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SOME SEQUENTIAL MONTE CARLO

TECHNIQUES FOR DATA ASSIMILATION

IN A PLANT GROWTH MODEL

Yuting Chen1, Samis Trevezas1, Aman Gupta1, and Paul-Henry Cournède1

Digiplante, Laboratory of Applied Mathematics and Systems, Ecole Centrale Paris,
France
(E-mail: yuting.chen@ecp.fr)

Abstract. Data assimilation techniques have received considerable attention due to
their capability to improve prediction and the most important applications concern
weather forecasting and hydrology. Among many competing data assimilation ap-
proaches, those based on sequential Monte Carlo (SMC) methods, known as ”particle
filters”, have gained their popularity because they are adaptive to nonlinearity and
non-Gaussianity. In this study we test the performance of three SMC methods to
predict biomass production and allocation in a dynamically evolving plant-growth
model that can be formalized as a nonlinear state space model. The first method
concerns a post-regularized particle filter (Musso and Oudjane[18]) which uses a mix-
ture of Gaussian kernels (or more generally a kernel based method) to avoid sample
impoverishment in the resampling step, the second and the third method involves the
unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF) which are
the extensions of classic Kalman filter invented for nonlinear systems. All the three
approximate Bayesian estimation techniques deal simultaneously in their state vector
fixed model parameters and state variables. We show that these methods perform
well in realistic scenarios with sparse observations and discuss their limitations. Out-
side the context of data assimilation, we also present a maximum likelihood approach
based on a stochastic version of an EM (Expectation-Maximization) algorithm, where
the E-step can be approximated by the aforementioned SMC methods and discuss the
pros and cons of the resulting algorithm. The performance of our methods is illus-
trated on data from the sugar-beet.

Keywords: plant growth model, data assimilation, sequential Monte-Carlo meth-
ods, kernel based method, stochastic EM algorithms, sugar-beet. .

1 Introduction

Due to inherent limitations in both the measurements and plant growth mod-
els, as measurements are often limited and unevenly distributed over time and
the models are usually built based on assumptions coupled with some princi-
ples which inevitably lead to imperfectly defined parameters, the parametriza-
tion and the prediction of plant growth models have commonly been regarded
as complex and critical issues. Sequential data assimilation techniques, espe-
cially the filtering methods have therefore received considerable attention, not
only for the possibility to reconstruct the system by estimating simultaneously
model parameters and state variables but also for their capability of identify



the sources of uncertainties in order to improve prediction accuracy and to
reduce the corresponding confidence interval.

In a Baysian framework, the filtering methods provide distributional esti-
mates instead of point estimates as most of the frequentist methods do, so
while using a historical batch of data to fit the system, the filtering methods
could take into account the variation of model parameters over time. This fea-
ture corresponds exactly the need of the prediction problem in the context of
plant growth model, since it permits us to evaluate the uncertainty related to
the estimated parameters of the model and to assess properly the uncertain-
ties stemming from other sources in order to preserve them during the data
assimilation step. However, the most desired the feature still remains to be the
capacity of predicting nonlinear growth behaviours, especially to predict the
occasionally occurred skewness due to the sudden or unusual climate changes.

When dealing with linear systems, the most efficient filtering method is
Kalman filter (Kalman[13]). To date, many efforts have been made to develop
extension for Kalman filter in nonlinear systems, the most well known exten-
sions remain to be the extended Kalman filter, the unscented Kalman filter and
the ensemble Kalman filter. The Extended Kalman Filter (EKF) (Evensen[9])
simply linearizes locally the model so that the tradition Kalman filter can be
applied. However, in the case that the nonlinearity is significant, it may cause
divergence and the method proves to be no longer reliable. On the other hand,
the Unscented Kalman Filter (UKF) (Julier and Uhlmann[11], Quach et al.[21])
adopts deterministic sampling aiming at using a small set of discretely sampled
points, known as sigma-points (Julier et al.[12], Wan and Van Der Merwe[22]),
to get hold of the information of higher order for both mean and covariance
matrix. The Ensemble Kalman Filter (EnKF) (Evensen[9]) relies on normal-
ity assumptions in order to improve the accuracy of its estimates with a more
important number of samples compared to the UKF. Both latter methods gen-
eralize elegantly to nonlinear systems which are free of the linearization required
by the EKF.

