM = ({sin, sout}, sin , {sout}, {v, stop}, {?pl.op.msg},

{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,<?pl.op.msg,[stop=false],{c,v=msg}>,sout)

The Reply Activity: <reply partnerLink=pl portType=pt

operation=op variable=msg>

PM = ({sin, sout}, sin , {sout}, {stop}, {!pl.op.msg},

{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,<!pl.op.msg,[stop=false],{c}>,sout)

The Assign Activity: <assign> <from> v2 </from>

<to> v1 </to> ... </assign>

PM = ({sin, sout}, sin , {sout}, {v1,v2,...,vn,stop}, {∅},

{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c, v1=v2,...}>,sout)

The Wait Activity: <wait (for=d | until=dl)>.

• <wait for=d>: PM = ({sin, sout}, sin , {sout}, {stop},

{∅}, {c}, {(sin,c≤d),(sout, true)}, {t1})

– t1=(sin,< ,[c=d & stop=false],{c} >,sout)

• <wait until=dl>: PM = ({sin, sout},sin , {sout},

{stop}, {∅}, {gc}, {(sin,gc≤dl),(sout, true)}, {t1})

– t1=(sin,< ,[gc=dl & stop=false],{∅} >,sout)

The Throw Activity: <throw faultName=fault/>

PM = ({sin, sout}, sin, {sout}, {stop}, {∅}, {∅},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,<!fault,[],{stop=true}>,sout)

The Exit Activity: <exit/>

PM = ({sin, sout}, sin , {sout}, {stop}, {∅}, {∅},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[],{stop=true}>,sout)

The Invoke Activity: <invoke partnerLink=pl port-

Type=pt operation=op inputVariable=msg in outputVari-

able=msg out>

PM = ({sin, s1, sout}, sin , {sout}, {v in, v out,

stop}, {!pl.op.msg in, ?pl.op.msg out}, {c}, {(sin, true),
(s1, true) (sout, true)}, {t1, t2})

• t1=(sin,<!pl.op.msg in,[stop=false],{c}>,s1)

• t2=(s1,<?pl.op.msg out,[stop=false],{c,

v out=msg out}>,sout)

The Empty Activity: <empty/>

PM = ({sin, sout}, sin , {sout}, {stop}, {∅}, {c},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c}>,sout)

4.3. Structured Activities

Structural activities are the sequence, while, switch, flow,

pick, repeatUntil, if and scope. They take some partial

machines PMi,i∈[0,n] (see Fig 1) and combine them to have

a new partial machines.

Figure 1. Partial machines

The partial machines of structural activities (sequence,

while, switch and pick) are shown in Fig 2. In our frame-

work, the repeatUntil activity will be modeled as a while

activity. The conditional behavior if will be also modeled as

a switch activity. The eventHandler activity will be model

as pick activity. The flow activity allows specifying one

or more concurrent activities [1]. It specifies the parallel

execution of the flow partial TEFSM. The partial machine

of flow finishes when all of its sub-partial machine finish.

We use a boolean variable for each its sub-partial machine to

examine the termination of each machine. The initial value

of these variable is false (see Fig 3). The links defined in

the flow activity permit to enforce precedence between these

activities, i.e. it permits synchronization (see Fig 4).

The faultHandlers element combines a switch activity

applied to various sequences of a catch or a catchAll

activities and a sub-activity of the partial machine. The

catchAll element is used to catch all faults not handled by

the defined catch activities. Fig 5 models a faultHandler

activity.

4.4. Limitations

Our framework has the following limitations. The at-

tributes joinCondition, supressJoinFailure of the flow ac-

tivity are not treated. An activity with correlation will be

Figure 2. Modeling structural activities

Figure 3. Modeling flow activity

model by adding a variable status of properties as in [15].

In that case, we add two transitions !fault and ?done into the

partial machine to handle the fault because the standard fault

correlationViolation must be thrown [1] (i.e. synchronize the

fault with faultHandler machine).

Figure 4. Modeling Links

Figure 5. Modeling faultHandler

5. Testing Services Composition Using TGSE

In this section, we study how to test the service compo-

sition using the TGSE tool. Two approaches, namely active

and passive testing are considered in our framework.

5.1. An Overview of Testing Services Composition

Using TGSE

In our framework, we use TGSE to test Web services

composition described in BPEL, both for active and passive

approaches. To do this, we start by transforming the BPEL

description into TEFSM. This transformation can be done

automatically by a prototype tool (or by hand) using rules

described in the section 4. On active testing approach, a test

purpose is requested to guide the test cases generation. On

passive testing approach, we use TGSE to check whether

a trace is valid according the specification. Fig 6 illustrates

the main lines of our methodology.

