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Adventitious rooting is an essential step in the vegetative propagation of eco-
nomically important horticultural and woody species. Populus has emerged as
an experimental model for studying processes that are important in tree growth
and development. It is highly useful for molecular genetic analysis of adven-
titious roots in trees. In this short review, we will highlight the recent progress
made in the identification of transcription factors involved in the control of
adventitious rooting in woody species. Their regulation will be discussed.

Introduction

In contrast to lateral roots (LRs), which are formed on
primary roots, adventitious roots (ARs) are formed from
above-ground organs such as hypocotyls, stems and
leaves. A further major distinction between LRs and ARs
is that unlike LRs, which originate from pericycle cells,
ARs originate from cambial or other meristematic cells.
Thus the study of ARs provides an experimental system
to investigate mechanisms of secondary root formation
distinct from the well-characterized LR system.

The ability to rapidly form numerous ARs offers a
selective advantage to plant species that propagate veg-
etatively, so playing a central role in clonal propaga-
tion. Clonal propagation is of particular relevance to
forestry and horticulture, since genetic improvement in
long-lived species with long generation cycles is often
limiting. Despite this importance, our knowledge of
adventitious rooting is limited in trees. To date, only a few
genes have been identified that regulate the AR in woody
species. This review charts the most recent progress in
understanding AR control in woody plants.

Abbreviations – ACC, aminocyclopropane-1-carboxylate; AR, adventitious root; ARF, auxin response factor; LR, lateral root;
RNAi, RNA interference; TF, transcription factor.

Populus as a tree model for deciphering AR
molecular mechanisms

Understanding AR formation in trees is important when
devising strategies for large-scale vegetative propagation
in these economically important plants. However, in
most tree species, the ability to form ARs declines with
age. The molecular basis of this decline is not known.
Physiological and anatomical studies on AR formation
have long been published, but the factors underlying
ARs in trees remain largely unknown, for lack of a
good model. In recent years Populus has emerged as
an experimental model for studying processes that
are important in tree growth and development, and is
highly useful for molecular genetic analysis of ARs in
trees. The genus Populus is a typical woody species
propagated by direct planting of stem cuttings in the
field (Bonduelle 1989, Dickmann 2006). Represented
by approximately 30 species widely distributed in the
Northern Hemisphere (Eckenwalder 1996), poplars
are fast-growing plants showing high adaptability to
marginal soils, making them plants of choice for timber,
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pulp and bioenergy-related applications. For poplars,
clonal propagation is the only way to deploy genetically
improved varieties. Therefore identification of the molec-
ular mechanisms underlying adventitious rooting should
not only provide insight into the control of AR formation
in trees, but also open up possibilities for improving
this trait in economically important plants including
Populus, for which clonal propagation is a requirement.
There have recently been important developments in the
molecular genetics and genomics of Populus, resulting
in a consensus among the scientific community for
employing poplar as a woody perennial plant (Brunner
et al. 2004, review Busov et al. 2009, Yang et al. 2009).
First, genetic and genomic resources have increased
in the last 10 years. The sequencing and annotation
of the black cottonwood genome (Tuskan et al. 2006)
are up-dated regularly and are implanted in the Phyto-
zome web site (http://www.phytozome.net/poplar.php).
Whole-genome oligo-array data generated create an
opportunity to identify differential regulation of gene
expression relative to some developmental events
including LR and AR formation (Quesada et al. 2008,
Felten et al. 2009, Ramírez-Carvajal et al. 2009, Gou
et al. 2010, Rigal et al. 2012). Second, efficient trans-
formation systems for many Populus species including
the hybrid Populus tremula × Populus alba clone
INRA 717-1B4 and P. tremula × P. tremuloïdes have
been reported by several laboratories (Leple et al.
1992, Han et al. 2000), and allow the construction
and the regeneration of a large number of transgenic
plants including RNA interference (RNAi) lines and
activation-tagged mutants (Busov et al. 2005, 2009). For
example, activation-tagged mutants have been succes-
sively used for identifying genes involved in LR and AR
formation (Busov et al. 2010, Wang et al. 2011, Trupi-
ano et al. 2013). In parallel, the technique of enhancer
and gene trap mutagenesis has been applied to Populus
to identify gene expression patterns correlating with
different stages of AR formation (Ramírez-Carvajal et al.
2009, Rigal et al. 2012). Third, the easy vegetative prop-
agation of many genotypes of Populus plays an important
role in the successful production of elite clones.