Another important alternative is Particle Filter (Gordonet al.[10], Kita-
gawa[14]), also known as Sequential Importance Sampling. Unlike the Kalman
filter based methods, these Monte-Carlo filtering methods intend to provide
better approximation of the exact posterior distributions by creating a set of
randomly drawn samples with each an associated weight to present the proba-
bility distribution conditioned on a series of observations. However, their main
weakness is the potential degeneracy (Arulampalam et al.[1]) and impoverish-
ment (Gordon et al.[10]). With the purpose of alleviating the undesirable side
effect of resampling to improve the parametrization performance when facing
restricted dataset, we opted for the Convolution Particle Filter (CPF) pro-
posed by Campillo and Rossi[3] based on the post-Regularized Particle Filter
(post-RPF) (Musso and Oudjane[18], Oudjane and Musso[20], Le Gland and
Oudjane[15]).

In this paper, we aim to investigate the properties and the performance of
the three parameter estimation methods: the UKF, the EnKF and the CPF in
the context of sequential data assimilation problems for a plant growth model
with constraint observations, specifically regarding their abilities to provide
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reliable a priori estimates for data assimilation and prediction purposes. The
LNAS model of sugar beet growth (Cournède et al.[8]), as well as three years of
experimental data obtained in comparable but different situations are employed
in the application. One dataset is used for parameter estimation and the two
others are used to test model prediction, with assimilation of the data from
early growth stages.

In Section 2, the principles of the three filtering methods are recalled and
their iterative version for parameter estimation is introduced. Section 3 con-
tains a brief outline of the LNAS model and the experimental datasets, the
description of the calibration and assimilation procedures are equally given.
The results based on the real experimental data are displayed and the corre-
sponding discussion is carried out in Section 4. Finally, some conclusions are
presented in Section 5.

2 Methods

Plant growth models or crop models are generally deterministic and written
in a state-space form, by introducing modeling and measurement noises, these
models can also be elaborated to be stochastic. In both situations, they can
cope with the statistical framework of sequential data assimilation designed to
estimate the time evolving state variables, such as the yield. The difficulty
for an appropriate data assimilation implementation lies not only on the un-
even and irregular measurement data problems, but also on the robustness of
predicting the occasionally occurred skewness due to the sudden or unusual
climate changes.

The proposed approach consists of three steps. In the first place, the least
influential model parameters are screened using sensitivity analysis methods
(Campolongo et al.[4]) and are thus fixed. Regarding the fact that no satisfac-
tory distributions are available for the selected parameters, which are believed
to be the most influential ones, to perform the data assimilation directly, a first
calibration is carried out subsequently based on a given experimental dataset
in the second step. In this paper, the chosen model parameters are estimated
with the three filtering methods with the same prior distribution. To obtain
more precise estimations, the filtering process is iterated by taking the poste-
rior distribution of iteration k as prior distribution for iteration k+1 until the
convergence of all the estimates is achieved. The modeling and measurement
noises can thereafter be evaluated. Meanwhile, since the final distributions are
influenced by the regularization effect and by the empirical estimation of the
modeling and measurement noises, they therefore can no longer represent the
uncertainty of the estimates. The uncertainty related to the unknown param-
eters are hence assessed by parametric bootstrap.

During the third assimilation phase, the CPF approach is implemented
again with the three sets of prior distributions provided by three filtering meth-
ods in the previous calibration step. A new comparable experimental dataset
with few measurements is introduced, so that a recalibration can be carried out.
The probability density is represented by a great number of samples (particles)
which evolve in time. Model parameters and state variables are adjusted and

3



updated based on the available data of early growth stages. The predictions
are then calculated based on the forecasted values of all the particles.

In this section, the general state-space model framework is presented. The
three filtering algorithms as well as their iterative version are thereby briefly
described in order to provide an outline of the parameter estimation step.

