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This paper presents a likelihood ratio test based method of change detection and classification for synthetic aperture radar (SAR) time series, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA). This method involves three steps: 1) multitemporal pre-denoising step over the whole image series to reduce the effect of the speckle noise; 2) likelihood ratio test based change criteria between two images using both the original noisy images and the denoised images; 3) change classification by a normalized cut based clustering-and-recognizing method on change criterion matrix (CCM). The experiments on both synthetic and real SAR image series show the effective performance of the proposed framework.

Introduction

Change analysis in remote sensing images is the process of analyzing differences (including identifying, recognizing and so on) in regions of interest by observing them at different dates [START_REF] Singh | Digital change detection techniques using remotely-sensed data[END_REF]. Many applications of remote sensing images involve change analysis, such as rapid mapping of disaster, landuse and land-cover monitoring and so on. [START_REF] Lu | Object-oriented change detection for landslide rapid mapping[END_REF] used change detection method to detect and locate the landslides for rapid mapping of landslides. Similarly, a multi-sensor change detection method between optical and synthetic aperture radar (SAR) imagery is proposed in [START_REF] Brunner | Earthquake damage assessment of buildings using VHR optical and SAR imagery[END_REF] for earthquake damage assessment of buildings. For urbanization monitoring, post-classification change detection methods are proposed (Taubenböck et al., 2012;Yin et al., 2011). From a methodological point of view, change analysis methods can be classified into two classes, binary-temporal change analysis and multi-temporal change analysis according to the number of images.

In the binary-temporal change analysis of two optical images, the most widely used operator is difference operator [START_REF] Singh | Digital change detection techniques using remotely-sensed data[END_REF]. For multi-spectral images, change vector analysis [START_REF] Bruzzone | Automatic analysis of the difference image for unsupervised change detection[END_REF] is proposed. People also perform the analysis on the transformed data instead of the spectral data directly, such as Tasseled Cap transformation [START_REF] Fung | An assessment of TM imagery for land-cover change detection[END_REF][START_REF] Huang | Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance[END_REF], principal component analysis [START_REF] Fung | Application of principal components analysis to change detection[END_REF][START_REF] Deng | PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data[END_REF] and independent component analysis [START_REF] Marchesi | ICA and kernel ICA for change detection in multispectral remote sensing images[END_REF]. Beyond change detection, [START_REF] Bruzzone | An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images[END_REF] explicitly identified land-cover transitions (changes among Bare soil, Corn, Soybean, Sugar beet, Wheat) in multi-temporal remote-sensing images based on supervised classification. Given SAR images, two main approaches have been developed in the literature for change analysis: coherent change detection and incoherent change detection. The former uses the phase information in the SAR images through the study of the coherence map [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF]. In incoherent change detection, the log-ratio [START_REF] Rignot | Change detection techniques for ERS-1 SAR data[END_REF] is the most common operator. Improvements have been proposed thanks to automatic thresholding methods [START_REF] Bazi | An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[END_REF] or multi-scale analysis to preserve details [START_REF] Bovolo | A detail-preserving scale-driven approach to change detection in multitemporal SAR images[END_REF]. [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF] proposed a generalized likelihood ratio test given by the ratio between geometric and arithmetic means for SAR images. [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF] extended this ratio of different means to a more general way with an adaptive and nonlinear threshold, which can be applied to not only SAR image pairs but also SAR time series.

Beyond change analysis between two dates, multi-temporal change analysis (more than 2 dates) mainly focuses on the longterm change information. SAR image features consisting of long-term coherence and temporal backscattering is proposed for a classification purpose [START_REF] Bruzzone | An advanced system for the automatic classification of multitemporal SAR images[END_REF]. [START_REF] Julea | Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns[END_REF][START_REF] Julea | Efficient spatio-temporal mining of satellite image time series for agricultural monitoring[END_REF] propose a crop monitoring using satellite image time series by a frequent sequential pattern (a group of pixels sharing common temporal patterns and satisfying a minimum spatial connectivity). A generic change detection approach is proposed in (Verbesselt et al., 2010a) for multi-temporal images by detecting and characterizing breaks for additive seasonal and trend changes. It integrates the decomposition of time series into trend, seasonal, and remaining components within a longterm time series. An improved harmonic seasonal model which requires fewer observations has been presented in (Verbesselt et al., 2010b). Transform tools [START_REF] Jong | Analysis of monotonic greening and browning trends from global NDVI time-series[END_REF][START_REF] Martínez | Vegetation dynamics from NDVI time series analysis using the wavelet transform[END_REF] have also been used for analysis of the normalized difference vegetation index time series.

