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Abstract

Parameter estimation in complex models arising in real data applications is a
topic which still attracts a lot of interest. In this article, we study a specific data and
parameter augmentation method which gives us the opportunity to estimate more
easily the parameters of the initial model. For this reason, the notion of Gaussian
randomization of a model with respect to some of its parameters is introduced. The
initial model can be regarded as a submodel of the resulting extended incomplete
data model. Under the assumption that the initial model has a unique maximum
likelihood estimator (MLE) and that the likelihood function is continuous we prove
that the extended model has a unique MLE with common values for the parameters
of the MLE which correspond to the initial model. We also prove the reverse
direction. Moreover, an appropriate stochastic version of an EM (Expectation-
Maximization) algorithm is suggested to make parameter estimation feasible. In
particular, we describe how the regularized particle filter of [21] can be used in this
frequentist-based approach to perform the Monte Carlo E-step at each iteration of
the stochastic EM algorithm. This regularized version is particularly adapted to the
framework of Gaussian randomization since the last iterations of the EM algorithm
are characterized by low variance in the parameter distributions. A toy example with
available analytic solutions, a synthetic example and a real data application with
scarce observations to the LNAS (Log-Normal Allocation and Senescence) model of
sugar beet growth are presented to highlight some theoretical and practical aspects
of the proposed methodology.

Key words and phrases: Gaussian randomization; stochastic EM algorithm; regularized

particle filter; plant growth model; LNAS model; state space model

1 Introduction

The current paper is motivated by the need to have a simpler method to perform pa-

rameter estimation in plant growth models which are usually characterized by complex
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parameterization and scarce experimental data. Nevertheless, our proposed method is

generic and could be used in any statistical model under certain conditions that we state

in the sequel. The basic idea consists in interpreting some of the parameters of the model

as the means of unobserved states following normal distributions with unknown variances.

The resulting data and parameter augmentation method enable us to estimate more easily

the parameters of the initial model with the help of an iterative state estimation tech-

nique for the extended model. The term Gaussian randomization is introduced for such

type of modifications. The proposed method should not be confused with the Bayesian

approach. The variance parameters involved in the Gaussian randomization are assumed

to be unknown in contrast to the Bayesian approach in which normal priors are selected

for the parameters of the model.

The estimation is performed in the classical framework of incomplete data models via

an appropriate stochastic variant of an EM-type algorithm [11]. In contrast to classical

stochastic variants ([6], [27], [10]) the proposed regularized particle-filter EM algorithm is

particularly adapted to the extended model resulting from the Gaussian randomization,

since the last iterations of the algorithm are performed under very low variance scenarios.

Some recent efforts to obtain appropriate stochastic EM-type algorithms for complex

models arising in plant growth model applications can be found in [25] and [26]. These

algorithms are designed for a non-explicit M-step and a numerical maximization algorithm

is involved as well in one of the conditional maximization steps. In this paper we present

a simple way of turning a non-explicit M-step into an explicit one and opt for the post-

regularized particle filter (post-RPF, e.g., [21], [23] and [16]) to perform the E-step. We

mention that the use of this type of particle filter was restricted until now to Bayesian

type estimation.

The method is proved to be well-adapted for mathematical models of plant growth

and more generally in life sciences, for which model parameterization is generally a dif-

ficult process. Such type of models are characterized by a large number of interacting

processes with a large number of model parameters, nonlinear dynamics and scarce data

for parameter estimation, resulting from costly experimental data acquisition. Bayesian

inference methods offer interesting perspectives to cope with such characteristics, mostly

due to their robustness when confronted to scarce data, and have been used for this pur-
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pose in plant growth modeling ([28], [13]). However, in such situations the influence of

a priori distributions is prevalent ([7]) while it is generally not easy to assess precisely.

Our approach can be seen as an effort to combine the robustness of Bayesian methods

while preserving the prevalence of observation data and the interest of point estimation

for mechanistic plant models, in which the biophysical meaning and value of parameters

are crucial.

The paper is organized as follows. In Section 2, we introduce the notion of Gaussian

randomization and present a theoretical framework for transforming the parameter esti-

mation problem in the initial model into a problem that can be solved with the help of

an appropriate EM-type algorithm in the resulting incomplete data model. In Section 3,

we illustrate this idea in a toy Gaussian model, where analytic solutions are available. In

Section 4, we first describe a parametric model which arises in the description of the sugar

beet growth, then give a state space model representation and finally apply the idea of

Gaussian randomization for this model. In Section 5, we introduce a regularized particle

filter approximation of the E-step of the EM algorithm in order to make feasible parame-

ter estimation and give a synthetic example. In order to illustrate the performance of the

algorithm with real data, we present in Section 6 a case study with irregular observations

(scarce data) from the sugar beet plant.