2.1 General State-Space Models:

Let a general nonlinear dynamic system be described by the following discrete
time equations:

{

X(t+ 1) = f (X(t), Θ, η(t), t)
Y (t) = g (X(t), Θ, ξ(t), t)

(1)

X(t) represents the system state variable vector at time t, f operates the prop-
agation of the model states. Θ is a vector of parameters of dimension p and η(t)
is the modeling noise, corresponding to model imperfections or uncertainty in
the model inputs. Y (t) is the noisy observation vector of the system which con-
sists of state variables that can be observed experimentally and usually differ
from X(t) (such as biomasses of some plant organs that can be measured while
the daily biomass production cannot). g is the transition operator which links
the observations to the system states by adding measurement noises, denoted
by ξ(t). (η(t))t and (ξ(t))t are considered as sequences of independent and
identically distributed random variables. Since experimental observations are
usually limited due to high costs, observations are only available at irregular
times. Let (t1, t2, ...tN ) be the N measurement time steps. For all n ∈ [1;N ],
we set: Xn := X(tn), Yn := Y (tn) and Y1:n := (Y (t1) , Y (t2) , . . . , Y (tn)).

The objective of the filtering methods is to estimate jointly the parameters
and the hidden states of the dynamic system by processing the data online. An
augmented state vector Xa

n = (Xn, Θn) is thus defined with Xn the true hidden
state at time tn and Θn the vector of unknown parameters. In the following, if
X represents a random variable with values in X , then for all x ∈ X , p(x) will
denote the probability density of X in x. The first-order hidden Markov model
is characterized by the transition density p(xa

n|x
a
n−1) corresponding to the state

equation, the observation density p(yn|x
a
n) corresponding to the observation

equation and the initial density p(xa
0).

2.2 Convolution Particle Filter

Particle filter has been regarded as a standard technique for performing recur-
sive nonlinear estimation (Arulampalam et al.[1]). However, since the discrete
approximation of the filtering distribution may result in sample impoverish-
ment, a regularization strategy was invented to transform the discrete approx-
imation to a continuous one, this approach is thus named as Post-Regularized
Particle Filter (Oudjane and Musso[19]). In the case that the analytic form of
the observation density p(yn|xn) is unknown, an observation kernel can sim-
ilarly be introduced (Campillo and Rossi[3]), the approach is thus called the
Convolution Particle Filter.
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In the initialization step, the particles are initialized from either informative
distributions (p(xa

0)) or non-informative distributions. Uniform weights are
assigned to each particle. Only at time steps when the observation is available
that the filtering process is carried out with two steps:

Prediction: A kernel estimator denoted by p̂(xa
n+1, yn+1|y0:n) is built. M par-

ticles {x̃a
n
(i), i = 1, . . . ,M} are sampled from the distribution with conditional

density p̂(xa
n|y0:n). The M particles are integrated forward in time by the evo-

lution model until the next available measurement date to obtain the forecasted
states {x̃a

n+1−
(i), i = 1, . . . ,M}. A weight is assigned to each particle based on

the experimental measurements and the forecasted value. The empirical kernel
approximation of the probability density of (Xa

n+1, Yn+1) conditional to Y0:n

can thus be deduced using the Parzen-Rosenblatt kernel KX
hX
M

, with bandwidth

parameter hX
M :

p̂(xa
n+1, yn+1|y0:n) =

1

M

M
∑

i=1

KX
hX
M

(

xa
n+1 − x̃a

n+1−
(i)
)

· p
(

yn+1|x̃
a
n+1−

(i)
)

.

(2)

Correction: The regularization is performed on the weighted samples, there-
fore the kernel approximation for p(xa

n+1|y1:n+1) can be expressed under the
form:

p̂(xa
n+1|y1:n+1) =

1
M
∑

i=1

p(yn+1|x̃
a
n+1−

(i))

·
M
∑

i=1

KX
hX
M
(xa

n+1 − x̃a
n+1−

(i))p(yn+1|x̃
a
n+1−

(i)).