In this paper, we address the problem of change classification of multi-temporal SAR series. We will focus on samesensor same-incidence case and particularly on urban areas. A global processing chain in 3 steps, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA), is defined, as shown in Fig. 1. In the pre-processing step, a multi-temporal SAR image filter is used to reduce speckle phenomenon. After that, two change criteria based on likelihood ratio test combining noisy and denoised data are developed and compared. The final step is a clustering-and-recognizing classification based on the change criterion matrix, in which changes are classified into different types (including step change, impulse change, cycle change and complex change). The last 2 steps as well as the global frame work are the main contribution of this paper. Evaluation on synthetic and real images show the good performance of the proposed approach.

This paper is organized as follows. Section 2 briefly recalls the multi-temporal denoising method for SAR images. The proposed approximate likelihood ratio test and generalized likelihood ratio test change criteria are presented in Section 3. The proposed clustering-and-recognizing change classification method is then detailed in Section 4. This is followed by evaluation (Section 5) and conclusion (Section 6).

Pre-Processing: Multi-Temporal Denoising

When dealing with multi-temporal images, lots of information is available and useful for estimation in the time series. Based on this motive, we proposed a two-step probabilistic patch based (2SPPB) denoising method [START_REF] Su | Two steps multi-temporal non-local means for SAR images[END_REF] based on non local means [START_REF] Buades | A non-local algorithm for image denoising[END_REF] and probabilistic patch based weights (PPB) [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF] adapted to multitemporal SAR images. To allow a self-content reading of this paper and to introduce the useful notations, we briefly summarize the main steps of this approach. A complete description can be found in [START_REF] Su | Two steps multi-temporal non-local means for SAR images[END_REF]. It consists of a temporal averaging step and a spatial denoising step (summarized in Algorithm 1). Firstly, an average image is created by combining stable pixels while keeping unchanged the pixels not in accordance with the other dates (temporal averaging step). Then, on this improved image, a spatial denoising step is applied. A key point in both the temporal and spatial averaging is the weights based on the similarity between pixels, which are measured by similarity between patches. This section presents a brief summary of 2SPPB which will be useful for the following steps.

Pixel similarity

We denote by y t the observed SAR image, by y t (i) the noisy intensity value at pixel index i at time t, and by ût (i) the estimation of the actual pixel value u t (i) (the true value that we are looking for). Considering {y t 1 , y t 2 , . . . , y t N } as the stack of multitemporal images, the similarity S (i t , i t ′ , h, h ′ ) between pixels y t ′ (i) and y t (i) is defined through their patches y t (i) and y t ′ (i):

S i t , i t ′ , h, h ′ = S GLR (y t (i), y t ′ (i)) h + S KL ( ût (i), ût ′ (i)) h ′ (1)
S (i t , i t ′ , h, h ′ ) consists of a generalized likelihood ratio S GLR (GLR) from noisy images y t and y t ′ and a Kullback-Leibler divergence S KL (KL) from currently denoised images ût and ût ′ . S GLR and S KL are normalized by parameters h and h ′ . For any pair of pixels y 1 and y 2 , the GLR criterion S GLR is comparing two small square patches y 1 and y 2 of size K surrounding pixels at the positions of y 1 and y 2 .

S GLR (y 1 , y 2 ) = k∈K L 1,k + L 2,k log L 1,k y 1,k + L 2,k y 2,k -L 1,k + L 2,k log L 1,k + L 2,k -L 1,k log y 1,k -L 2,k log y 2,k (2) 
where, y 1,k is pixel k in patch y 1 and L 1,k is the (equivalent) number of looks of y 1,k (idem for y 2,k and L 2,k ). The KL criterion S KL is computed iteratively from the denoised results ût and ût ′ (corresponding to the noisy images y t and y t ′ ). For any pair of denoised pixels û1 and û2 , S KL is also defined on two patches û1 and û2 .

S KL ( û1 , û2 ) = k∈K L 1,k û2,k û1,k + L 2,k û1,k û2,k -L 1,k -L 2,k +L 1,k ψ(L 1,k ) -ψ(L 2,k ) + ln( û1,k ) + ln( û2,k ) -L 2,k ψ(L 1,k ) -ψ(L 2,k ) + ln( û1,k ) + ln( û2,k ) (3) 
where ψ(L) is the digamma function.