2 Gaussian randomization

Let us consider an arbitrary parametric statistical model m , {(Ω,A,Pµ);µ ∈ M}, where

M is a euclidean subset, and a random vector Y (representing the data vector) defined

on this probability space and taking values in a measured space {(Y ,B, ν)}, where ν is a

reference measure. In this paper the vector Y admits a density p(y;µ) w.r.t. ν for each

µ ∈ M and for a given observation Y = y, the likelihood function is denoted by L(µ).

The following assumption will be used in the sequel:

Assumption 1. i) The likelihood function L(µ) is continuous on M ,

ii) The model has a unique MLE µ∗, i.e., for all µ ∈ M,

0 ≤ L(µ) ≤ L(µ∗),

and the second inequality is strict for µ 6= µ∗.
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Let us suppose that maximization of L(µ) or logL(µ) w.r.t. some of the parameters

of µ is very difficult to perform. In particular, let us decompose the unknown parameter

µ = (µ1, µ2), where µ1 could represent a part of the parameter vector that could not be

updated explicitly in an iterative conditional maximization procedure by fixing µ2. The

general idea consists in considering an enlarged model, by adding parameters and hidden

variables to the existing model, in such a way that maximization w.r.t. to the augmented

parameter vector in the enlarged model is equivalent to the initial maximization problem.

In this direction, we give a first definition. Let dx denote the dimension of a vector x. We

treat the case where µ1 ∈ R
dµ1 .

Definition 1. Let m be a statistical model which satisfies Assumption 1 and µ = (µ1, µ2),

where µ1 ∈ R
dµ1 . The statistical model m̃(µ1) will be called Gaussian randomization of

m w.r.t. µ1 if m̃(µ1) is an incomplete data model, which consists in:

i) a Gaussian hidden vector Θ, where

Θ ∼ Ndµ1
(µ1,Σ),

and Σ = diag{σ2
i }1≤i≤dµ1

, where σ2
i > 0,

ii) an observed vector Y , where the conditional distribution of Y given Θ = θ depends

only on the parameter µ2 and satisfies:

p(y|θ;µ2) = L(θ, µ2).

Let us take σ2 = (σ2
i )1≤i≤dµ1

∈ (R∗
+)

dµ1 to be a minimal vector representation of

the corresponding covariance matrix Σ. The parameterization corresponding to m̃(µ1) is

given by:

φ = (µ, σ2) = (µ1, µ2, σ
2) ∈ Φ = M × (R∗

+)
dµ1 ⊂ R

dφ . (1)

Let us now assume that we allow some variance parameters of Θ to be null. This is

equivalent to say that the corresponding parameters are not randomized. Denote by µ11

the subvector of µ1 with associated strictly positive variances. According to Definition 1-i)

this model is no longer a Gaussian randomization of m w.r.t. µ1 but rather a Gaussian

randomization of m w.r.t. µ11. In order to treat in a common framework the class of

all Gaussian randomizations of m w.r.t. to subvectors of µ1 we allow null variances in
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the parameterization. Most importantly, if σ2 is assigned to the null vector 0dµ1 , then

the parameter φ = (µ1, µ2, 0dµ1 ) could be identified with the parameter µ = (µ1, µ2) of

the initial model m. In this way m could be understood as a submodel of m̃(µ1). In the

sequel we justify theoretically this intuition. Let us first state the following lemma.

Lemma 1. The likelihood function L̃(φ) of the extended model m̃(µ1) as given in Defini-

tion 1 is upper bounded by L(µ∗).

Proof: First, we compute the likelihood function L̃(φ) of the extended model m̃(µ1). We

have:

L̃(φ) = p(y;φ) =

∫

θ∈M1

p(θ, y;φ)dθ

=

∫

θ∈M1

p(θ;µ1, σ
2) p(y|θ;µ2)dθ

= Eµ1,σ2

(
p(y|Θ;µ2)

)
, (2)

where Θ ∼ Ndµ1
(µ1,Σ) according to Definition 1-i). By using Definition 1-ii) and As-

sumption 1-ii) we get successively that for any φ ∈ Φ,

L̃(φ) = Eµ1,σ2

(
L(Θ, µ2)

)
≤ L(µ∗), (3)

and this completes the proof. �

In order to justify the existence of the MLE in this extended model, we need to

extend the likelihood function of m̃(µ1) to parameter values which include null variances

as explained at the beginning of this section and give the correct interpretation in this

type of boundary values. We will need the following lemma.