(3)

Where p(yn+1|x̃
a
n+1−

(i))/
∑M

i=1p(yn+1|x̃
a
n+1−

(i)) can be regarded as the nor-

malized weight w̃
(i)
n+1 associated to the particle x̃a

n+1−
(i). In the case that the

likelihood function cannot be compute, inspired by the Post-Regularized Parti-
cle Filter, a convolution kernel is introduced to regularize the likelihood of the
observation.

2.3 Unscented Kalman Filter

The Unscented Kalman Filter is known as one of the nonlinear extensions of
classical Kalman Filter. When fa

n and gn are no longer linear, the density
p(xa

n|y0:n) doesn’t follow the normal distribution any more. Based on normal
assumptions, an approximation is adopted by creating a series of sigma-points
for nonlinear systems.
Prediction:
dη = dim(ηn+1), dX = dim(x̂a

n|n) and dη,X = dη + dX
Jn and Rn are the covariance matrix for ηn and ξn respectively
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Compute the 2dη,X + 1 sigma-points χi
n|n and their weights ωi according to

N
(

x̂b
n|n, Σ̂

xb

n|n

)

, with

x̂b
n|n = (x̂a

n|n,0dη
) and Σ̂xb

n|n =

(

Σ̂xa

n|n 0dX ,dη
.

0dη,dX
Jn+1

)

We propagate the sigma-points to obtain the expectation at time n+ 1 :

x̂a
n+1|n =

2dη,X+1
∑

i=1

ωiχ
i
n+1|n and ŷn+1|n =

2dη,X+1
∑

i=1

ωign+1(χ
i
n+1|n)

The associated covariance matrix :

Σ̂xa

n+1|n =

2dη,X+1
∑

i=1

ωi(χ
i
n+1|n − x̂a

n+1|n)
T (χi

n+1|n − x̂a
n+1|n). (4)

Σ̂y

n+1|n =

2dη,X+1
∑

i=1

ωi(ζ
i
n+1|n − ŷn+1|n)

T (ζin+1|n − ŷn+1|n). (5)

Σ̂xay

n+1|n =

2dη,X+1
∑

i=1

ωi(χ
i
n+1|n − x̂a

n+1|n)
T (gn+1(χ

i
n+1|n)− ŷn+1|n). (6)

Correction :
Compute the Kalman gain:

Kn+1 = Σ̂xay

n+1|n

(

Σ̂y

n+1|n

)−1

.

The corrected estimator and the corresponding covariance matrix at time n+1:

x̂a
n+1|n+1 = x̂a

n+1|n +Kn+1(yn+1 − ŷn+1|n)
T (7)

Σ̂xa

n+1|n+1 = Σ̂xa

n+1|n −Kn+1Σ̂
y

n+1|nK
T
n+1. (8)

2.4 Ensemble Kalman Filter

The Ensemble Kalman Filter is another extension of Kalman filter designed for
nonlinear system. It’s established based on the Monte-Carlo method coupled
with the Kalman formulation.
Prediction:
The expectation of Xa

n+1 given Y0:n can be obtained with the evolution equa-
tion:

x̂a
n+1|n = E[Xa

n+1|Y0:n] = E[fa
n+1(X

a
n, η

a
n+1)|Y0:n].

The covariance matrix associated to Xa
n+1 given Y0:n is:

Σ̂xa

n+1|n = E[(Xa
n+1 − x̂a

n+1|n)
T (Xa

n+1 − x̂a
n+1|n)|Y0:n]. (9)
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In the same way for p(yn+1|y0:n), we may obtain the corresponding expectation
as following:

ŷn+1|n = E[Yn+1|Y0:n] = E[gn+1(X
a
n+1) + ξn+1|Y0:n] = E[gn+1(X

a
n+1)|Y0:n]

(10)
and the associate covariance matrix can thus be calculated:

Σ̂y

n+1|n = E[(Yn+1 − ŷn+1|n)
T (Yn+1 − ŷn+1|n)|Y0:n]

= E[(gn+1(X
a
n+1)− ŷn+1|n)

T (gn+1(X
a
n+1)− ŷn+1|n)|Y0:n] +Rn+1.

