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Saman Noorzadeh, Bertrand Rivet and Christian Jutten
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Grenoble University, Grenoble, France

ABSTRACT

This paper, investigates the use of a 3D setting for Brain-

Computer Interface (BCI) by implementing the 3D interface

for the P300-Speller device. The 3D configurations were im-

plemented using two different approaches which are called

Natural 3D and Parallel 2D. The theoretical analysis con-

cerning these two approaches are provided considering the

modifications in speed, accuracy, and capacity. The experi-

mental results on subjects who tested the 3D interfaces are

then provided to validate the theoretical analysis.

Index Terms— 3D BCI, P300-Speller Interface, Virtual

Keyboard, 3D Stereoscopic Images

1. INTRODUCTION

BCI has been commonly the most suitable application to al-

low communication, or control of external devices only based

on brain brain activities [1, 2]. These activities are recorded

non-invasively as the EEG signal [3]. P300-Speller is a

BCI device which works based on Event-Related Potentials

(ERPs) appearing in EEG signal, and has been first developed

by Farwell and Donchin [4] with an interface containing a

matrix of symbols, and sequential random flashes on rows

and columns as depicted in Figure 1.

If a user keeps a mental count of the number of the stimu-

lus flashes of a specific symbol, the intensifications of the row

and the column containing that symbol elicits a positive wave

about 300 ms after the stimulus in his/her EEG signal, which

is called P300 evoked potentials.

(a) Flash on the 4th row (b) Flash on the 2nd column

Figure 1: The classical 2D interface; the flashes of (a) and (b) indi-

cate the letter ’T’.

Most of the researches on the P300-speller have focused

on enhancing the signals by removing the artifacts [5, 6, 7],

or on classification of P300 from non-P300 evoked poten-

tials [8]. More recently, the flashing paradigm on rows and

columns has been modified, for example motion of rows and

columns is used as the stimulus instead of flashes [9]. Sim-

ilarly, others used variations on motion, colors or flash pat-

terns [10, 11, 12]. Another paradigm, called checkerboard

paradigm, is proposed in [13] in which the standard matrix of

symbols is virtually superimposed on a checkerboard to avoid

the wrong detection of a character and its adjacent one. For

almost the same reason, [14] has also proposed a new flashing

paradigm, which will be used in our 3D virtual keyboards.

We consider here the use of a 3D virtual keyboard in-

stead of the classical 2D one. Firstly, we intend to investigate

the application of 3D settings in BCI devices by verifying its

performance on the P300-Speller. This can also increase the

user’s acceptability of the device, which is a factor that has

not been taken into much consider. Secondly, considering the

virtual keyboard in 3 dimensions causes changes in flashing

paradigm and can increase the device’s speed and capacity.

This paper is organized as follow: The methods that are

used to implement a 3D virtual keyboard are presented in Sec-

tion 2. In Section 3 the theoretical analysis of the proposed

3D extensions are presented. The mentioned theories are then

evaluated according to the results obtained through the exper-

iments in Section 4. Finally, Section 5 sums up the techniques

which were presented in previous sections.

2. 3D EXTENSIONS OF P300 BASED BCI

Here, we consider modifying the interface of the P300-Speller

by expanding the 2D keyboard to 3 dimensions. Two ap-

proaches of flashing strategies are implemented and com-

pared in this paper: ”natural 3D”(section 2.1) and ”parallel

2D” (section 2.2).

2.1. Natural 3D

The natural generalization of the classical 2D interface is to

reorganize the symbols in a three dimensional matrix. This is

implemented according to 3D stereoscopic methods [15, 16,

17, 18] in 3 depth layers, and plane flashes are used as stimuli.

This configuration is reffered to as natural 3D in which each



(a) Flash on a row (b) Flash on a column(c) Flash on a depth

Figure 2: Flashes corresponding to the planes of Natural 3D inter-

face with 3 rows, 3 columns, and 3 depths.

symbol is the intersection of a row, a column, and a depth

plane (Figure 2).

2.2. Parallel 2D

Another flashing approach is considered by treating the dif-

ferent depths of the 3D keyboard as separate 2D keyboards.

Using such a strategy (denoted as parallel 2D), the flashes on

each layer are the classical row and column flashes. The depth

is coded by a delay between the stimuli onsets on the different

layers. Figure 3 illustrates this statement with two layers by

showing the stimuli timelines: the dotted line corresponds to

one of the depth levels and the continuous line corresponds to

the other one. As one can see the interlacing flashes lead to

independent or parallel layers.

Figure 3: Parallel flashes on 2 depth levels in Parallel 2D interface.

It has to be considered that the number of 2D keyboards

that can function in parallel is limited, first because of the

limited frame rate of the imaging device and secondly, the

delay between layers should not be too small for ensuring a

good detection. In this way we can avoid the wrong detection

of depth to a large amount. The flashing paradigm of [14]

is also implemented on the parallel 2D keyboard to avoid the

wrong detections between adjacent symbols.

