NORCAMA: Change Analysis in SAR Time Series by Likelihood Ratio Change Matrix Clustering - Archive ouverte HAL
Rapport Année : 2014

NORCAMA: Change Analysis in SAR Time Series by Likelihood Ratio Change Matrix Clustering

Résumé

This paper presents a likelihood ratio test based method of change detection and classification for synthetic aperture radar (SAR) time series, namely NORmalized Cut on chAnge criterion MAtrix (NORCAMA). This method involves three steps: 1) multi-temporal pre-denoising step over the whole image series to reduce the effect of the speckle noise; 2) likelihood ratio test based change criteria between two images using both the original noisy images and the denoised images; 3) change classification by a normalized cut based clustering-and-recognizing method on change criterion matrix (CCM). The experiments on both synthetic and real SAR image series show the effective performance of the proposed framework.
Fichier principal
Vignette du fichier
HAL_NORCAMA_Su.pdf (9.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00997786 , version 1 (28-05-2014)

Identifiants

  • HAL Id : hal-00997786 , version 1

Citer

Xin Su, Charles-Alban Deledalle, Florence Tupin, Hong Sun. NORCAMA: Change Analysis in SAR Time Series by Likelihood Ratio Change Matrix Clustering. 2014. ⟨hal-00997786⟩
264 Consultations
354 Téléchargements

Partager

More