The current version of TGSE does not supported time

invariants on state. Thus, we use only timing constraints on

transitions. Moreover, it only supports integer and boolean

data types. So, we use many variables to model a BPEL

message.

5.2. Active Testing

In order to generate test cases using TGSE, a test purpose

must be defined. This test purpose will be modeled as

a TEFSM and its actions will be synchronized with the

corresponding actions in each TEFSM.

Figure 6. Overrall Method of Testing Services Compo-

sition

As TGSE supports timing constraints, we can use a

timed test purposes (i.e. test purpose with some timed

requirements) to generate timed test cases [16]. In the

case, faultHandler activity and eventHandler activity of

a BPEL process will exist (recall that these activities

are optional children of BPEL process). The communi-

cating system (CS) will be composed of the three TEF-

SMs (Mactivities, MfaultHandler, MeventHandler) and the

test purpose. Thus, each synchronization vector ~r of the CS

will have four elements.

TGSE will generate a test case in the XML format

satisfying the test purpose. Note that, if a transition condition

of a TEFSM depends on input value of messages, then we

will use a parameter as a value.

5.3. Passive Testing

TGSE allows runtime coverage of transitions based on

guard conditions (by examining variable values). This is

very helpful for our purpose of checking BPEL service

traces. In our approach, we will model an execution trace

as a test purpose (i.e. also referred as a TEFSM) by giving

real values to each input message. In that case, all BPEL

variables become shared variables. After modeling the BPEL

specification and the trace as TEFSMs and declaring their

synchronization rules, we use TGSE to verify this system.

If the TGSE output is a sequence, it means that this trace is

a valid trace of the BPEL specification.

6. A Case Study

In this section, we study an example of the Loan Web

Service that is described in Fig 7. This process receives

an input from the client. If this input is less than 10, it

invokes the synchronous Assessment Service and receives

a risk result. In the case, this risk is low, so it sends a

yes response yes to the client. Otherwise (i.e input≥10 or

risk!=low), it invokes the asynchronous Approval Service by

sending a request and uses a BPEL pick activity for one of

the following cases: (1) to receive an asynchronous response

from the partner service and send this response to client; (2)

to send a timeout fault to client if there is not response from

the partner service after a duration (e.g., 60 seconds).

Figure 7. The Loan Web Service

6.1. The TEFSM Specification of the Loan Service

Using the rules of the section 4, we have a TEFSM of

Loan Web Service of the figure 8 (The dashed lines denote

transitions of link variables). In this example, we do not use

stop variable because the exit activity and the faultHandler

activity do not exist.

In TGSE, an TEFSM is described by: number of state, an

initial state, a list of clock variables and a list of transition.

Each transition t is composed of :

1) source state(id, name);

2) target state(id, name);

3) event (nop denotes an internal event);

4) guard condition on clocks (# denotes true);

5) guard condition on variable (# denotes true);

6) reset clocks (# denotes empty);

7) update variables (# denotes empty);

The figure 9 describes TEFSM of Loan Web Service in

TGSE input format. The value of variables: request ,risk

and response of Approval service is used as parameters (i.e.

p input, p risk and p res).

Figure 8. TEFSM of Loan Web Service

6.2. Test Purposes

6.2.1. Test purposes for Scenario #1. This scenario tests

the communication between BPEL and Assessment service.

Firstly, the Loan process is initiated by receiving an input

from the client. It continues receiving the response (i.e.

risk msg) of the Assessment service. Finally, response to

the client. Fig 10 gives the test purpose for scenario #1

according to TGSE input format. The rules list for this test

purpose are: {<?input msg, ?input>, <?risk msg,?risk>,

<!output msg, !output>}.