Two steps denoising

The first step of 2SPPB is to average the temporal pixels with binary weights:

y 1st t (i) = 1 Z t ′ ∈[t 1 ,t N ] ϕ S i t , i t ′ , h 1st , h ′ 1st • y t ′ (i) (4) ϕ S i t , i t ′ , h 1st , h ′ 1st = 1, if S i t , i t ′ , h 1st , h ′ 1st < 1 0, otherwise (5) 
where, S i t , i t ′ , h 1st , h ′ 1st is computed from noisy images y t and y t ′ , and denoised images ûPPB t and ûPPB t ′ using PPB. The second step of 2SPPB approach is to exploit similar pixels in the temporally average image y 1st t rather than in the stack {y t 1 , . . . , y t N }. The estimation at time t is thus given by ût

(i) = 1 Z j∈Ω i exp(-S i t , j t , h 2nd , h ′ 2nd ) • y 1st t ( j) (6)
where the GLR criterion in S i t , j t , h 2nd , h ′ 2nd is computed using the temporal step (the first step) result y 1st t . To improve the ût estimation, the KL criterion is iteratively refined by using the previous estimate ût . The final result of this temporal denoising step will be denoted by ût for date t (corresponding number of looks Lt ). Algorithm 1 summarizes the multi-temporal denoising processing.

Algorithm 1 The multi-temporal denoising (2S-PPB) algorithm.

Input:

Registered temporal SAR images {y t 1 , y t 2 , . . . , y t N }.

A date t 1 of interest. Output:

ût 1 : the denoising result of image y t 1 .

----Step 1 (Temporal step):----1: for each y t in {y t 1 , y t 2 , . . . , y t N } do 2: denoise y t using PPB filter [START_REF] Deledalle | Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[END_REF]; 3: obtain pre-denoised results ûPPB t ; 4: end for 5: for each pixel index i do

6: Calculate y 1st t 1 (i); (Eq. 4) 7: end for ------------------ ----
Step 2 (Spatial step):-----8: Set ût 1 = 1; 9: for Iteration from 1 to 10 do 10:

for each pixel index i do 11:

Calculate S i t , j t , h 2nd , h ′ 2nd using y 1st t 1 (i) and ût 1 (i);

12:

Update ût 1 (i) using Eq.6;

13:

end for 14: end for ------------------15: return Denoised result ût 1 ;

Change Detection

In statistics, change detection problem can be considered as a comparison of two hypotheses H 0 and H 1 [START_REF] Radke | Image change detection algorithms: a systematic survey[END_REF]:

H 0 : u 1 = u 2 = u 12 (null hypothesis) H 1 : u 1 u 2 (alternative hypothesis) (7)
where H 0 is unchanged case and hypothesis H 1 is changed case. Likelihood ratio test is a state-of-the-art test which determines the decision by a likelihood ratio [START_REF] Kay | Fundamentals of statistical signal processing, volume II: Detection theory[END_REF]:

R = p(Y|u 12 , H 0 ) p(Y|u 1 , u 2 , H 1 ) ( 8 
)
where Y is the observed data. In this section, we propose to develop the likelihood ratio test using the multi-temporal denoising results. Contrary to most likelihood ratio tests which only use noisy data, both the denoised data and the noisy data are involved in the proposed criteria.

Change Criterion by Approximate Likelihood Ratio Test

Recall that by y we denote a pixel intensity value. Under the speckle noise model described in [START_REF] Goodman | Some fundamental properties of speckle[END_REF], y is a realization of a random number characterized by the Gamma probability density function (pdf) p(y|u). u is the parameter of this Gamma pdf or the noise-free pixel value. Under the test in Eq.8, the change criterion between y 1 and y 2 using likelihood ratio test can be defined as:

R ALRT (y 1 , y 2 ) = p (y 1 , y 2 |u 12 , H 0 ) p (y 1 , y 2 |u 1 , u 2 , H 1 ) (9) 
The criterion in Eq. 9 is a composite hypothesis problem because it requires the noise-free value u 1 and u 2 which are unavailable in practice. Instead of using usual generalized likelihood ratio extensions, we propose to use the estimated results ût to replace the noise-free u t (u 1 = û1 , u 2 = û2 and u 12 = û1 +û 2 2 ). Combined with the Gamma probability density function, the likelihood ratio in Eq. 8 becomes:

R ALRT (y 1 , y 2 ) = p (y 1 , y 2 |u 12 , H 0 ) p (y 1 , y 2 |u 1 , u 2 , H 1 ) = 1 4 û2 û1 + û1 û2 + 2 -L exp L y 1 û1 + y 2 û2 - 2y 1 + 2y 2 û1 + û2 ( 10 
)
where L is the original spatially-invariant (equivalent) number of looks. Note that the approximate likelihood ratio R ALRT highly depends on the denoised values û1 and û2 , since R ALRT (y 1 , y 2 ) ≡ 1 when û1 = û2 .

Change Criterion by Generalized Likelihood Ratio Test

In a more general way, we can take into account the denoised values and consider the likelihood probability of H 0 and H 1 as p(y 1 , y 2 , û1 , û2 |H 0 ) and p(y 1 , y 2 , û1 , û2 |H 1 ). To simplify this likelihood probability, we can assume that {y 1 , û1 } and {y 2 , û2 } are independent, although this assumption is not well justified. Thus,

p(y 1 , y 2 , û1 , û2 |H 0 ) =p(y 1 , û1 |u 12 , H 0 )p(y 2 , û2 |u 12 , H 0 ) p(y 1 , y 2 , û1 , û2 |H 1 ) =p(y 1 , û1 |u 1 , H 1 )p(y 2 , û2 |u 2 , H 1 ) .
The likelihood ratio test is given by:

R GLRT (y 1 , y 2 ) = p(y 1 , û1 | u 12 , H 0 )p(y 2 , û2 | u 12 , H 0 ) p(y 1 , û1 | u 1 , H 1 )p(y 2 , û2 | u 2 , H 1 ) . (11)
Since u 12 , u 1 and u 2 are not available, they can be replaced by their maximum likelihood (ML) estimation:

u 1 = Ly 1 + L1 û1 L + L1 u 2 = Ly 2 + L2 û2 L + L2 ( 12 
)
u 12 = Ly 1 + Ly 2 + L1 û1 + L2 û2 2L + L1 + L2 .
L, L1 and L2 are the number of looks of y, û1 and û2 respectively. Note that this is very similar to [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF]. Nevertheless, the multi-temporal denoised values used in the proposed approach can provide more accurate estimation without loss of spatial resolution. It was not the case in [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF] where spatial partitioning and averaging are introduced. In case of Gamma distributions with different number of looks, each probability term p(y, û|u) in Eq.11 can be approximated under conditional independence assumption by:

p(y, û|u) = p(y|u)p( û|u) = y -1 û-1 Γ(L)Γ( L) (Ly) L ( Lû) L u L+ L exp - Ly + Lû u . (13) 
Finally, the change criterion by generalized likelihood ratio test is given by:

R GLRT (y 1 , y 2 ) = Ly 1 + L1 û1 L + L1 L+ L1 Ly 2 + L2 û2 L + L2 L+ L2 2L + L1 + L2 Ly 1 + L1 û1 + Ly 2 + L2 û2 2L+ L1 + L2 (14) 
When û1 = û2 , the generalized likelihood ratio R GLRT still depends on the noisy values y 1 and y 2 which is different from the approximate likelihood ratio R ALRT .

Thresholds for Change Detection

In [START_REF] Kervrann | Optimal spatial adaptation for patch-based image denoising[END_REF], the authors proposed to define the parameters according to the quantiles of the similarity criterion when it is subject to identical and independent distributed random variables. Pursuing this idea, we propose to choose the thresholds according to the quantiles of R ALRT and R GLRT . The change detection threshold can be set by τ ALRT = quantile(R ALRT , α = 0.01) (and τ GLRT = quantile(R GLRT , α = 0.01)), which means the false alarm rate is 1%. However, it is not easy to obtain the distribution of R ALRT and R GLRT since they depend on the number of looks of noisy images, the number of images used in the denoising process and all the parameters of multi-temporal filter (such as the h, h ′ , search window size, patch size and so on). Thus, R ALRT and R GLRT distribu- tions are simulated using synthetic SAR images to choose the thresholds.

