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Lift forces in granular media

François Guillard,a) Yoël Forterre,b) and Olivier Pouliquenc)

Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue Enrico Fermi,
13453 Marseille Cedex 13, France

(Received 20 September 2013; accepted 17 March 2014; published online 3 April 2014)

The paper presents an experimental and numerical study of the forces experienced

by a cylinder moving horizontally in a granular medium under gravity. Despite

the symmetry of the object, a strong lift force is measured. Whereas the drag force

increases linearly with depth, the lift force is shown to saturate at depths much greater

than the cylinder diameter, and to scale like the buoyancy with a large amplification

factor of order 20. The origin of this high lift force is discussed based on the stress

distribution measured in discrete numerical simulations. The lift force comes from

the gravitational pressure gradient, which breaks the up/down symmetry and strongly

modifies the flow around the obstacle compared to the case without pressure gradient.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869859]

I. INTRODUCTION

Forces experienced by objects moving in a fluid is a classical problem in fluid mechanics. It

has been extensively studied in the case of a newtonian fluid. The case of non-newtonian fluids

has attracted attention more recently, and researches has been conducted by dragging objects in

polymers,1, 2 colloı̈dal suspensions,3 gels4 or foams.5 The aim of the work presented in this paper is

to investigate the case of an object moving in a granular medium. This problem, which is of practical

importance in many applications (stirring,6 mining, mixing, problems of impacts,7 locomotion in

sand8), is also of fundamental interest to probe the rheology of particulate materials.9, 10

When studying the forces experienced by an object in a flow, the total force is usually split in

two contributions: a drag force parallel to the direction of the mean flow, and a lift force perpen-

dicular to the flow. The drag force in granular media has been studied in detail by many authors in

different configurations, with the obstacle dragged either horizontally11, 12 or vertically as in impact

problems.13–15 A main result is that at low speeds a quasi static regime exists, for which the drag is

independent of the velocity and proportional to the hydrostatic pressure times the surface area of the

object.16–19 The robustness of this frictional scaling has been tested by changing the geometry of the

objects,20 by probing the effect of the boundaries of the vessel containing the medium,21 by chang-

ing the effective gravity22 or by varying the initial volume fraction.19 At higher velocities such as

encountered in impact problems, an inertial contribution is observed in addition to the frictional one,

which scales as the square of the velocity.15 By contrast, very few studies address the question of the

lift force in granular media. Percier et al.23 studied the lift experienced by an inclined plate moving

at the free surface of a granular medium. The case of an object entirely plunged into the packing

has been studied first by Ding et al.24 in the quasi-static regime and more recently by Potiguar and

Ding25 at higher velocities. In their experiments and simulations, Ding et al.24 have dragged different

objects horizontally under the free surface. They have shown that even for a symmetric object like

a cylinder, a strong lift force exists. A main result of their study is that the lift increases linearly

with the depth, like the drag force. The authors have proposed a phenomenological model, in order

to compute the lift on obstacles of various geometries. They assume that the lift created by each
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elementary surface at the surface of the object is the same as a plate moving alone at the same depth

and at the same angle of attack. This model successfully helps in understanding the forces developed

by sand lizard during its motion26 and for designing the foots of robots walking on sand.27

The results obtained by Ding et al.24 contrast with our common knowledge of lift in fluid

mechanics. The observation of a lift on a cylinder shows that in a granular medium no geometrical

asymmetry is necessary to measure a lift, which is not true in newtonian or non-newtonian fluids

such as polymers, gels or foams. If not from the shape of the object, the top/bottom asymmetry

necessary to observe a lift has to come from the material itself. In a granular medium, the pressure

gradient induced by gravity could be the source of this asymmetry. The flow of granular media being

controlled by a frictional rheology, i.e., the stresses are proportional to the pressure, the response

of the medium in presence of gravity is no longer invariant along the vertical. In this case, the lift

force should depend on the pressure gradient and not on the depth, like the buoyancy force in fluid

mechanics. This seems to contradict the observations of Ding et al.,24 who report a lift force that

increases linearly with depth. However, their experiments being carried out at moderate depth, the

presence of the free surface could break the top/bottom symmetry as well. What happens when the

object is dragged at larger depths, far from the free surface? Does the lift still increase with depth or

saturate as expected from the above symmetry arguments?

Clarifying these issues and investigating in detail how a lift force develops when an object moves

in a granular medium is the goal of this study. The paper is organised as follows. Section I is dedicated

to the experimental study performed on fixed cylinders buried in a rotating tank filled with glass

beads. The setup is described and the measurements for both the drag and lift forces are analysed in a

wide range of cylinder size and depth. The observation of a strong lift force independent of the depth

is discussed and a scaling law is evidenced. Section II is dedicated to simulations using a discrete

element method. The results are shown to be quantitatively in agreement with the experiments and

details about the flow perturbation around the obstacle are discussed. Section III is a discussion

about the origin of the lift and an attempt to understand the scaling observed in both the experiments

and the simulations based on the analysis of the stress distribution around the object. Conclusions

and perspectives are given in Sec. IV.