3. THEORETICAL ANALYSIS AND COMPARISON

OF 3D INTERFACES

In this section, theoretical analysis of the proposed 3D inter-

faces is provided by comparing their accuracy (Section 3.1),

their speed (Section 3.2) and their capacity (Section 3.3).

3.1. Accuracy

Let’s consider the accuracy of the classical 2D interface as

a reference. To detect the symbol that the user intends to

spell, a permutation of flashes on all rows and columns (so

that each row and column is flashed once and only once) is

needed and is referred to as repetition. Usually one repeti-

tion is not enough for an acceptable accuracy; therefor, there

are several repetitions with different permutations. Now, let

p(R = r, C = c) denotes the probability that the row r and

the column c are jointly detected. Considering the classi-

cal 2D interface, the probability of detecting the row can be

assumed to be independent from that of the column:

p(R = r, C = c) = p(R = r)p(C = c). (1)

As a consequence, assuming that the detection probability of

a correct row and a column is equal and is denoted P ∈ [0, 1],
the accuracy of the classical 2D interface is expressed as

Acc2D = p(R = rt, C = ct) = P 2, (2)

where rt (resp. ct) is the true row (resp. column) containing

the selected symbol. In natural 3D the probability of detecting

the symbol in row plane r, column plane c, and depth plane

d, considering the same assumptions of equation (1), is given

by:

Accnatural3D = p(R = rt, C = ct, D = dt) = P 3. (3)

In parallel 2D, assuming that the depth is coded by the time

delay between layers, the probability of detecting a symbol

as the intersection of row r and column c in the layer d is

independent of d. So the accuracy is:

Accparallel2D = p(R = rt, C = ct, D = dt) = P 2. (4)

According to equations 2, 3, and 4, the detection rates of

classical and parallel 2D were estimated to be equal, and it is

higher than the estimated accuracy of natural 3D.

3.2. Number of Flashes: Speed of the Interface

Considering S as the total number of symbols on the in-

terface, a minimum of N2D flashes are required in each

repetition, to cover all rows and columns in classical 2D:

N2D =

⌈

2 × S
1

2

⌉

where ⌈·⌉ is the ceiling function. For

the proposed row-column-depth stimulation of natural 3D

interface this number would be Nnatural3D =

⌈

3× S
1

3

⌉

On

each layer of the parallel row-column stimulation (parallel

2D) with d layers, the minimum number of flashes would be:

Nparallel2D =









2×

(

S
d

)
1

2









Figure 4 compares the minimum number of flashes. As

one can see, with more than nine symbols into the interface

(S = 9), the classical 2D interface needs more flashes than the

natural 3D; and for less than 85 symbols, the parallel 2D inter-

face needs more flashes than the natural 3D. On the contrary,

the parallel 2D always requires less flashes than the classical

2D one.
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(c) Relative Speed

Figure 4: Comparison of the interfaces. Figure 4.a: relative speed F

of the interfaces defined as N × T where T is the ISI.

3.3. capacity

A more relevant performance measure to quantize the infor-

mation transfer rate (ITR) [19] is the capacity, which is de-

fined as equation (5) for a S-symbol interface.

C = log
2
(S)+Acc log

2
(Acc)+(1−Acc) log

2

(

1−Acc

S − 1

)

,

(5)

Where Acc is the accuracy of the interface. The capacity C
is expressed in bits per repetition. Due to the different num-

ber of flashes, the duration of a repetition in each approach

(classical 2D, natural 3D or parallel 2D) is different from the

other. So the comparison is more relevant considering the bit

rate B, in bits per second, defined as

B = C × F (6)

or the relative bit rate B′, expressed in bits per flash (because

of a same duration for every flash), defined as

B′ =
C

N
(7)

As shown in Figure 5, the bit rates of the natural 3D and

parallel 2D interfaces are always larger than the bit rate of

the classical 2D interface for a given accuracy. For paral-

lel 2D, this is due to the smaller number of flashes with

the same accuracy. This improvement factor is given by

N2D/Nparallel2D. However, since the relationships between

the accuracy and the marginal probability of good detec-

tion are nonlinear, the bit rate of the natural 3D interface is

only larger than the bit rate of the classical 2D interface for

large marginal probability P . This threshold decreases as the

number of symbols increases.

4. RESULTS AND ANALYSIS

The preliminary experiments with almost a small number of

subjects just intend to prove the functionality of 3D settings

in BCIs and validate the theoretical results that have been ex-

plained. Two comparisons are presented: the classification

accuracy and the capacity of the two 3D extensions.
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(b)144 Symbols
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(c) 36 Symbols
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Figure 5: Relative bit rate per flash B
′ of equation (7) against

marginal probability of good detection P (Figures 5.a, 5.b) and

against the accuracy (Figures 5.c, 5.d). In Figure 5.d, B′

natural3D =

B
′

parallel2D since Nnatural3D = Nparallel2D .