For our purpose of parameter setting, any picture can be used to generate multiple speckle images, such as the famous Lena image. Note that all the synthetic multi-temporal noisy images use the same true image, which guarantees no changes among them. The same number of images and the same number of looks as the real SAR images to be processed have to be used. Then, the multi-temporal denoising process in section 2 is performed. The approximate and generalized likelihood ratio test change criteria calculated from these images are considered as pure distributions of R ALRT and R GLRT . As shown in Fig. 2, the histograms of R ALRT and R GLRT are truncated by the thresholds (red lines) with false alarm 1%. The parts on the right of the thresholds are considered as unchanged case, the left part is changed case. Fig. 3 shows the R ALRT and R GLRT histograms of changed and unchanged pixels in real SAR data Paris (image information detailed in section 5). Those changed pixels are labeled manually. The robustness of the proposed change criteria R ALRT and R GLRT can be epitomized by the overlap of R ALRT and R GLRT histograms.

Change Classification

Change analysis between 2 dates aims at detecting a binary pattern (change or no-change). When dealing with a multitemporal data set (more than 2 dates), the analysis among them is much more complex. For instance, the temporal behaviors of a new building usually can be considered as a step change, which means that comparing the oldest date with other dates, it was unchanged at the beginning but it changed since a certain date (shown in Fig. 4.a). Similarly, we can define the boats in rivers or cars on the roads as impulse changes (Fig. 4.b). These change information can be used in the multi-temporal image interpretation tasks. Therefore, a clustering-and-recognizing method is proposed to classify changes into different types. This method consists of two steps, clustering using normalized cut on a change criterion matrix (to assign a same label to similar or unchanged temporal pixels) and classification according to their temporal behaviors. The following subsections detail the proposed approach.

Change Criterion Matrix (CCM)

At position i of a multi-temporal SAR series {y t 1 , ..., y t N }, we have the two pixel series {y t 1 (i), ..., y t N (i)} (original noisy data), {û t 1 (i), ..., ût N (i)} (denoised data by multi-temporal filter of section 2) and associated equivalent number of looks { Lt 1 (i), ..., Lt N (i)}. The change criterion matrix (CCM) at position i is defined as:

M(i) =               R(y 1 , y 1 ) R(y 1 , y 2 ) ... R(y 1 , y N ) R(y 2 , y 1 ) R(y 2 , y 2 ) ... R(y 2 , y N ) ... ... ... ... R(y N , y 1 ) R(y N , y 2 ) ... R(y N , y N )               (15)
where R(y n , y m ) shorts for R y t n (i), y t m (i) denotes the change criterion (R ALRT or R GLRT ) between pixel y t n (i) and y t m (i). Note that R(y n , y m ) = 1 when n = m. Contrary to the multi-date divergence matrix in [START_REF] Atto | Multidate Divergence Matrices for the Analysis of SAR Image Time Series[END_REF] performing at the image or sub-image level, the CCM presents the change information at pixel level. Each CCM M(i) denotes the temporal behavior of the pixel series at position i.

Clustering by Normalized Cut

Spectral clustering techniques make use of the similarity matrix of the data to perform clustering. Since the CCM can be considered as a similarity matrix of the time series, spectral clustering method has been applied on CCM to cluster the temporal pixels. In this case, no more similarity measurements is needed compared with other clustering methods (like K-Means algorithm for which new similarity to cluster center has to be computed).

Normalized spectral clustering proposed by [START_REF] Shi | Normalized cuts and image segmentation[END_REF] is employed in this work, which can be summarized in Algorithm. 2. In this algorithm, the unnormalized Laplacian matrix M u (i) is computed by:

M u (i) = M s (i) -M(i) (16) M s (i) =               R(y 1 , y n ) 0 ... 0 0 R(y 2 , y n ) ... 0 ... ... ... ... 0 0 ... R(y N , y n )               R(y m , y n ) = n=1,...,N R(y m , y n )
The only parameter in Algorithm. 2 is the number of clusters p.

Choosing the number of clusters p is a general problem for all clustering algorithms, and a variety of successful methods have been devised (more details in (Von Luxburg, 2007)). Eigengap heuristic is one of them and particularly designed for spectral clustering. The main idea is to choose the number p such that all eigenvalues λ 1 , ..., λ p are very small, but λ p+1 is relatively larger. However, this heuristic fails when the clusters of the data are overlapping (because of noise). To solve this problem, we binarize the CCM M(i) using the change detection threshold.