II. EXPERIMENTS

A. Experimental setup

The experimental setup is sketched in Fig. 1. It is composed of a tank 30 cm in diameter filled

with 23 cm of glass beads 530 ± 30 μm in diameter and density ρg = 2.5 g cm−3. In such a wide

container, no Janssen effect is expected to occur. The tank is fixed on a rotating table and rotates

around its vertical axis. All our experiments are performed at a rotation speed equal to 0.8 rpm,

which corresponds to the quasi-static regime for which we have checked that the measured forces

are independent of velocity.17 The obstacle is a steel cylinder of length L and diameter D, which

is buried at the centre of the tank, at depth h. The cylinder is kept static and horizontal by a 3 mm

vertical rigid rod fixed at the top of the experiment to a torque meter (Meiri CS1). The measured

torque M experienced by the cylinder when the tank is rotating provides a measurement of the drag

force using the following relation28 (see caption of Fig. 1):

Fdrag =
4

L
M. (1)

The torque meter is itself fixed on a high precision weighting scale (Mettler Toledo XS 6002 S),

which gives the vertical force experienced by the cylinder, i.e., the lift force Flift. The whole set-up

(cylinder, support, and sensors) is fixed on a motorised vertical translation stage to adjust the depth

h. Note that in order to get information on the forces exerted on the horizontal cylinder only, the

contribution of the vertical support alone is systematically subtracted from the total torque and

vertical force when computing the drag and lift forces (the contribution of the support represents

less than 5% of the total forces).
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FIG. 1. Sketch of the experiment. A static cylinder is buried in a rotating tank filled with glass beads. A torque meter and

a precision weighting scale record the drag and lift forces on the cylinder. Note that each half of the cylinder experiences a

force equal to Fdrag/2, which implies Eq. (1).

The experimental procedure is the following. The grains are first poured in the tank and stirred

by hand. The cylinder is then introduced in the packing and the tank is put in rotation. Figure 2

presents the time evolution of both the drag and lift forces on the cylinder during several rotations.

Initially, both the torque and the lift increase and reach a plateau. The drag then dramatically

drops after half a rotation, when the cylinder goes through its wake.28 This drop of the drag force

after half a turn has been studied in detail by Guillard et al.28 and comes from the development

of a structure in the medium as the cylinder continuously passes through its own wake. Here we

focus on the first half-turn, when the medium is not affected by the motion of the cylinder. The

forces are then recorded during the first half-rotation only, and time-averaged in the plateau region

(Fig. 2). Moreover, to avoid any bias in the structure of the medium, the direction of the rotation

is systematically reversed between two successive experiments. A remark is that the measurements

obtained just after the tank has been filled fluctuates from one run to another. However, after several

runs performed at different depths h, the medium no longer evolves, and measurements are then

highly reproducible and independent of the filling procedure. All the data presented in the paper are

obtained in this steady regime.
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FIG. 2. Time evolution of the drag and lift forces on a cylinder D = 4 mm and L = 12 cm, at depth h = 10.3 cm and angular

velocity � = 0.8 rpm. The gray region corresponds to the averaging window. Dotted lines are half rotations.
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B. Experimental results

Figs. 3(a) and 3(b) show the drag and lift forces measured on three cylinders having the same

diameter D = 4 mm but different length (L = 6, 9, and 12 cm). As observed in several previous

studies,17, 19 the drag force is proportional to the surface and to the depth h of the object, confirming

that no Janssen effect occurs in our configuration. In Fig. 3(c) the drag force rescaled by the apparent

surface Fdrag/DL is plotted as a function of the hydrostatic pressure ρgh, with ρ = 1.5 g cm−3 the

density of the granular medium (ρ = φρg with φ ≃ 0.6 the volume fraction of the medium). The

collapse of the data on a line shows the following scaling for the drag force:

Fdrag = Cd ρgh DL , (2)

with Cd ∼ 13. It is interesting to note that although the scaling is intuitively given by a friction

criterium (a force proportional to the ambient hydrostatic pressure times the surface) the coefficient

of proportionality is large. Such a large amplification factor of the drag forces in granular media is

recovered in various configurations and depends on the geometry of the system as well as on the

packing fraction and frictional properties of the particles.8, 18, 29

The remarkable result concerns the lift force plotted in Fig. 3(b). First of all, it must be noted that

the vertical force points upward (hence its name “lift”), which means that it tends to push the object

outside the granular bed. Second, the lift force shows a very different behaviour than the drag force.