6.2.2. Test purposes for Scenario #2. This scenario tests

the communication between BPEL and Approval service

with timing constraints. The Loan process is initiated by

receiving an input from the client. It receives the response

of the Approval service after 30 seconds. Finally, it sends

this response to the client. The test purposes for scenario #2

is formulated in TGSE as in Fig 11. The rules list for this test

P AUTO bpel
{
nb states: 22
initial state: 0
clocks: t

(0,init), (1,flow in), nop, #, #, #, pm receive=0
(1,flow in), (2,receive in), nop, #, pm receive[0,0], #, #
(1,flow in), (21,flow out), nop, #, pm receive[1,1], #, #
(2,receive in), (3,receive out), ?input msg, #, #, #, #
(3,receive out), (4,assign1 in), nop, #, #, #, #
(4,assign1 in), (5,assign1 out), nop, #, #, #, req=p input
(5,assign1 out), (6,invoke1 in), nop, #, req[-inf,10[, #, #
(6,invoke1 in), (7,invoke1 s1), !invoke1 msg out, #, #, #, #
(7,invoke1 s1), (8,invoke1 out), ?risk msg, #, #, #, risk=p risk
(5,assing1 out), (9,invoke2 in), nop, #, req[10,+inf], #, #
(9,invoke2 in), (10,invoke2 out), !invoke2 msg out, #, #, #, #
(10,invoke2 out), (11,pick in), nop, #, #, h:=t, #
(11,pick in), (12,assign3 in), ?res msg, t[0,60[, #, #, #
(11,pick in), (14,assign4 in), ?res msg, t[60,+inf], #, #, #
(12,assign3 in), (13,assign3 out), nop , #, #, #, out=p res
(14,assign4 in), (15,assign4 out), nop , #, #, #, out=-1
(13,assign3 out), (16,pick out), nop, #, #, #, #
(15,assign4 out), (16,pick out), nop, #, #, #, #
(8,invoke1 out), (9,invoke2 in), nop, # , risk[1,1] , #, #
(8,invoke1 out), (17,assign2 in), nop, # , risk[0,0] , #, #
(17,assign2 in), (18,assign2 out), nop, #, #, #, out=1
(18,assign2 out), (19,invoke3 in), nop, #, #, #, #
(16,pick out), (19,invoke3 in), nop, #, #, #, #
(19,invoke3 in), (20,invoke3 out), !output msg, #, #, #, #
(20,invoke3 out), (1,flow in), nop, #, #, #, pm receive=1
}

Figure 9. TEFSM specification of the Loan Service for

TGSE

TESTER test purpose1

{
nb states = 4

initial state = 0

final state = 3

(0, init), (1, state1), ?input, #, #, #, #

(1, state1), (2, state2), ?risk,#, #, #, #

(2, state2), (3, finish), !output, #, #, #, #

}

Figure 10. Test Purpose of Scenario #1 in TGSE

purpose are: {<?input msg, ?input>, <?res msg,?res>,

<!output msg, !output>}.

6.3. Test Cases

The test cases that are generated using TGSE cover also

internal actions. For instance, a test case for scenario #1 is:

0
nop
→ 1

nop
→ 2

input msg
−→ 3

nop
→ 4

nop
→ 5

nop
→ 6

invoke1 msg out
−→

7
risk msg
−→ 8

nop
→ 17

nop
→ 18

nop
→ 19

output msg
−→ 20.

In our case, we focus on black-box testing, it means that

we covers only the input events and the output events. We

TESTER test purpose2

{
nb states = 4

initial state = 0

clocks: t

final state = 3

(0, init), (1, state1), ?input, #, #, #, #

(1, state1), (2, state2), ?res, t[30,30], #, #, #

(2, state2), (3, finish), !output, # , #, #, #

}

Figure 11. Test Purpose of Scenario #2 in TGSE

are not interested in the internal events. So, from TGSE

result, we will drop internal actions. The test cases for each

scenario are shown in Fig 12.

TEST CASE 1 FOR SCENARIO #1

1. ?input msg (p req=0)

2. !invoke1 msg out

3. ?risk msg (p risk=0)

4. !output msg

TEST CASE 2 FOR SCENARIO #2 (first time)

1. ?input msg (p req=0)

2. !invoke1 msg out

3. ?risk msg (p risk=1)

4. !invoke2 msg out

5. ?res msg (p res=0)

6. !output msg

TEST CASE 2 FOR SCENARIO #2 (second time)

1. ?input msg (p req=10)

2. !invoke2 msg out

3. ?res msg (p res=0)

4. !output msg

Figure 12. The Abstract Test Cases

Note 1: TGSE has sixteen selection modes (i.e. from p0

to p15) concerning the chose of transitions, automata, and

synchronization rules . Here, we have used the p15 mode

(all random) to run this example. The values of parameters

generated randomly are saved in the OutputLp.out file.

7. Conclusions

In this paper, we have presented a methodology for the

TGSE tool to test Web Service Composition described in

BPEL language. Two test approaches are considered: active

testing (generating test cases) and passive testing (verifying

traces). We have given some definitions on Timed Extended

Finite State Machine (TEFSM), a partial of TEFSM and a

Communicating System (CS). TEFSM that we proposed can

enable modeling of BPEL behaviour, and data and timing

constraints. We also define some rules to transform a BPEL

specification into TEFSMs that is the components of a CS.

The Loan Web Service example is used to illustrate our

method. In a future work, we will attempt to use this tool

to handle integration testing as well as the choreography of

Web services.

Acknowledgment

This Research is supported by the French Na-

tional Agency of Research within the WebMov Project

http://webmov.lri.fr

References

[1] OASIS. Web Services Business Process Execution Lan-
guage (BPEL) Version 2.0, April 2007. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[2] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing Ser-
vice Composition”, In Proceedings of ASSE07,Mar del Plata,
Argentina, Aug 2007.