Lemma 2. Let x ∈ R
dx, I ⊂ {1, . . . , dx} and J = {1, . . . , dx} \ I. Let also σ2

I and

σ2
J be the subvectors of σ2 ∈ R

dx with components indexed by I and J respectively. If

we consider the family of non-singular random vectors {Xσ2 ;Xσ2 ∼ Ndx(x,Σ)}, where

Σ = diag{σ2
i }1≤i≤dx, then we have

Xσ2
weakly

−−−−−→
||σ2

J
||→0

Xσ2
I
∼ Ndx(x,ΣI),

where ΣI is a singular covariance matrix which results from Σ by putting σ2
J = 0J . In

particular, if I = ∅, then

Xσ2
weakly

−−−−→
||σ2||→0

x.
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Proof: We denote by φσ2 , φσ2
I
and φ0 the characteristic functions of Xσ2 , Xσ2

I
and the

constant vector x respectively. It suffices to show that as σ2
J → 0J , φσ2 converges pointwise

to φσ2
I
. Indeed, let t = (t1, . . . , tdx)

⊤ ∈ R
dx . We have

φσ2(t) = eit
⊤x− 1

2
t⊤Σt −−−−−→

||σ2
J
||→0

eit
⊤x− 1

2
t⊤ΣI t = φσ2

I
(t). (4)

In particular, if I = ∅, then ΣI is the null matrix and by (4), φσ2 converges pointwise to

φ0. �

Proposition 1. Let I ⊂ {1, . . . , dµ1} and J = {1, . . . , dµ1}\I. Let also µI be the subvector

of µ1 with components indexed by I, and σ2
I , σ

2
J and ΣI as given in Lemma 2. We have

L̃(φ) = L̃(µ, σ2
I , σ

2
J) −−−−−→

||σ2
J
||→0

L̃(µ, σ2
I ),

where L̃(µ, σ2
I ) is the likelihood function associated with the m̃(µI) Gaussian randomization

of m. In particular, if I = ∅, then

L̃(φ) = L̃(µ, σ2) −−−−→
||σ2||→0

L(µ),

where L(µ) is the likelihood function associated with the initial model m.

Proof: By (3) the likelihood L̃(φ) is expressed as the expectation of the random variable

L(Θ, µ2), where Θ ∼ Ndµ1
(µ1,Σ). For clarity, let us denote {Θσ2} the family of random

vectors Θ indexed by σ2. Then, we can rewrite (3) as

L̃(φ) = Eµ1,σ2

(
L(Θσ2 , µ2)

)
. (5)

If we apply Lemma 2 for the family {Θσ2}, we have that for any (µ1, σ
2
I ),

Θσ2
weakly

−−−−−→
||σ2

J
||→0

Θσ2
I
∼ Ndµ1

(µ1,ΣI),

or equivalently, for any continuous and bounded function f : Rdµ1 → R,

Eµ1,σ2

(
f(Θσ2)

)
−−−−−→
||σ2

J
||→0

Eµ1,σ2
I
,0J

(
f(Θσ2

I
)
)
, (6)

where we have used the characterization of weak convergence of a family of random

vectors (indexed by a continuous parameter) to a random vector in a specific limit point.
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By Assumption 1, the likelihood function L(µ) is continuous on M and bounded by L(µ∗).

Consequently, for any µ2, the function g : Rdµ1 → R, where µ1 7→ L(µ1, µ2) is continuous

on M1 and bounded. Using this and (6), we have

Eµ1,σ2

(
L(Θσ2 , µ2)

)
= Eµ1,σ2

(
g(Θσ2)

)
−−−−−→
||σ2

J
||→0

Eµ1,σ2
I
,0J

(
g(Θσ2

I
)
)
= EµI ,σ

2
I

(
L(ΘI,σ2

I
, µJ , µ2)

)
,

(7)

where ΘI,σ2
I
is the subvector of Θσ2 indexed by I. In the last expectation σ2

i > 0 only for

i ∈ I and consequently the last term corresponds to the analogue of (5) for an equivalent

representation of the likelihood function associated to the m̃(µI) Gaussian randomization

of m. If I = ∅, then obviously the last term coincides with L(µ) and the proof is complete.