Close to the free surface, the lift force increases with depth as observed in Ding et al.24 However, at

larger depths, the lift saturates and reaches a constant value independent of the depth. This saturation

value of the lift F sat
lift increases when increasing the length of the cylinder (Fig. 3(b)). Based on a

dimensional argument, a scaling can be proposed for the lift force. Far from the free surface, the only

source of asymmetry that can induce a lift force is the gravitational pressure gradient ∇p = ρg. As

a result, one expects the lift force to scale like the buoyancy force : ∇p × Volume = ρg π (D/2)2L.

In Fig. 3(d), we have plotted the ratio between the lift force and the buoyancy as a function of the

depth. The data obtained for cylinders having different lengths collapse on a single curve.

To further investigate the robustness of this scaling law, we have carried out systematic experi-

ments varying both the diameter and the length of the cylinder. Fig. 4 is a summary of all our results

showing how the lift force rescaled by the buoyancy varies as a function of h/D, the depth over

the cylinder diameter. For all cylinders, the saturation of the lift force at large depths is recovered.

However, the normalisation by the buoyancy force is not sufficient to capture the whole dependency

of the lift force on the diameter. Data for small cylinders deviate from the main trend, with a higher

plateau value reached at a larger depth. In order to analyze the influence of the diameter D, we have

plotted in Fig. 5 the plateau value of the lift force F sat
lift rescaled by the buoyancy as a function of

D/d, the cylinder diameter rescaled by the grain diameter. A master curve is obtained, giving the

FIG. 3. Drag (a) and lift (b) forces as function of depth h measured with cylinders of diameter D = 4 mm and various lengths

L. Each point is an average of 4 measurements, error bars indicating their minimal and maximal values. (Inset) Scaled drag

(c) and lift (d) forces for the same cylinders (see text).
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FIG. 4. Lift force rescaled by the buoyancy for cylinders of various lengths L and diameters D as function of the rescaled

depth h/D. Each point is an average of 4 measurements, error bars indicating minimal and maximal measured values are

displayed only for D = 3 mm for clarity.

following scaling of the saturated lift force as a function of the parameters:

F sat
lift ∼ Cl (D/d) ρg π

D2

4
L . (3)

The factor Cl(D/d) is a function of the ratio of the obstacle diameter relative to the grain diameter,

and tends to a constant Cl ≈ 20 when D/d > 15. This means that for large obstacles compared to

the grain diameter, the lift force is equal to 20 times the buoyancy force, a surprisingly high force.

For smaller diameter this ratio increases and the lift force can reach values as high as 60 times the

buoyancy for cylinders having a diameter less than 5 grain diameters. Such a finite size effect has

been observed in previous studies for the drag force, which is found to be higher for small objects

than for larger ones.13, 17 We observe the same effect for the lift force.

This finite size effect is also observed when studying the critical depth hcrit at which the lift

force saturates to its plateau value (see Fig. 3(d)). Fig. 6 shows that for large cylinder diameters

(typically D/d > 15), the critical saturation depth hcrit is independent of the grain size and scales

as hcrit ≈ 10D. However, for cylinder diameter close to the grain diameter, the saturation depth

increases strongly: typically, a 5 grain diameters cylinder needs to reach a depth equal to 40 times

its diameter for the lift force to saturate.

FIG. 5. Saturated lift force scaled by buoyancy as function of the ratio between the cylinder diameter to the grain diameter

D/d, both in experiments and discrete simulations. Points are average of Flift in the saturated region, error bars are maximal

and minimal Flift in this region. The lines are guides for the eyes.
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In conclusion to this experimental section, we have shown that a cylinder moving horizontally

in a granular medium not only experiences a drag force, but also a very high lift force, despite the

top/bottom symmetry of the object. Close to the free surface, the lift force increases with depth, as

already observed in the experiment by Ding et al.24 However, at large depths, we found that the lift

saturates and scales with the buoyancy force, its order of magnitude being equal to 20 times the

buoyancy in our experiment with glass beads.

To better understand how this lift force arises from the stress distribution applied by the grains

on the moving cylinder, and since it remains a challenge to probe experimentally the local stress

distribution in a granular medium, we perform in Sec. III numerical simulations using a discrete

element method.

III. NUMERICAL SIMULATIONS

A. Numerical method

To perform numerical simulations of a cylinder moving in a granular medium we have used the

open source software LIGGGHTS.30 The software is based on a molecular dynamics method and

solves the equations of motion for the dynamics of soft, inelastic, frictional spheres. Details of the

simulation method are given in Appendix A. The configuration studied is sketched in Fig. 7. The

simulation space is a 3D box with periodic boundary conditions along the x and y directions. Gravity

points towards −z. The size of the box is 140 × 10 × 120 particles in the x, y, and z direction. At the

beginning of the simulations, a monolayer of fixed spheres is created at the bottom of the simulation

box. Grains are then poured in the box, until the surface reaches the desired vertical position for

the cylinder. A cylinder of diameter D is then introduced with its axis aligned along the y direction.