Cellular events during AR formation

The processes involved in AR formation are complex,
and occur in four stages (Fig. 1): (1) activation, where
the cells become competent to respond to signal fac-
tors, (2) induction, when cell cycle re-activation leads
progressively to the formation of primordium, and the
cell division is visible, (3) activation of root primordium
and progressive formation of new tissues and (4) out-
growth, where root primordium elongates and vascular

connections are established. These rooting phases are
distinguished from a broad variety of genera including
apple microcuttings, from Eucalyptus, Pinus and from
Populus cuttings (De Klerk et al. 1997, 1999, Fett-Neto
et al. 2001). In woody plants including P. trichocarpa,
the first mitotic divisions, leading to root primordia for-
mation, take place more frequently from the cambium
and vascular tissues from ray cells adjacent to the vas-
cular cambium (De Klerk et al. 1997, Rigal et al. 2012).
In some Populus species, the formation of a callus is
observed prior to differentiation of root primordia at the
base of the cuttings (Lovel and White 1986). Although
in many respects the stages in AR formation resemble
what occurs during LR formation, the target tissues are
different for LRs and ARs, with LRs originating from per-
icycle cells, whereas ARs seem to derive from cambial
meristem tissues for trees species. Also, unlike LRs, in
which one of the first stages is asymmetric cell division
in the pericycle, asymmetric division in AR formation
has not been reported to date.

Transcription factor families: master
regulators of adventitious rooting

Understanding the molecular basis of LR formation
has been aided by transcriptomic approaches. These
have identified (1) gene expression programs associ-
ated with distinct stages of LR formation and (2) key
players, many of which are transcription factors (TFs)
in the model plant Arabidopsis. The success of these
approaches has prompted similar analysis of ARs in
trees. The transcriptomic analysis performed in poplar
at different stages of AR formation has revealed signifi-
cant transcriptome remodeling during the AR formation
including Pinus taeda (Brinker et al. 2004), Populus sp.
(Ramírez-Carvajal et al. 2009, Rigal et al. 2012) and
Eucalyptus grandis (Abu-Abied et al. 2012). Among
transcripts, genes encoding putative TFs belonging to 35
TF families have significant expression changes at the
successive stages of poplar AR formation (Rigal et al.
2012). The function of these genes is not yet known.
Induction of increased mRNA levels of genes homol-
ogous to SCR (SCR-like or SCL) in rooting-competent
cuttings of Pinus radiata and Castanea sativa species
was observed within the first 24 h of the root induction
process, a time when cell reorganization takes place,
and preceding the establishment of AR primordium
(Sanchez et al. 2007). SCARECROW (SCR) is a mem-
ber of the GRAS family of TFs, acting in the control
of cell division, differentiation and cell homeostasis
(Heidstra et al. 2004, Wildwater et al. 2005) during
the establishment of Arabidopsis thaliana root meris-
tem. Interestingly, SCR is downstream-regulated by a
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Fig. 1. Possible hormonal regulation of TF during the successive stages of the adventitious rooting in tree species. The AR formation can be seen as a
four-stage process starting with the activation of cells in response to signal factors (1). This step is followed by the cell cycle re-activation (2), which leads
progressively to the AR primordium formation. The activation of root primordium (3) allows the formation of new tissues and (4) AR outgrowth. Auxin
promotes the activation of competent cells and then the formation of AR primordium. NO may participate in this process through the auxin signaling
pathways. In parallel, the auxin transport may be influenced after the cutting and may be regulated by the accumulation of jasmonates or flavonoids.
In contrast, cytokinin and GA have an inhibitory effect on adventitious rooting. Some transcription factors have been identified as regulators of AR
formation in trees including PtRR13, which is regulated by a cytokinin/auxin balance, and SCR is regulated by auxin. PtAIL1, a member of AP2/ERF
family plays a major role in the formation of AR primordium, and could take part in the PtAGL16- and PtMYB36-dependent regulatory network.

plant homolog of the tumor suppressor Retinoblastoma
(pRb), the RETINOBLASTOMA-RELATED (RBR) gene
is considered a key cell cycle regulator (Borghi et al.
2010). In root-forming shoots, CsSCL1, SCL in C. sativa,
mRNA was specifically located in the cambial zone
and derivative cells, which are rooting-competent cells,
whereas in rooting-incompetent shoots the hybridization
signal was diffuse and evenly distributed throughout the
phloem and parenchyma (Vielba et al. 2011). These
studies highlight an important role for SCR in meristem
determination and maintenance during the formation of
AR primordium.