(11)

The cross correlation matrix of Xa
n+1 and Yn+1 given Y0:n is also corrected as

follows:
Σ̂xay

n+1|n = E[(Xa
n+1 − x̂a

n+1|n)
T (Yn+1 − ŷn+1|n)|Y0:n]. (12)

Correction :
Computed in the same way as in the UKF approach.

2.5 Iterative Filtering and the Conditional Approach

In the case of off-line estimation with a finite number of observations, in order
to determine the prior distributions for data assimilation, an iterative version
of filtering (Chen et al.[6]) can hence be applied. At iteration k, the particles
xa
0
(i) are obtained as follows: the initial state vectors {x̃0

(i), i = 1, . . . ,M}
are selected in the same way as for the classical filtering process (sampled

from p(x0)), and the vectors of unknown parameters {Θ̃
(i)
0 , i = 1, . . . ,M} are

sampled from the multivariate Gaussian distribution defined by the mean and
covariance matrix of {Θ̃N

(i), i = 1, . . . ,M} at iteration k − 1. An averaging
technique (Cappé et al.[5]) is used to smooth parameter estimates after a small
burn-in period.

In order to evaluate the modeling and the observation noises, a conditional
maximization approach (Chen et al.[7]) is carried out to estimate the noise
related parameters, denoted Θ2. Based on the results of the model parameter
(denoted Θ1) and state variable estimation performed by the iterative filtering
processes, the noise parameters are therefore estimated empirically. The noise
parameter estimation and the model parameter estimation are alternated so as
to provide coherence estimates of Θ.

3 Application

3.1 LNAS Model of Plant Growth

The equations are specifically derived for the sugar beet, per unit surface area,
with two kinds of organ compartments taken into account: foliage and root
system.

Biomass production: Q(t) is the biomass production on day t per unit
surface area (g.m−2) which can be obtained by generalizing the Beer-Lambert
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law (Monteith[17]):
(

1− e−λ·Qg(t)
)

represents the fraction of intercepted radi-
ation, with λ (g−1.m2) a parameter and Qg(t) the total mass of green leaves
on day t (in g.m−2). The biomass production of the whole plant is then de-
duced by multiplying the total amount of absorbed photosynthetically active
radiation per unit surface area (PAR, in MJ.m−2) and an energetic efficiency
µ (in g ·MJ−1·):

Q(t) =
(

µ · PAR(t)
(

1− e−λQg(t)
))

· (1 + ηQ(t)) (13)

with the modeling noise ηQ ∼ N (0, σ2
Q).

Allocation for the foliage and root system compartments:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t) (14)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t) (15)

where
γ(t) = (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)) (16)

with τ(t) the thermal time, which corresponds to the accumulated daily
temperature since emergence day, Ga the cumulative distribution function of
a log-normal law parameterized by its median µa and standard deviation sa,
and the modeling noise (process noise) denoted by ηγ(t) ∼ N (0, σ2

γ).
Senescence: The senescent foliage mass Qs is a proportion of the accumu-

lated foliage mass given by the cumulative distribution of a log-normal law of
median µs and standard deviation ss:

Qs(t) = Gs(τ(t)− τsen)Qf (t) (17)

with τsen the thermal time at which the senescence process initiates. The green
foliage mass Qg can be hence obtained easily:

Qg(t) = Qf (t)−Qs(t) (18)

Observations: The observation variables potentially available from field
measurements are:

Y (t) =

(

Qg(t) · (1 + ǫg(t))
Qr(t) · (1 + ǫr(t))

)

(19)

with measurement noises: ǫg(t)) ∼ N (0, σ2
g), and ǫr(t) ∼ N (0, σ2

r).