The cylinder is treated as a fixed wall and remains static during the simulation. Once the cylinder

has been created, more grains are poured in the box up to the desired level. To create the relative

motion between the cylinder and the granular medium, a velocity U0 is then prescribed to the bottom

monolayer, which entrains the whole granular bed. Simulating the flow when the cylinder is deeply

buried in the packing is expensive in term of CPU time, due to the large amount of grains above

the cylinder. In order to simulate the flow at high pressure level without increasing the height of the

packing and spending too much time, the following trick has been used. Before starting the motion,

when the packing has been created, an additional square lattice monolayer of heavy grains of density

ρ∗
g higher than ρg is placed at the top of the packing, with typically 60 ρg < ρ∗

g < 210ρg . Those

grains are free to move vertically but their horizontal velocity is imposed and equal to the bottom
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FIG. 7. Sketch of the molecular dynamic simulation geometry.

velocity U0, which, far from the cylinder, induces a motion of the medium as a block. With this trick,

the cylinder feels an ambient hydrostatic pressure corresponding to a column of equivalent height

h̃ = h + πd
6

ρ∗
g

ρ
. This procedure is used with h/D = 16, corresponding at a cylinder at the center of

the granular bed.

In this study, we have performed three kinds of numerical experiments. (i) The first one cor-

responds to the “normal” situation that mimics the experiments with no heavy grains at the top.

This simulation was essentially used to study moderated pressure levels. In this case, the effective

depth h̃ is simply the real distance h from the centre of the cylinder to the free surface: h̃ = h. (ii)

The second kind of simulations was used to study high pressure levels by adding the top heavy

monolayer, giving an equivalent h̃ = h + πd
6

ρ∗
g

ρ
, with h/D = 16. (iii) Finally, we have also performed

simulations where gravity only applies on the top heavy monolayer but is switched off for the grains

in the bulk. This latter case provides an interesting way to probe the flow in presence of a mean

pressure equivalent to a column of equivalent height h̃ = πd
6

ρ∗
g

ρ
but without pressure gradient.

The typical time of each simulation corresponds to a relative displacement between the cylinder

and the granular medium equal to a 40 cylinder diameters (a typical run cost 4.5 × 105 s total CPU

time, meaning 15 h in real time on the parallel computer from IDRIS). A steady regime is typically

reached after the cylinder has moved 2 diameters. All the quantities presented in the following are

time averaged in the steady regime.

B. Averaged drag and lift forces

Intensive simulations have been carried out for different cylinder diameters and different equiv-

alent depths. We first report results for the average forces experienced by the obstacle. Fig. 8 shows

how the drag and the lift forces vary with depth in the simulations. The same behaviours as in the

experiments are observed. Fig. 8(a) shows that the ratio of the drag force over the surface Fdrag/DL

varies linearly with the effective hydrostatic pressure ρgh̃. The coefficient of proportionality between

the rescaled drag force and the hydrostatic pressure in the simulations (Cd ∼ 10) is also similar as in

the experiments. It is interesting to notice that no difference is observed between the case with and

without pressure gradient, indicating that the drag is mostly controlled by the mean pressure level.

The simulations of the lift force also reproduce well the results observed in experiments. The lift

force first increases and saturates at equivalent depths large compared to the cylinder diameter. The

interesting point is that, unlike the drag force, the presence or not of a pressure gradient has a strong

influence on the lift force: no significative lift is obtained for the case without pressure gradient,

indicating that the origin of the lift is the pressure gradient.

Quantitatively, the lift force measured in the simulations is close to the experimental data for

large cylinders, but a systematic deviation is observed for small diameters as shown in Fig. 5.
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FIG. 8. Simulated drag (a) and lift (b) forces measured for a cylinder D/d = 3.3 using the 3 different ways of changing the

effective depth h̃. Error bars are standard deviation on 4 runs.

The lift rescaled by the buoyancy force is always 20% to 50% less in the simulations than in the

experiments. The discrepancies may be attributed to the difference in the geometry (a rotating device

in the experiment versus a translating object in the simulation), to the choice of the contact model,

or to slight differences in the initial state of the packing (volume fraction, polydispersity). However,

qualitatively, all the features observed experimentally are recovered in the simulations showing that

the main feature, i.e. the saturation of the lift force with depth, is a robust effect.

C. Flow around the obstacle

To understand the origin of the lift force and its saturation observed at large depth, we first

analyze the properties of the flow around the obstacle. The discrete simulations give access to the

particle velocities and to the inter-particle contact forces, from which the continuous velocity field

and the stress field can be computed using a coarse graining procedure described in Appendix A.