4.1. Data, Feature Extraction, and Classification

The data is collected from 16 volunteers between 22 and 34

years old, with normal stereoscopic vision and neurological

state. 8 participants have been subjected to the natural 3D

interface, and the other 8 ones to the Parallel 2D. They all

have done an experiment on classical 2D before 3D, so that

the results can be compared. For each approach there is a

train and a test session. The interfaces are implemented using

OpenGL, in 5 repetitions with ISI equal to 133 milliseconds,

and a duty cycle of 50% for the flashes. The interfaces char-

acteristics are summarized in table 1. The EEG is recorded

Interface # Symbols row× column× depth

Classical 2D 36 2× 2
Natural 3D 27 3× 3× 3
Parallel 2D 32 4× 4× 2

Table 1: Implemented Interfaces

via 16 active electrodes with g.USBamp device from g.tec.

The signal is sampled at a rate of 1200 Hz, and filtered by a

bandpass filter in the frequency band between 1 and 12 Hz

with a fourth order Butterworth filter. To enhance the signals,

the spatial filters are estimated [20, 21, 7] from the training

data. The temporally and spatially filtered signal is then cat-

egorized into two target and non-target epochs, and is used

as the two-class data to train the classifier: Bayesian Linear

Discriminant Analysis (BLDA) [22]. K-fold cross-validation

is adopted: the database is divided into 40 symbols used to

the training and 10 symbols for the tests. This partition is per-



formed randomly 2000 times for each testing configuration.

4.2. Accuracy and Marginal Probability

The classification accuracies of the two 3D extensions are

compared in Figure 6. First of all, one notices that the clas-

sification accuracy obviously increases with the number of

repetitions. Then, as expected in the theoretical section (Sec-

tion 3.1), it is worth noting that the classification accuracy of

the classical 2D is larger than the classification of the natural

3D extension, while they are the same between the classical

2D and the parallel 2D interfaces. It should be noted that

the results concerning classical 2D in different figures are the

same in average. And the small difference is due to the fact

that they are tested on different subjects.

To verify the theoretical assumptions on the marginal

probabilities, P, Figure 7 is depicted. Figure 7.a proves the

equal marginal probability hypothesis for row and column of

the natural 3D and they are similar to the marginal probability

of good detection with the classical 2D interface; however,

this is not true for marginal probability of good detection of

depth, which is smaller than that of row

Regarding Figure 7.b, for parallel 2D the two assumptions

regarding the marginal probabilities are well validated: first,

these probabilities are similar on rows and columns, and also

similar to that of classical 2D. Second, the marginal proba-

bility of detecting the depth is equal to one after at least 3

repetitions. This proves that the depth is well coded by the

flashing paradigm.

4.3. Capacity

Figure 8 compares the capacity of 3D approaches with the

classical 2D. For a better understanding, the figures show di-

rectly the difference of new interfaces’ capacities with the

classical 2D’s. It is depicted that the capacity of the paral-

lel 2D interface is higher than that of classical 2D which is

confirmed by the theoretical analysis (Figure 5). The vari-

ance of this result can be interpreted as the visual effect while

looking at 3D images [23].
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Figure 6: Accuracy against the number of repetitions. The median

accuracies are plotted, and the error bars extend from the 10% quan-

tile to the 90% quantile.
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Figure 7: Marginal probability (P ) against the number of repetitions.

However, Figure 8.a shows that the classical 2D has

higher capacity comparing the natural 3D. As it is already

proved that the natural 3D has less accuracy comparing clas-

sical 2D (Figure 6.a), it is natural that the capacity does not

follow Figure 6.d which assumes the same accuracy for all

approaches.

5. CONCLUSION

The paper presented two 3D extensions of the classical 2D

interface represented in [4]. The methods are called Natural

3D and Parallel 2D. Experiments on 16 subjects showed that

the proposed interfaces have several advantages over the clas-

sical 2D interface. One of these advantages is the ergonomics

of the device. according to a survey from the subjects, we

found that 75% of the subjects preferred 3D keyboards to 2D

because of its comfort and higher ergonomic features.

The next advantage is the speed which is proven to be

higher in both proposed interfaces comparing classical 2D,

since they need smaller number of flashes.

As the modification of the P300-Speller is done just on

the interface part, we do not expect any accuracy improve-

ment in the theoretical part, and also this is confirmed in the

experiments. This accordance of theoretical results with the

experimental ones is missing only for the marginal probabil-

ity of detecting the depth which was not equal to detection of
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Figure 8: Comparison of relative bitrates. B
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Max is the maximum

bitrate assuming a perfect accuracy (i.e. Acc = 100%).



other dimensions in natural 3D.

Finally, with the analysis of the capacity of the new inter-

faces, parallel 2D approach showed a better performance than

the other ones.

The validation of theoretical results along with the in-

crease of speed and accuracy mostly in the parallel 2D in-

terface, can prove the functionality of the 3D settings not

only in the p300-Speller device, but also in other BCI tech-

nologies which require more ergonomic features, as in virtual

worlds [24].
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