3.2 Experimental Data

The concerned datasets consist of limited experimental observations furnished
by the French institute for Sugar Beet research (ITB, Paris, France) in 2006,
2008 and 2010 with different cultivars and measured in different locations (fur-
ther experimental protocols details are presented in Lemaire et al.[16]). The
2010 dataset is chosen for calibration simply since it contains more observation
points. Dry matter of root and leaves of 50 plants were collected at 14 dates:

O2010 = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160} ,
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whilst for the assimilation and prediction step, the two other datasets (2006
and 2008) are used for which the same type of observations, the green foliage
mass denoted by Qg and the root compartment mass denoted by Qr, were
made but only at 7 dates:

O2006 = {54, 59, 66, 88, 114, 142, 198} ,

O2008 = {39, 60, 67, 75, 88, 122, 158} .

The final observations contains the mean value calculated based on all the
samples and extrapolated at m2.

3.3 Three-step analysis for prediction

The prediction process is carried out in three steps as indicated in Fig. 1.

Fig. 1. The flow of the three-step analysis for prediction.

Parameter Screening by Sensitivity Analysis: Plant growth models con-
tains frequently a large number of parameters which make the parametric esti-
mation from experimental data difficult with important uncertainty linked to
the estimates. With the purpose of selecting parameters identified as the most
influential ones to be estimated, sensitivity analysis is therefore applied. Those
screened as the least influential parameters can be fixed to any values in their
domains. This method is called ”screening” or ”factor fixing” (Campolongo et

al.[4]).
With this objective, we use the algorithm proposed by Wu et al.[23] to

compute Sobol’s indices (first order and total order) of all the functional pa-
rameters, choosing as output a generalized least-square criteria.

As indicated by Fig. 2, we screen the parameters sa, µsen, ssen and fix them
to their mean values of the variation interval, as their total order indexes are
all below 0.02 . For the five other parameters, their total order effects suggest
that they should be estimated from experimental data.

Parameter Estimation: Based on the sensitivity analysis results, the un-
known parameter vector for the deterministic part of the model isΘ1 = (µ, λ, µa, γ0, γf )
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Fig. 2. Comparison of the first and total order indexes for µ, λ, γ0, γf , µa, sa, µsen

and ssen.

and the unknown noise parameter vector is Θ2 = (σQ, σγ , σg, σr). For the con-
ditional ICPF approach, 150000 particles were initialized with the same prior
distributions as for the conditional IEnKF and IUKF approach. For the con-
ditional IEnKF approach, an ensemble size of 400 is adopted. For all the three
approaches, the conditional estimation process began with the estimation of
Θ1 given Θ2, then Θ2 was estimated empirically based on the estimates of the
hidden states. The estimation then proceeded with the new value of Θ2 and
iterated. After the convergence of both Θ1 and Θ2, which is claimed by a
standard stopping rule based on the relative changes in the estimations from
three successive estimations (Booth and Hobert[2]). A parametric bootstrap
was also achieved to evaluate the estimates’ uncertainty. Standard deviations
and confidence intervals were hence obtained from 100 bootstrap samples. The
corresponding results are given in Table 1.

Data Assimilation with CPF: In the previous calibration step, all of the
three filtering methods are applied to the LNAS model which allow us to esti-
mate jointly the unknown parameters and the hidden state variables base on a
historical batch of data (2010 dataset). The parametric bootstrap results pro-
vided by the three filtering methods were used as prior information of the CPF
method in the assimilation step. 500000 particles were simulated for prediction
purpose. For both the 2006 and 2008 datasets, all but the last two measure-
ments were used to update the parameter and state estimates. Regarding the
2006 dataset, after day 114 (resp. day 88 for the 2008 dataset), the propagation
of particles continued without any further correction. The simulated values of
the state variables Qg and Qr on day 142 and 198 (resp. day 122 and 158 for
the 2008 dataset) of all the particles as well as their associated weight were
used to build the posterior distributions of the prediction.

In order to provide reference values of the prediction without assimilation
(second phase of calibration based on the data of early growth stages), Uncer-
tainty Analysis (UA) is also performed. 500000 simulations were initialized in
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Parameter IEnKF ICPF IUKF
Estimates Std. Estimates Std. Estimates Std.