Fig. 9 presents successively the pressure field (a,b), the velocity field in the frame moving with

the obstacle (c,d), and the velocity field in the frame moving with the particles far away from the

obstacle (e,f). For each case, we compare the normal configuration where the obstacle moves in the

presence of the gravity field (right), with a case where the obstacle experiences the same effective

mean pressure but without gravity, i.e. without any pressure gradient (left). From these figures, the

crucial role of the pressure gradient in the development of a lift force is evident. Without pressure

gradient, the flow and pressure fields exhibit a top/bottom symmetry as expected. When the pressure

gradient is switch on, the flow and pressure fields become asymmetric.

We first analyse the pressure field. In absence of gravity, a high pressure region develops in

front of the obstacle and a low pressure region at the back (Fig. 9(a)). When gravity is switch on

(Fig. 9(b)), the pressure field is deformed and the high and low pressure zones are no longer aligned

with the central horizontal line. The high pressure region is slightly tilted downward and the low

pressure zone at the rear is tilted upward. The velocity field is also affected by the pressure gradient.

Comparing Figs. 9(c) and 9(d), one observes that when a pressure gradient exists, particles are more

inclined to pass above the obstacle (the central line is deformed upward) and move faster above than

below compared to the symmetric case. When looking at the velocity field in the frame moving with

the grains far away from the cylinder (Figs. 9(e) and 9(f)), one observes that the shape of the zone

affected by the moving obstacle becomes asymmetric in presence of gravity, with a larger extension

above than below the cylinder. The role of the pressure gradient thus appears to be more subtile than

simply adding a linear vertical variation of the stress, as it considerably affects the flow around the

cylinder.
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FIG. 9. Discrete numerical simulations for a cylinder of diameter D/d = 3.3 located at an effective depth h̃/D = 16. Figures

on the left (resp. on the right) correspond to simulations without (resp. with) pressure gradient. (a,b) Pressure field. (c,d)

Velocity field in the frame of the cylinder showing the magnitude of the velocity and the streamlines. (e,f) Velocity field in

the frame of the grains far away from the cylinder.

IV. DISCUSSION

Both the experiments and the simulations presented above show that a cylinder moving at large

depth in a granular medium under gravity experiences a strong lift force, which is independent of

the depth and scales like the buoyancy. The striking result is that this lift force is equal to more

than 20 times the common Archimedes force in fluid mechanics. To our knowledge, such a lift force

induced by motion on a symmetrical object is peculiar to granular materials and has no equivalence

in newtonian or non-newtonian fluids.

To understand the origin of this lift, it is interesting to compare how the efforts are distributed

at the surface of the obstacle in the case without and with gravity (i.e., without or with pressure

gradient). Fig. 10 is a qualitative picture of the scenario. When a cylinder moves in a granular medium

under a mean pressure P0 but in absence of pressure gradient (no gravity), a strong asymmetry exists

between the front and the rear as observed in Fig. 9(a), with a very large overpressure about 15

times the mean pressure level at the front. In this case both the top and bottom half of the cylinder

are submitted to strong but opposite net vertical forces, resulting in no net lift force on the cylinder.

When a pressure gradient is present, one expects from the frictional rheology of granular media

that the stress on the cylinder scales with the pressure level. Since the top and bottom parts feel a

different hydrostatic pressure due to gravity, the pressure on the lower front quarter should be larger
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g=0 g=0

FIG. 10. Schematic forces on each quarter of a cylinder in a granular flow, either with or without pressure gradient.

than on the upper front quarter, inducing a net lift force. In this picture, the lift force comes from

two factors: (i) the large overpressure that develops at the front of an object moving in a granular

medium (left/right asymmetry) and (ii) the top/bottom asymmetry induced by the gravity.

In order to more precisely test this qualitative argument, we have computed the stress distribution

on the cylinder from the discrete forces applied by the grains in contact with the cylinder (see

Appendix A). Fig. 11(a) shows the radial distribution for both the normal stress σ n (thick black

line) and the tangential stress σ t (thin gray line) for a case with gravity (solid line) and without

gravity (dotted line). The first important observation is that the tangential stress is always one order

of magnitude smaller than the normal stress and thus contributes to less than 10% of the total force

experienced by the cylinder. In the following discussion, we will thus focus only on the normal stress

distribution σ n(θ ) around the obstacle.

When gravity is zero and no pressure gradient exists, the normal stress distribution is symmetric

around the center line of the cylinder, with a maximum at the front (θ = 0) equal to 15 times the

confining pressure P0 and an almost vanishing value at the rear (θ = π ) (Fig. 11(c)). By increasing

the confining pressure (i.e., the equivalent depth) (Figs. 11(b) and 11(e)), one observes that this

symmetric distribution increases linearly with the confining pressure, as expected from the frictional

rheology. One can then write σ
g=0
n (θ ) = ρgh̃σ̃

g=0
n (θ ) = P0σ̃

g=0
n (θ ) with the normalised distribution

σ̃
g=0
n (θ ) being independent of P0 (Fig. 11(d)).