M b (i) =               R b (y 1 , y 1 ) ... R b (y 1 , y N ) R b (y 2 , y 1 ) ... R b (y 2 , y N ) ... ... ... R b (y N , y 1 ) ... R b (y N , y N )               (17) R b (y m , y n ) =        0 if R b (y m , y n ) < τ 1 if R b (y m , y n ) τ
The Eigengap heuristic performed on the binary change criterion matrix M b (i) can easily estimate the number of clusters p (see the example shown in Fig. 5). The toy model in Fig. 5.a has 2 clusters. Using CCM M(i) in 5.b, the difference between eigenvalues λ 2 and λ 3 is not large enough compared with the one between λ 1 and λ 2 . It is very easy to find the best estimation of p using the binary CCM M b (i) in 5.c because of the large gap between λ 2 and λ 3 . It is obvious that this estimation of p highly depends on the choice of the thresholds. However, the robustness of the proposed change criteria (especially R GLRT shown in Fig. 3) can guaranty the estimation accuracy of p.

Recognizing

After clustering, each pixel series {y t 1 (i), ..., y t N (i)} has a cluster label series {l t 1 (i), ..., l t N (i)}, in which l t n ∈ {1, ..., p}. We can identify different types of change according to the transformation in the cluster label series {l t 1 (i), ..., l t N (i)}. For example, if p = 1, there is no change among this pixel series. If p = 2 with cluster label series {1, 1, ..., 1, 2, 2, ..., 2}, it is a step change.

Algorithm 2 Clustering of the pixel series (Normalized spectral clustering [START_REF] Shi | Normalized cuts and image segmentation[END_REF]) Input:

A change criterion matrix M(i) of pixel series {y t 1 (i), ..., y t N (i)}, number p of clusters to construct.

Output:

The clustering labels {l t 1 (i), ..., l t N (i)} for pixel series {y t 1 (i), ..., y t N (i)} 1: Compute the unnormalized Laplacian matrix M u (i) using Eq.16. 2: Compute the first p generalized eigenvectors v 1 , ..., Impulse change usually has p = 2 and cluster label series is {1, 1, ..., 1, 2, 2, ..., 2, 1, 1, ..., 1}. When p 3, the transformation is complex and changes are defined as complex case. According to these identifications (details in Table 4.3), changes can be classified into several classes.

v p of M u (i) (M u (i)v = λIv). 3: Let v ′ be

Experiments

The proposed methods are evaluated on both synthetic images and real multi-temporal SAR images.

Experiments of Change Detection

Data Set

Synthetic images: Fig. 6.a show the noisy synthetic images y t and y t ′ corrupted by single-look multiplicative speckle noise respectively (with the ground truth of changes between them in Fig. 6.a). The four squares are 32×32 pixels with true value 128. The darker frame is 8 pixels width with 32 as true value and the true value of background is 64.

Realistic SAR Synthetic Images: A denoised image of 21 single-look TerraSAR X-band images in Paris (France) sensed in 2011 is considered as the noise-free image (multi-temporal denoising approach in section 2), as shown in Fig. 6.b. Two single-look noisy images y t and y t ′ are generated with changes added in y t ′ . These changed regions are about 15-25 pixels width and length, for instance a 20×20 pixels patch of vegetation is replaced by a same size patch of building and so on. Fig. 6.b shows the ground truth of changes.

Real SAR images 1: 26 single-look TerraSAR images in Saint-Gervais-les-Bains (France) (13 images are sensed in 2009 and the other 13 images in 2011) are shown in Fig. 7.a-c, identified as Saint-Gervais-les-Bains. Reference Ground truth of changes is labeled manually in Fig. 7.c.

Real SAR images 2: Experiment in Fig. 7.d-f uses 21 singlelook TerraSAR X-band images identified as Paris in Paris (France) sensed in 2011. We label the ground truth of changes manually, as shown in Fig. 7.f.

Real SAR images 3: Experiment in Fig. 12.a-d uses 24 CARABAS-II magnitude images acquired in Vidsel, Sweden 2002, identified as CARABAS ( Sensor Data Management System (SDMS) Public web site, 2008). We only detect the changes between image v02 2 1 1 and image v02 4 1 1, while all the 24 images are used in the multi-temporal denoising process.