An up-expression of LR primordium (lrp1), which is
an SRS-type TF, has been detected. This gene is known
to be involved in lateral and AR primordium formation
in Arabidopsis (Smith and Fedoroff 1995). Transcriptomic
data obtained in P. trichocarpa adventitious rooting (Rigal
et al. 2012) reveal a modulation of some members of
the auxin response factor (ARF) family. ARF proteins
are TFs that regulate the expression of auxin response
genes. Genetic analysis in Arabidopsis clearly shows the
importance of this family in the adventitious process
(Gutierrez et al. 2009).

One of the best characterized TFs with a role in AR for-
mation in trees is the AP2/ERF protein family comprising
TFs unique to plants (Reichman and Meyerowitz 1998),
which all contain the conserved AP2 DNA-binding

domain (Jofuku et al. 1994). This super-family consists
of 210 members in poplar and regulates two major pro-
cesses in plants including response to stress and control
of development. AINTEGUMENTA-like subgroup mem-
bers, such as PLETHORA (AtPLT), BABY BOOM (AtBBM),
AINTEGUMENTA (AtANT) and AINTEGUMENTA-like
(AtAIL) play a major role in the establishment and main-
tenance of meristems (Krizek et al. 2000, Mizukami
and Fischer 2000, Nole-Wilson et al. 2005, Imin et al.
2007, review, Horstman et al. 2014). AINTEGUMENTA
(AtANT) plays a role in the regulation of shoot devel-
opment during organ primordium initiation and growth
(Elliott et al. 1996), and in maintaining meristem-
atic competence of cells during shoot organogenesis
(Mizukami and Fischer 2000). Interestingly, some mem-
bers of this family show a regulation of their expression,
suggesting a key role for this subgroup in the control of
adventitious rooting in poplars (Rigal et al. 2012). The
organization of the poplar root primordium is accompa-
nied by the up-regulation of PtAIL1, PtAIL9, PtPLT1.2 and
PtBBM2, while the differentiation of the root primordium
showed expression regulation of PtAIL1, PtAIL5, PtAIL9,
PtPLT1.1, PtPLT1.2 and PtBBM2. In contrast to the others,
the expression of PtAIL1 transcript levels shows a very
specific expression regulation during AR primordium
activation and formation. Moreover, transgenic poplar
lines over-expressing PtAIL1 exhibited an increased
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number of ARs, while RNAi downregulation of PtAIL1
transcript showed a reduced number of ARs. AINTEGU-
MENTA LIKE 1 (PtAIL1), which has been noted to be a
Populus homolog of the Arabidopsis gene AINTEGU-
MENTA (ANT) (Karlberg et al. 2011), is expressed in the
cambial zone within cells that undergo intensive cell
proliferation (Schrader et al. 2004). In addition, PtAIL1
has been shown to bind to the D-type cyclin promoter
in hybrid aspen trees and Arabidopsis (Karlberg et al.
2011). Taken together, these data suggest that PtAIL1
could be involved in cell proliferation occurring dur-
ing the AR primordium formation. The comparison of
global gene expression profiles between the wild type,
PtAIL1 overexpressors and RNAi suppression lines indi-
cates a co-regulation of AGAMOUS-Like16 (PtAGL16),
PtMYB36 and PtAIL1. This suggests that PtAIL1, PtAGL16
and PtMYB36 could be part of a regulatory network
that controls AR formation in poplars (Rigal et al. 2012).
Additionally, a member of the AP2/ERF family, called
PtaERF003, has a positive effect on both adventitious
and LR proliferation in poplar (Trupiano et al. 2013).

AR formation integrates multiple hormonal
pathways

Most research on AR formation has been centered on the
role of phytohormones, mainly auxins (reviews: Geiss
et al. 2009, Da Costa et al. 2013). Classically, treat-
ments of cuttings with synthetic auxins have been used
for many years to induce and accelerate rooting in
difficult-to-root species (Kevers et al. 1997). In poplar
cuttings, anti-auxin application at AR phases caused sig-
nificant inhibition of AR (Bellamine et al. 1998). In P.
taeda stem cuttings, the inability to root in mature cut-
tings was due to the lack of cell capacity to organize
root meristems in the presence of auxin (Greenwood
et al. 2001). More recently, Negishi et al. (2011) com-
pared E. globulus easy- and difficult-to-root lines, and
showed that the indole-3-acetic acid (IAA) level of the
easy-rooting line was twice that of the difficult-rooting
line, confirming the importance of auxin in AR formation
ability.