�

By Proposition 1 we can consider in a unified framework the class {m̃(µI)}I of 2
dµ1 −1

Gaussian randomizations of m w.r.t. to subvectors of µ1 together with the initial model

m, which corresponds to the choice I = ∅. For this reason we extend the domain of L̃(φ),

from Φ given by (1) to Φ̃ = M × (R+)
dµ1 by allowing null variances as follows:

L̃(µ, σ2
I , 0J) = L̃(µ, σ2

I ), (8)

L̃(µ, 0dµ1
) = L(µ). (9)

With similar arguments as in the proof of Proposition 1 we can deduce from the conti-

nuity of L(µ) on M that L̃(φ) is continuous on Φ (as (µ, σ2) → (µ0, σ
2
0) ∈ Φ show that

(Θµ1,σ2 , µ2) converges weakly to (Θµ1,0,σ2
0
, µ2,0)). Consequently, both equations (8) and (9)

determine the continuous extension of L̃ from Φ to Φ̃ by using Proposition 1.

Theorem 1. Let us consider the class m̃µ1 of all Gaussian randomizations {m̃(µI)}I of

the initial model m, where I ⊂ {1, . . . , dµ1} (for I = ∅, m̃(µ∅) = m) and µI is defined in

Proposition 1. If Assumption 1 holds, then the unique MLE µ∗ associated with the model

m determines a unique MLE φ∗ associated with the model m̃µ1. In particular, we have

φ∗ = (µ∗, 0dµ1
), (10)

L̃(φ∗) = L(µ∗). (11)

Conversely, if Assumption 1-i) holds and the MLE φ∗ associated with the model m̃µ1

exists and is unique, then it determines a unique MLE µ∗ associated with the model m

and satisfies (10) and (11).
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Proof: ⇒) The restriction of L̃(φ) on Φ = M × (R∗
+)

dµ1 is upper bounded by L(µ∗) by

Lemma 1. Now, if φ ∈ Φ̃\Φ, take the nonempty set J = {j ∈ {1, . . . , dµ1} : σ2
j = 0} and I

the complement of J . Then, L̃(φ) can be expressed as the left-hand member of equations

(8) or (9). By the same equations we obtain that L̃(φ) equals the likelihood function of

the extended model m̃(µI) or of the initial model m respectively. Therefore, by applying

Lemma 1 for µI or by Assumption 1 respectively, we infer that L̃(φ) is upper bounded by

L(µ∗) also on Φ̃\Φ, and consequently on Φ̃. By (9) we have that L̃(µ∗, 0dµ1 ) = L(µ∗) and

consequently the MLE exists and if it is unique it satisfies (10) and (11). We have that

(µ∗, 0dµ1 ) ∈ M ×{0}dµ1 and by Assumption 1 and (9), it is unique on this set. Let us now

assume that there exists φ = (µ, σ2) ∈ M ×
(
R

dµ1
+ \ {0}dµ1

)
such that L̃(µ, σ2) = L(µ∗).

Take the nonempty set I = {i ∈ {1, . . . , dµ1} : σ2
i > 0} and J the complement of I. By

(8), (3), the remark following (7) and our assumption, we have

L̃(µ, σ2) = EµI ,σ
2
I

(
L(ΘI , µ

′

2)
)
= L(µ∗), (12)

where µ
′

2 concatenates the components of µ1 indexed by J and µ2. Since by Assumption

1, the function L(µ) is upper bounded by L(µ∗), we obtain that the random variable

L(ΘI , µ
′

2) has the same upper bound, that is, L(µ∗) − L(ΘI , µ
′

2) is a positive random

variable. But, by (12)

EµI ,σ
2
I

(
L(µ∗)− L(ΘI , µ

′

2)
)
= 0,

so we get L(ΘI , µ
′

2) = L(µ∗), PµI ,σ
2
I
−a.s. , or

1 = PµI ,σ
2
I

(
L(ΘI , µ

′

2) = L(µ∗)
)
= 1{µ

′

2=µ
′∗

2 }PµI ,σ
2
I
(ΘI = µ∗

I) = 0,

where the second equality follows by Assumption 1 and the last equality follows from

the fact that ΘI follows a non-singular multivariate normal distribution, so it induces on

(RdµI ,B(RdµI )) a measure which is absolutely continuous w.r.t. the Lebesgue measure

which assigns measure 0 to the singleton {µ∗
I}. We conclude that for any φ ∈ M ×(

R
dµ1
+ \ {0}dµ1

)
, we have L̃(µ, σ2) < L(µ∗) and consequently the MLE φ∗ is unique.