Real SAR images 4: Experiment in Fig. 12.e-h uses 9 single-look TerraSAR X-band images identified as Sendai in Sendai Harbor (Japan) sensed in 2011. Fig. 12.e and f show the images acquired respectively on 06/05/2011 and 08/06/2011. All the 9 images are used in the multi-temporal denoising step.

Change detection methods

The proposed change criteria approximate likelihood ratio test R ALRT and generalized likelihood ratio test R GLRT are compared with some state-of-the-arts methods, such as Log-Ratio operator [START_REF] Rignot | Change detection techniques for ERS-1 SAR data[END_REF], the generalized likelihood ratio test (GLRT) proposed in [START_REF] Lombardo | Maximum likelihood approach to the detection of changes between multitemporal SAR images[END_REF], Wilcoxon Test based change criterion [START_REF] Krylov | Change detection with synthetic aperture radar images by Wilcoxon statistic likelihood ratio test[END_REF] and Method for generalIzed Means Ordered Series Analysis [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF], summarized in Tab.5.1.2.

Results

The change detection results are assessed by the True-Positive versus False-Positive curves using the reference map of changes. Fig. 6.c and Fig. 7.c show the the True-Positive versus False-Positive curves. The proposed methods R ALRT and R GLRT can generally obtain higher ROC curves than others. The experiments on CARABAS and Sendai data in Fig. 9 and 10 show that the proposed GLRT change detection has comparable performance with MIMOSA [START_REF] Quin | MIMOSA: An Automatic Change Detection Method for SAR Time Series[END_REF]. R ALRT and R GLRT outperform other change criteria, but the latter is more reliable than the former (the ROC curves of R GLRT are higher than R ALRT in Fig. 6 and 11).

Experiments of Change Classification 5.2.1. Test on realistic SAR synthetic images

This experiment use one denoised image of 21 single-look TerraSAR X-band images of Paris (France) sensed in 2011 as the noise-free image (multi-temporal denoising approach in section 2), as shown in Fig. 6 

Confusion

Classification results Matrix (%) Unch.

Step 

Test on real SAR images

We have 21 single-look TerraSAR X-band images identified as Paris in Paris (France) sensed in 2011 and 6 single-look Ter-raSAR X-band images identified as San-Francisco sensed in San-Francisco, U.S.A. 2007 and 2011. These images have been accurately registered using the sensor parameters. 

Conclusion

In this work, a global framework NORmalized Cut on chAnge criterion MAtrix (NORCAMA) for change classification of multi-temporal SAR time series has been presented. To reduce the effect of speckle, a multi-temporal denoising approach is applied in the pre-processing step. Using both noisy data and denoised data, the approximate likelihood ratio and the generalized likelihood ratio are computed as change criteria. The change classification is performed by clustering on change criterion matrix and classifying of label transformation. Different types of change, like step changes, impulse changes and cycle changes, have been defined by the proposed method, which can be used for multi-temporal SAR image interpretation. Note that the methods in the 3 steps of the proposed framework can be replaced by alternative methods, for instance other denoising approaches for the pre-processing step and other change criteria for the change detection step.

The future work will be focused in introducing spatial information into change analysis such as combining types of change and shapes to identify objects and developing a temporal-spatial SAR image analysis framework. The spatial information should allow us to extend this approach to multi-incidence images. 

Figure 1 :

 1 Figure 1: The global diagram of the proposed framework NORmalized Cut on chAnge criterion MAtrix (NORCAMA). It consists of 3 steps, from left to right: 1) the pre-processing step using a multi-temporal SAR filter (2S-PPB) (Su et al., 2014) to denoise; 2) change detection step using the proposed change criteria based on likelihood ratio test; 3) change classification by the proposed clustering-and-recognizing method.

Figure 2 :

 2 Figure 2: The simulated histograms of R ALRT and R GLRT using synthetic images. The red lines are thresholds τ ALRT and τ GLRT with false alarm 1%. The blue lines are the histograms of unchanged R ALRT and R GLRT .

Figure 4 :

 4 Figure 4: Examples of step changes and impulse changes. From left to right: original multi-temporal SAR images at time t 1 , t 2 , t 3 , t 4 , t 5 , change criterion matrix of a pixel in the red rectangle (cold color: unchanged; warm color: changed).