When gravity is switched on, the distributions become asymmetric (Fig. 11(b)): the normal

stress becomes higher in the bottom front quarter (0 < θ < π /2) and lower in the top front quarter

(−π /2 < θ < 0). This asymmetry induces the net lift force. Qualitatively, the simple picture of

Fig. 10 is then correct: the lift arises from an increase of the normal stress on the bottom front

quarter. One can wonder if this asymmetry of the stress distribution in the presence of gravity is
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FIG. 11. (a) Normal and tangential stress distribution for a cylinder D/d = 3.3 and h̃/D = 16. (b) Normal stress distribution

at various effective depth around a cylinder D/d = 3.3. Dotted lines are with g = 0 (no pressure gradient). Insets: (c) and (e)

magnification of the rear part of the cylinder; (d) normal stress scaled by the hydrostatic pressure.
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simply given by the stress distribution without gravity, weighted by the hydrostatic pressure level. In

other terms, it is tempting to assume that the forces on each elementary surface around the obstacle

only depends on the local hydrostatic pressure and is the same with or without pressure gradient.

Under this assumption, the normal stress distribution σ n(θ ) around the obstacle in presence of gravity

would be given by the normalised stress distribution without gravity σ̃
g=0
n (θ ) multiplied by the local

hydrostatic pressure as

σn(θ ) = σ̃ g=0
n (θ )ρg

(

h̃ +
D

2
sin θ

)

, (4)

where h̃ is the equivalent depth at the centre of the cylinder. In this case, the lift force would be simply

given by the integral Flift = (ρgL D2/4)
∫ π

−π
σ̃

g=0
n (θ ) sin2 θdθ since

∫ π

−π
σ̃

g=0
n (θ ) sin θdθ = 0. This

approach thus predicts that the lift scales like the buoyancy, in agreement with the experiments

and simulations. However, this simple description fails in quantitatively predicting the lift force.

Using the distribution σ̃
g=0
n measured in the simulation without gravity (Fig. 11(d)), one find

Flift/(πρgL D2/4) ≃ 3.6, which is one order of magnitude lower than the measured lift force, equal

to 30 times the buoyancy in this case. The discrepancy can also be evidenced by directly looking

at the asymmetric part of the distribution. Fig. 12 shows the difference σn − σ
g=0
n normalized by

ρgD for the three equivalent depths of Fig. 11(b). As in the simple model, the three curves roughly

collapse, showing that the asymmetric part of the distribution does not scale with the mean pressure.

However, the asymmetric contribution predicted by Eq. (4) and shown by the dotted line in Fig. 12

is one order of magnitude smaller than the measured ones.

The important result of this analysis is then that the angular stress distribution on the obstacle is

the sum of a symmetric part proportional to the mean pressure or equivalently to the depth, which is

responsible for the drag force but do not contribute to the lift, and a asymmetric part which does not

depends on the mean pressure and induces lift. However, the asymmetry in the stress distribution

cannot be understood by a simple weighting of the stress by the local hydrostatic pressure, but results

from a more complex modification of the whole flow around the obstacle induced by the pressure

gradient. It is interesting to note that the splitting of the stress between a symmetric part proportional

to depth and an asymmetric part independent of depth can be rationalised in an asymptotic analysis

presented in Appendix B. In this analysis, the small parameter is ǫ = ρgD/P0 = D/h̃, the typical

pressure variation on the size of the cylinder over the mean pressure, and one assumes that the

rheology is given by a frictional criterium.

Before concluding, it is interesting to discuss our observations in the light of the results previ-

ously obtained by Ding et al.24 A first result in their study is that the lift force varies linearly with
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FIG. 12. Angular distribution of the difference between pressure with and without bulk gravity σn − σ
g=0
n for 3 effective

depths.
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U–U /U0 0
U /U0

(a) (b)

FIG. 13. Discrete numerical simulation for a cylinder of diameter D/d = 3.3 located at a depth h/D = h̃/D = 5, without

overpressure. The dashed black line indicates the free surface. (a) Velocity field in the frame of the cylinder showing the

magnitude of the velocity and the streamlines. (b) Velocity field in the frame of the grains far away from the cylinder.