µ 3.60 0.15 3.56 0.12 3.90 0.27
λ 60.16 6.51 59.55 3.13 60.18 6.49
γ0 0.83 0.09 0.84 0.04 0.80 0.06
γf 0.206 0.058 0.194 0.053 0.216 0.048
µa 639.39 83.28 642.33 62.40 579.98 73.75
sa 276.18 149.83 308.69 109.95 338.31 44.89

σQ 0.040 - 0.042 - 0.040⋆ -
σγ 0.061 - 0.064 - 0.060⋆ -
σg 0.137 - 0.142 - 0.156 -
σr 0.166 - 0.165 - 0.193 -

Likelihood -167.375 - -164.733 - -176.685 -
AIC 354.750 - 349.466 - 369.370 -
BIC 368.072 - 362.788 - 380.028 -

Table 1. Estimated values and approximated standard deviations for the IEnKF,
ICPF and IUKF estimation for 6 functional parameters and 4 noise parameters of
LNAS model. ⋆:For the IUKF method, due to the estimation limitation, the modeling
noise parameters σQ and σγ are fixed based on the estimation given by the two other
methods.

the same way as in the CPF approach, which indicates that samples of Θ1 were
drawn from the distributions defined by the covariance matrix and the mean
estimates given by the calibration phase. The independent simulations of these
samples in the stochastic dynamic system can thus provide the distribution of
the model outputs of interest.

4 Results and Discussion

Better performance of ICPF estimates are noted when it comes to the evalua-
tion of log-likelihood as well as the AIC and AICc criteria during the calibration
step based on the 2010 dataset, as illustrated by Table 1.

Generally speaking the assimilation step has well established its undeniable
value as demonstrated by Table 2 compared to the prediction results without
assimilation. The estimation relative error was reduced up to 42.4% when data
assimilation was performed. In the meantime, the standard error related to
the prediction was also significantly decreased in all cases when the second
calibration has taken place based on the early growth data.

For green leaf biomass allocation, it has always been the ICPF estimates
that gave the best predictions for both years, as indicated by Fig. 6 and Fig.
7. This may be related to its important nonlinearity.

IUKF provided the best 2008 root prediction, for the root biomass allocation
is more linear then the green leaf biomass allocation according to Fig. 3 and
Fig 4. This may also explain the fact that the prediction based on the IUKF
estimates for the green leaf biomass are less accurate compared to the results
given by the other two estimates.

However, it is not quite the case for the 2006 root biomass prediction.
Although the IEnKF estimates showed best performance, we notice that the
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IEnKF ICPF IUKF
DA UA DA UA DA UA

Qb (t142)
Relative error 4.2% 45.8% 2.1% 44.5% 6.1% 55.6%

Std. 56.0 163.7 56.1 128.7 62.7 165.0

Qb (t198)
Relative error 11.2% 46.5% 7.2% 43.4% 14.4% 58.5%

Std. 63.1 141.2 61.5 116.8 68.3 144.2

Qr (t142)
Relative error 4.8% 29.8% 5.7% 32.2% 6.3% 43.1%

Std. 256.0 384.3 256.1 354.3 303.4 479.2

Qr (t198)
Relative error 2.5% 2.5% 3.9% 20.6% 4.8% 29.8%

Std. 420.4 553.4 419.9 522.3 503.7 693.6

Table 2. Comparison of model prediction capacity of estimates provided by three
filtering methods (IEnKF, ICPF and IUKF) based on the 2006 dataset with and
without assimilation of data at the early growth stage. DA: with data assimilation,
UA: uncertainty analysis without data assimilation.

performance of the three sets of estimates were relatively close, as suggested
by Fig. 5.

Therefore in general, the most accurate predictions are still provided by the
ICPF, regardless the time and the memory it required.

Fig. 3. Comparison of the predictions of Qr in 2008 performed with or without data
assimilation (Uncertainty Analysis) based on IUKF estimates.

Considering the time-consuming problem of the iterative version of parti-
cle filtering methods, it might be interesting to be less exigent on the model
parameter estimation and loosen the convergence criterion so as to reduce the
iteration numbers. Given the fact that the parameters are to be adjusted in
the assimilation step, the importance of the point estimation in the calibration
step might be over evaluated. However, it is noteworthy that the noise related
parameters have played an crucial role in the uncertainty assessment of the
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Fig. 4. Comparison of the predictions of Qg in 2008 performed with or without data
assimilation (Uncertainty Analysis) based on ICPF estimates.