Examining the loss of rooting capability following the
transition from the juvenile to the mature phase in E.
grandis (Abu-Abied et al. 2012), the authors observed
a higher transient burst of nitric oxide (NO) in juvenile
cuttings than in mature ones upon excision. A gene
encoding for nitrate reductase (NIA), which is involved
in NO production, was among the genes upregulated
in juvenile cuttings (Abu-Abied et al. 2012). Thus NO
may influence auxin signaling, as already observed in
Arabidopsis (Mittler et al. 2011).

Overall changes in phytohormone balance during
AR formation have been reported in several studies.
In a recent review, the authors (Da Costa et al. 2013)
propose an elegant view of phytohormonal control of
AR formation and possible hormonal interactions during
distinct phases of the adventitious rooting process. The
importance of jasmonate-transport auxin interaction
has been highlighted during the Arabidopsis root devel-
opment (Sun et al. 2011, Raya-González et al. 2012).
Interestingly, it encompasses the first hours after cutting
removal; the observed local increase in jasmonate was
associated with the phenolic compounds and auxin at
the Eucalyptus cutting base (Schwambach et al. 2008).
Phenolics are also important in modulating peroxidase
activity, and may thus prevent auxin degradation at
cutting bases (De Klerk et al. 1999, 2011). Flavonoids,
a major class of phenolic compounds, can influence
auxin transport (Peer and Murphy 2007, Buer et al.
2010). Auxin and cytokinins appear to play antagonistic
roles in AR formation. The quantification of these two
hormones in the basal part of cuttings from diverse
woody species including Populus and Malus revealed
an opposite pattern in auxin and cytokinin concentra-
tions during the first steps of AR formation. In addition,
exogenous application of cytokinin to cutting during the
induction phase strongly inhibited Malus root formation
(De Klerk et al. 1999). Ramírez-Carvajal et al. revealed
an induction of transcript abundance of members of
aminocyclopropane-1-carboxylate (ACC) synthase, and
ACC oxidase, key enzymes involved in cytokinin syn-
thesis (Ramírez-Carvajal et al. 2009). A TF, the cytokinin
type-B response regulator PtRR13, which acts as a pos-
itive regulator in the cytokinin signaling pathway, has
been shown to repress AR formation in intact plants,
and reduced cytokinin signaling after shoot excision.
Cytokinin may interact with ethylene and auxin path-
ways (Ramírez-Carvajal et al. 2009). Like cytokinins,
gibberellins have been considered as inhibitors of AR
formation in poplar (Busov et al. 2006).

Hormonal pathways: possible regulators
of TFs

The root meristem formation and maintenance are
controlled by the hormonal balance, where cytokinins
and auxins act antagonistically (Dello Ioio et al. 2007,
Moubayidin et al. 2009). Some auxin-responsive TFs
have been shown to play roles in the control of cell
division leading to root primordia differentiation in
cuttings of tree species (Sanchez et al. 2007, Solé et al.
2008, Vielba et al. 2011, Rigal et al. 2012). Induc-
tion of increased mRNA levels of genes homologous
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to SCR (SCR-like or SCL) in rooting-competent cut-
tings of P. radiata and C. sativa species in response to
exogenous auxin was observed within the early steps
of AR formation (Sanchez et al. 2007). The expres-
sion of two APETALA2/ETHYLENE RESPONSE FACTOR
(AP2/ERF) TF genes has been inhibited by the expres-
sion of a cytokinin type-B response regulator (PtRR13)
(Ramírez-Carvajal et al. 2009). More recently, the posi-
tive regulator PtaERF003 of AR formation in Populus was
up-regulated by auxin (Trupiano et al. 2013). Thus some
findings suggest how hormonal balance triggers AR
formation through the regulation of TFs expression. On
the basis of these results, we propose a model illustrating
the possible hormonal regulation of TF in the control of
adventitious rooting in tree species (Fig. 1).

The further identification of target genes of the TF will
offer a fuller understanding of the control of AR forma-
tion. Recently, an integrative database of the TFs from
economically important tree crops including poplar
called TreeTFDB (http:// treetfdb.bmep.riken.jp/index.pl)
has become available for the community, and offers
genetic resources for performing comparative and func-
tional genomics of the crop TFs (Mochida et al. 2013).
Use of similar databases together with resources such
as POPGENIE will allow better integration of tran-
scriptomics data with physiological and anatomical
approaches used previously for analysis of AR formation
in trees, and will provide a much better insight into
this important process. Concomitantly, the develop-
ments of genomic and transcriptomic tools in woody
species including Eucalyptus and Pinus species will offer
exciting perspectives in this research area. Comparative
transcriptome analysis of genotypes that differ in their
competence to adventitious rooting should be explored,
and will be very helpful for understanding molecular
mechanisms in AR formation in trees.
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