Figure 3 :

 3 Figure 3: An example of the normalized histograms of R ALRT and R GLRT using real SAR images Paris (detailed in section 5). The red lines are thresholds τ ALRT and τ GLRT with false alarm 1%. The blue lines are the histograms of unchanged R ALRT and R GLRT . The green lines are the histograms of changed R ALRT and R GLRT .

  A pixel series {y t 1 (i), ..., y t 12 (i)} which should be clustered into 2 groups (red and blue).

  ,...,12) (b) CCM M(i) and its eigenvalues.

  Binary CCM M b (i) and its eigenvalues.

Figure 5 :

 5 Figure 5: Estimation of number of clusters. (a). a pixel series {y t 1 (i), ..., y t 12 (i)} which should be clustered into 2 groups; (b). Estimation of the number of clusters using CCM M(i), the gap between λ 2 and λ 3 is not obvious; (b). Estimation of the number of clusters using binary CCM M b (i), the gap between λ 2 and λ 3 is larger.

  .a. 6 single-look images are generated with different changes added in them. As shown in Fig.6.c, different kinds of changes have been introduced, such as step change (in red), impulse change (in green) and cycle change (in blue). Fig.6.d shows the change classification result by R GLRT with confusion matrix shown in Tab.5.2.1.

  (a) Saint-Gervais-les-Bains data set. From left to right: noisy image y 1 , noisy image y 26 and the reference map of changes. (b) Paris data set. From left to right: noisy image y 1 , noisy image y 21 and the reference map of changes.

  positive alarm vs true positive curves of Saint-Gervais-les-Bains and Paris data set.

Figure 7 :

 7 Figure 7: Change detection results for real SAR images Saint-Gervais-les-Bains and Paris data set.

Figure 8 :

 8 Figure 8: Change detection results.

Figure 9 :

 9 Figure 9: Change detection results of real SAR images CARABAS ( Sensor Data Management System (SDMS) Public web site, 2008).

Figure 10 :

 10 Figure 10: Change detection results of real SAR images Sendai.

  Fig.12.a and b only show the first noisy image and its denoising result. Fig.12.c shows the results of the change classification approach by R GLRT , in which red regions denote step changes, green are impulse changes and blue are cycle changes. We can observe that many boats in river have been classified as impulse change. To analyze the performance of change classification, some interesting regions (examples of step change, impulse change, cycle change and complex change) of all the dates have been shown in Fig.13.

  (a) Example of step change (some sports facilities in AT&T ballpark) in San-Francisco. From left to right, the change classification results, the noisy image from date t 1 to t 6 . (b) Example of impulse change (two ships at the pier 48) in San-Francisco. From left to right, the change classification results, the noisy image from date t 1 to t 6 . (c) Example of cycle change (the bank of the river) in San-Francisco. From left to right, the change classification results, the noisy image from date t 1 to t 6 . (d) Example of complex change (the boats at the pier) in San-Francisco. From left to right, the change classification results, the noisy image from date t 1 to t 6 .

Figure 13 :

 13 Figure 13: Details of change classification results of Fig.9.b. From top to bottom: example of step change, impulse change; cycle change and complex change. (black: no change, red: step change, green: impulse change, blue: cycle change and yellow: complex change)

Table 1 :

 1 the matrix containing the vectors v 1 , ..., v p as columns. 4: Consider each row of v ′ as a sample, v ′ = {v ′ 1 , ..., v ′ N }. 5: Cluster the samples v ′ 1 , ..., v ′ N with the k-means algorithm into clusters with p as the number of clusters. The cluster labels of v ′ 1 , ..., v ′ N are l 1 , ...l n , ..., l N (l n ∈ {1, ..., p}). 6: return Cluster labels l 1 , ...l n , ..., l N The identifications of different types of change.

	Types	p	Label series {l t 1 (i), ..., l t N (i)}
	Unchanged	1	{1, 1, ...1}
	Step	2	{1, 1, ...1, 2, 2, ...2}
	Impulse	2	{1, 1

, ...1, 2, 2, ...2, 1, 1, ...1} Cycle 2 {1, ...1, 2, ...2, 1, ...1, 2, ...2, ...} Complex 3 {1, 1, ..., 2, 2..., 3, 3...4, 4...}

Table 3 :

 3 Confusion matrix of change classification results. Unch.: unchanged, Step: step change, Impl.:impulse change, Cyc.: cycle change and Comp.: complex change.

Table 2 :

 2 The change detection methods used in the comparison experiments.
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