Fig. 5. Comparison of the predictions of Qr in 2006 performed with data assimilation
based on IEnKF, IUKF and ICPF estimates.

Real Data 2006 IEnKF estimates Std. ICPF estimates Std. IUKF estimates Std.
(relative error in %) (relative error in %) (relative error in %)

Qb (t142) 355.2 370.2 (4.2%) 56.0 362.7 (2.1%) 56.1 376.8 (6.1%) 62.7
Qb (t198) 320.6 356.6 (11.2%) 63.1 343.8 (7.2%) 61.5 366.8 (14.4%) 68.3
Qr (t142) 1459.2 1529.1 (4.8%) 256.0 1542.7 (5.7%) 256.1 1551.3 (6.3%) 303.4
Qr (t198) 2400.0 2460.6 (2.5%) 420.4 2493.0 (3.9%) 419.9 2513.9 (4.8%) 503.7

Table 3. Comparison of model prediction capacity of estimates provided by three fil-
tering methods (IEnKF, ICPF and IUKF) based on the 2006 dataset with assimilation
of data at the early growth stage.

predictions. According to our tests, the prediction results are very sensitive
to the level of observation noises. Since the level of noise parameter evaluated
on one year cannot represent the level of observations made in another year
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Fig. 6. Comparison of the predictions of Qg in 2006 performed with data assimilation
based on IEnKF, IUKF and ICPF estimates.

Fig. 7. Comparison of the predictions of Qg in 2008 performed with data assimilation
based on IEnKF, IUKF and ICPF estimates.

Real Data 2008 IEnKF estimates Std. ICPF estimates Std. IUKF estimates Std.
(relative error in %) (relative error in %) (relative error in %)

Qb (t122) 373.5 419.5 (12.3%) 68.9 410.6 (9.9%) 68.1 440.9 (18.1%) 77.4
Qb (t158) 380.6 433.1 (13.8%) 80.5 418.9 (10.1%) 77.8 461.1 (21.2%) 88.4
Qr (t122) 1559.1 1460.5 (6.3%) 248.5 1466.7 (5.9% ) 246.7 1508.8 (3.2%) 298.3
Qr (t158) 2327.7 2125.6 (8.7%) 367.1 2137.6 (8.2%) 363.2 2213.7 (4.9%) 444.4

Table 4. Comparison of model prediction capacity of estimates provided by three fil-
tering methods (IEnKF, ICPF and IUKF) based on the 2006 dataset with assimilation
of data at the early growth stage.

or in a different location, applying the same level of noises in the assimilation
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step with a different dataset is debatable. Further studies are hence needed to
address the influence of the observation noise level to the prediction quality.

5 Conclusion

Overall, the proposed three-step sequential data assimilation approach allows us
to address properly various sources of uncertainties and to obtain satisfactory
prediction results. The filtering methods allow us to consider that certain
model parameters are time-variant. The procedure used in this study preserve
the flexibility to investigate some possible time-variant parameters.

Regarding the three filtering methods, despite the normal assumption de-
pendency, the IEnKF has provided a proper approximation for the nonlinear
growth model LNAS. Although globally the ICPF provided the most accurate
prediction and the smallest standard deviation, considering the fact that it is far
more time-consuming compared to the IEnKF approach during the calibration
step, the results suggest more advantages in the sequential data assimilation for
the latter approach. Therefore, when the nonlinearity is not extremely impor-
tant, the IEnKF is recommended. However, if the nonlinearity of the model is
remarkable or in the case that cannot be easily evaluated, the ICPF approach
is more suitable.
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6.Y.T. Chen and P.-H. Cournède. Assessment of parameter uncertainty in plant
growth model identification. In M. Kang, Y. Dumont, and Y. Guo, editors, Plant
growth Modeling, simulation, visualization and their Applications (PMA12).
IEEE Computer Society (Los Alamitos, California), 2012.
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