the depth like the drag force. Our experiments show that this is only true when the object moves

close to the free surface, at a distance less than 15 cylinder diameters, and that the lift saturates at

larger depth. The linear increase of the lift is thus a surface effect, as shown in Fig. 13, where it

becomes clear that at low depth the perturbed zone around the cylinder reaches the free surface and

deform it. The second result of Ding et al.24 is a phenomenological model to compute the lift force

on objects of arbitrary shape from the knowledge of the force on plates at various inclinations. The

basic assumption in the model is that each surface element of the obstacle experiences the same lift

force as a plate having the same angle of attack and weighted by the local hydrostatic pressure. This

model predicts the drag and lift forces close to the surface for complex objects and has been applied

with success to describe legged locomotion in the framework of resistive force theory.27 However, if

we use data of Ding et al.24 for the forces on plates in our case, the saturation of the lift force at large

depths is not recovered. One may argue that the measurement on plates was done close to the free

surface and that measurements at larger depths may reconcile both regimes. However, the fact that,

in our study, the lift force cannot be deduced from the simple multiplication of the stress distribution

obtained without gravity by the local hydrostatic pressure suggests a more complex picture. The

presence of the pressure gradient at the origin of the lift actually perturbs the flow at the scale of

the whole object, which precludes the estimate of the lift just from local measurements on plates.

Understanding why the resistive force theory works well in shallow condition and fails for deeply

buried objects remains an open issue.

V. CONCLUSION

In conclusion, we have shown that a cylinder moving in a granular bed experiences a strong

lift force, which saturates at large depths. The lift far from the free surface is proportional to the

buoyancy of the object, but with a high amplification factor, higher than 20. The origin of this

strong lift force has been studied using discrete numerical simulations and shown to arise from the

gravitational pressure gradient, which breaks the up/down symmetry. However, the analyse of the

stress distribution around the object reveals that the lift cannot be understood by a simple weighting

of the stress by the local hydrostatic pressure, but results from a more complex modification of the

flow around the obstacle. These results could have implications for models describing the forces

acting on objects buried in granular media such as in animals and robots locomotion.26, 27

Our study also open new perspectives for the basic understanding of granular flows. First, it

would be interesting to address the question of drag and lift forces in granular media in the framework

of continuum modeling. We have seen that the existence of a strong lift force is specific to granular

media and related to the frictional behaviour of these systems. The data presented here could serve

as a base to test the relevance of rheological models proposed in the literature, in the spirit of recent

studies who implemented viscoplastic rheologies31 in numerical codes.32–34 Another interesting

perspective would be to extend the study of forces in granular media to objects immersed in granular

sheared flows and not only in static piles. In fluid mechanics, it is well known that gradients of shear
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may induce net forces on particles, a question that would be relevant in the context of granular media

and the problem of the segregation of large objects.35, 36
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APPENDIX A: SIMULATION METHOD

The contact model used in the DEM simulations is a Hertzian model with friction and

dissipation,30, 37, 38 but with no rolling friction nor cohesion. More precisely, for two particles of

diameter d and mass m separated by a distance r, one defines the normal direction as the axe joining

the centre of the particles, the tangential direction being in the plane perpendicular to that direction.

The force is then zero when r > d. For r < d, one can define the normal overlap δn = d − r, and the

tangential overlap δt which is the relative tangential displacement of the particles since the beginning

of the contact. The force is then decomposed in its normal part Fn and the tangential part Ft:

Fn = knδn + γnv
rel
n

Ft = ktδt + γtv
rel
t if |Ft | < μg |Fn| (A1)

= μg |Fn| else

in which vrel
n and vrel

t are the normal and tangential components of the relative velocity of the

particles at the contact points. The constant μg is the friction coefficient and the parameters

kn, kt, γ n, γ t are function of the material properties and of the overlaps δn and δt as given in

Table I. Note that the coefficients corresponding to particle–particle contacts are slightly different

than particle–cylinder contact, the last one being treated as a contact between a sphere and an infinite

plane.

The particles used in the simulation are d = 1.5 mm in diameter, with density equal to

ρg = 2.5 g cm−3. The contact interaction between particles and between the particles and the

obstacle are characterized by a Young modulus equal to E = 5 × 106 Pa, a Poisson ratio of ν = 0.45,

a coefficient of restitution e = 0.6, and a coefficient of friction μg = 0.5. These values are classical

values used in MD simulations to model the flow of glass beads.39 Our choice to use dimensional

quantities instead of dimensionless variables in the simulations is motivated by the fact that we

have performed simulations both with and without gravity. The two cases corresponding to different

pressure scales, it turns out to be easier from a simulation point of view to use dimensional quantities

and use dimensionless quantities afterwards when analyzing the results.

TABLE I. Expressions and values of the coefficients of the contact force model used in the simulation. Here

β = ln(e)√
ln2(e)+π2

.