[3] A. Gill, “Introduction to the Theory of Finite-State Machines”,
Published by McGraw-Hill Book Co.., 1962.

[4] R. Alur, D. L. Dill, “A Theory of Timed Automata”, Theory
of Computer Science .vol 126, no 2, pp 183-235,1994.

[5] Jose Garcia-Fanjul, Javier Tuya, Claudio de la Riva, “Gen-
erating Test Cases Specifications for BPEL Compositions of
Web Services Using SPIN”, International Workshop on Web
Services Modeling and Testing. 2006.

[6] Y. Zheng, P. Krause, “Automata Semantics and Analysis of
BPEL”, International Conference on Digital Ecosystems and
technologies, 2007.

[7] Y. Zheng, J. Zhou, P. Krause, “Analysis of BPEL Data Depen-
dencies”, EUROMICRO Conference on Software Engineering
and Advanced Applications, 2007.

[8] Y. Zheng, J. Zhou, P. Krause, “A Model Checking based Test
Case Generation Framework for Web Services”, International
Conference on Information Technology, 2007.

[9] X. Fu T. Bultan J. Su, “Analysis of Interacting BPEL Web
Services”, International Conference on World Wide Web. May
17 - 22, 2004, New York, USA.

[10] A. Wombacher, P. Fankhauser, and E. Neuhold, “Transform-
ing bpel into annotated deterministic Finite state automata for
service discovery” Procs of ICWS04, 2004.

[11] R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed modeling
and analysis in web service compositions”, The First Interna-
tional Conference on Availability, Reliability and Security, vol.
Volume 0, pp. 840 846, 2006.

[12] E. Bayse, A. Cavalli, M. Nunez, F. Zaidi, “A Passive Testing
Approach based on Invariants: Application to the WAP”,
Computer Networks, 48, pp 247 - 266, 2005.

[13] A. Cavalli, Edgardo Montes De Oca, W. Mallouli, M. Lal-
lali, “Two Complementary Tools for the Formal Testing of
Distributed Systems with Time Constraints”, 12th IEEE Inter-
national Symposium on Distributed Simulation and Real Time
Applications, Canada, Oct 27-29, 2008.

[14] M. Lallali, F. Zaidi, A. Cavalli, “Timed modeling of web
services composition for automatic testing”, 3rd ACM/IEEE
International conference on Signal-Image technologies and
Internet-Based Systems, China, 2007.

[15] M. Lallali, F. Zaidi, A. Cavalli, “Transforming BPEL into
Intermediate Format Language for Web Services Composition
Testing”, The 4th IEEE International Conference on Next
Generation Web Services Practices, 2008.

[16] M. Lallali, F. Zaidi, A. Cavalli, Iksoon Hwang, “Automatic
Timed Test Case Generation for Web Services Composition”,
Sixth European Conference on Web Services. Dublin, Ireland,
Nov 12 - 14, 2008.

[17] T. Higashino, A. Nakata, K. Taniguchi and A. Cavalli,
“Generating Test Case for a Timed I/O automaton model”,
International Workshop on Testing of Communicating Systems.
Budapest, Sep 1999.

[18] I. Berrada and P. Félix, “TGSE : Un outil générique pour le
test”, Proc. of CFIP’2005, March, 2005.

[19] I. Berrada, “Modélisation, Analyse et Test des systems com-
municants contraintes temporelles : Vers une approche ouverte
du test”, PhD thesis of University Bordeaux 1, Dec 2005.

[20] Y. Yan, Y. Pencole, M.O. Cordier, A. Grastien, “Monitoring
Web Service Networks in a Model-based Approach”, 3rd
European Conference on Web Services, Vxj, Sweden. 14 - 16
Nov 2005.

[21] Y. Yan, P. Dague, “Monitoring and Diagnosing Orchestrated
Web Service Processes”, Proceedings of the 2007 IEEE Inter-
national Conference on Web Services, Salt Lake City, Utah,
USA. Jul 9-13, 2007.

[22] R. Heckel and L. Mariani, “Automatic conformance testing
of web services”, Fundamental Approaches to Software Engi-
neering, pp. 34-48, LNCS 3442, 2005.

[23] P. Mayer, “Design and Implementation of a Framework for
Testing BPEL Compositions”, Master thesis, Leibniz Univer-
sity, Hannover, Germany, Sep 2006.

[24] Z. Li, W. Sun, Z.B. Jiang, X. Zhang, “BPEL4WS Unit
Testing: Framework and Implementation”, Proc of the IEEE
International Conference on Web Service (ICWS’05), pp 103
- 110, 2005.