Particle–particle Particle–cylinder

Coefficient expression Value expression Value

kn/
√

δn = k∗
n

E

3(1−ν2)

√
d 81 × 103 N m− 3

2
2E

3(1−ν2)

√
d/2 114 × 103 N m− 3

2

kt /
√

δn = k∗
t 3 1−ν

2−ν
k∗

n 86 × 103 N m− 3
2 3 1−ν

2−ν
k∗

n 122 × 103 N m− 3
2

γn/δ
1/4
n −

√

5
2
β
√

mk∗
n 0.15 kg s−1 m− 1

4 −
√

5β

√√
2mk∗

n 0.26 kg s−1 m− 1
4

γt/δ
1/4
t −

√

5
3
β
√

mk∗
t 0.13 kg s−1 m− 1

4 −
√

10
3

β

√√
2mk∗

t 0.21 kg s−1 m− 1
4
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Using this contact force model, the time evolution of the motion of the particles is integrated

using a Verlet algorithm with a constant time-step. The typical time-step is 10−5 s.

1. Coarse-graining method

a. Velocity field

The continuum velocity field is obtained from the discrete positions xi and velocities vi of all

the Np particles using the coarse-graining method developed by Glasser et al.10, 40 The idea is to do

a spatial averaging around points in the simulation space. The typical grid of points we use is 120

× 3 × 120 points in the simulation space. The averaging window is a sphere of radius R centered at

point x. The mean velocity is then given by

v(x) =
∑Np

i=1 vi × W(xi , x)
∑Np

i=1 W(xi , x)
, (A2)

where W(xi , x) is the averaging function: W(|xi − x| < R − d/2) = 1/6πd3 and W(|xi − x|
> R + d/2) = 0. In the simulations we use R = d.

b. Stress field

The stress tensor is computed using the same procedure from the forces fi j between particles

and is given by

σ (x) =
1

2

Np,Np
∑

i, j,i �= j

fi j ⊗ xi j W(xi j , x), (A3)

where xi j = x j − xi and W is the fraction of the contact vector xi j inside the averaging region.10, 40

Note that the kinetic part of the stress tensor is negligible in the quasi-static regime studied here.

These fields are then averaged in time.

c. Angular distribution of the stress on the cylinder

To compute the stress on the cylinder, we extract for all the Npc contacts particle–cylinder, the

radial position of the contact points θ i and the force fi at the contact. The perimeter is divided into

M points at angles θm = (m + 1/2) × 2π /M, m ∈ {0..M − 1}. The mean force f(θm) at point m is the

average of the contact forces weighted by a gaussian function of mean θm and standard deviation ς .

This force is also averaged on the y direction and temporally:

f(θm) =
Npc
∑

i=1

√
2π

Mς
exp

(

−
(θi − θm)2

2ς2

)

fi . (A4)

We typically used ς = 8◦ and M = 64. The normal and tangential stresses σ n and σ t are given by:

σn(θm) = f(θm ).n

L Dπ/M
and σt (θm) = |f−(f(θm ).n)n|

L Dπ/M
with n = (cos θm, sin θm).

APPENDIX B: ASYMPTOTIC ANALYSIS

We show in this appendix that the stress distribution around a cylinder immersed at large depth

in a granular medium can be split between a symmetric part proportional to the pressure and an

asymmetric part proportional to the gradient of pressure. To this end, we denote D the diameter of

the cylinder, h the depth and P0 = ρgh the mean hydrostatic pressure at the centre of the cylinder. At

large depth, the parameter ǫ = ρgD

P0
= D/h, which compares the pressure variation on the size of the

cylinder to the confining pressure, is small ǫ ≪ 1. We then assume that the rheology of the granular

medium is given by a friction criterium, i.e., the stress tensor σ can be written as σ = P(−I + µ),

where P is the pressure (the trace of the stress tensor) and Pµ is the deviatoric part. When there is

no pressure gradient but a mean confining pressure P0, i.e., ǫ = 0, the stress tensor can be written as
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P = P0(1 + f0(x)) and µ = µ0(x), where f0(x) and µ0(x) vanish far away from the cylinder and are

symmetric under the transformation z → −z, z being the vertical coordinate with the origin at the

centre of the cylinder. When switching on the gravity, one can write at first order in ǫ:

P = P0

(

1 + ǫ
z

D
+ f0(x) + ǫ f1(x)

)

, (B1)

and

µ = µ0(x) + ǫµ1(x), (B2)

where f1(x) and µ1(x) vanish at infinity. At first order, the stress tensor is given by

σ = σ̃ 0 + ǫσ̃ 1 (B3)

with

σ̃0 = P0(1 + f0)(−I + µ0), (B4)

and

σ̃ 1 = P0

[( z

D
+ f1

)

(−I + µ0) + (1 + f0)µ1

]

. (B5)

The function σ̃ 0 is symmetric under the transformation z → −z whereas σ̃ 1 is a priori asym-

metric. The only part that can induce lift thus comes from the second asymmetric term in the stress

(the first order term in ǫ), which scales like ǫP0 = ρgD and is thus independent of depth. This simple

argument show that the lift at large depth scales like the buoyancy.
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