⇐) If an MLE exists on Φ̃, then L̃ is upper bounded on Φ̃ by L̃(φ∗), and consequently

is upper bounded on M × {0}dµ1 by the same value. By (9) this implies that L is upper

bounded on M by L̃(φ∗). If φ∗ ∈ M × {0}dµ1 , then (10) and (11) are satisfied for some

µ∗ ∈ M . Since the upper bound of L is attained on µ∗ the MLE exists. It is also unique,

since if µ∗
1 and µ∗

2 are two distinct MLE, then (µ∗
1, 0dµ1

) and (µ∗
2, 0dµ1 ) are two distinct MLE
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associated with m̃µ1 , and this contradicts the initial assumption. Now we will show that

φ∗ ∈ M ×{0}dµ1 is a necessary condition. Let us assume that φ∗ ∈ M ×
(
R

dµ1
+ \ {0}dµ1

)
.

Take the nonempty set I = {i ∈ {1, . . . , dµ1} : (σ2
i )

∗ > 0} and J the complement of I. By

applying (12) for φ∗ we have

L̃(φ∗) = Eµ∗

I
,(σ2

I
)∗
(
L(ΘI , (µ

′

2)
∗)
)
. (13)

If L(µI , (µ
′

2)
∗) < L̃(φ∗) for all µI ∈ R

dµI then this would contradict (13). So, we conclude

that there exists µ∗∗
I such that L(µ∗∗

I , (µ
′

2)
∗) = L̃(φ∗), or φ∗∗ = (µ∗∗

I , (µ
′

2)
∗, 0dµ1

) 6= φ∗ is an

MLE, which contradicts the assumption of uniqueness. Therefore, φ∗ ∈ M × {0}dµ1 and

the proof is complete. �

A consequence of Theorem 1 is that we can transfer the maximization problem corre-

sponding to the initial model m to a maximization problem corresponding to the model

m̃µ1 . But since the latter is formulated as an incomplete data problem, we could design

an appropriate version of the EM-algorithm to solve the maximization problem or more

often a stochastic variant of the EM-algorithm (Expectation-Maximization, see [11]) to

handle the usually non-explicit state estimation problem. It is noteworthy that if all pa-

rameters belonging to µ are randomized then the M-step becomes explicit. Otherwise, a

GEM (G:Generalized) or stochastic GEM could be used to find the MLE. An example of

this kind could be an ECM (C:Conditional), see [20], where parameters are updated in a

cyclic fashion. In the following Proposition we give the form of the Q-function, and the

update formulas for the randomized parameter µ1.

Proposition 2. Let φ′ = (µ1, µ2, σ
2)′ ∈ M × (R+

∗ )
dµ1 be the current parameter update

associated with the model m̃µ1. The update equations for the parameter (µ1, σ
2) are given

by:

µ̂1 = Eφ′

(
Θ | Y = y

)
(14)

σ̂2 = (σ̂2
i )1≤i≤dµ1

=
(
Varφ′(Θi | Y = y)

)
1≤i≤dµ1

(15)

and µ2 can be updated independently by maximizing

Q2(µ2;φ
′

) = Eφ
′

{
log p(y|Θ;µ2) | Y = y

}
. (16)
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Proof: Since φ′ ∈ M × (R∗
+)

dµ1 , this parameter corresponds to the Gaussian randomiza-

tion m̃(µ1) and by the definition of the Q-function and Definition 1 we have

Q(φ;φ′) = Eφ
′

{
log p(Θ, y;µ1, µ2, σ

2) | Y = y
}

(17)

= Eφ
′

{
log p(Θ;µ1, σ

2) | Y = y
}
+ Eφ

′

{
log p(y|Θ;µ2) | Y = y

}
. (18)

The last term in the right-hand member of equation (18) depends only on µ2 and co-

incides with (16), while the first term denoted by Q1(µ1, σ
2;φ

′

) does not depend on µ2.

Consequently, the last statement of this theorem is true. By using the independence of

the components of Θ and the density of the normal distribution we have that Q1 can be

maximized equivalently as follows:

Q1(µ1, σ
2;φ

′

)
max
∼ −

1

2

dµ1∑

i=1

log σ2
i −

1

2

dµ1∑

i=1

Eφ′{(Θi − µ1,i)
2 | Y = y}

σ2
i

. (19)

Consequently, it is elementary to show by relation (19) that (14) and (15) hold. �

Remark 1. A question which arises naturally concerns the adaptation of this method in

the case that some of the components of the parameter µ have range different than R.

Then a Gaussian randomization as explained in Definition 1 cannot be applied directly

and a modification is needed by suitable reparameterizations whenever possible. Examples

of this kind are given in subsection 4.3.

3 A toy example of Gaussian randomization

In order to illustrate the proposed method, we start this section by a simple example

where the MLE is known. In the next section we consider an application to a model

which arises from plant growth modeling and the MLE has no explicit form.

Let us consider a simple Gaussian model. In particular, take a vector Y = y of n i.i.d.

observations {Yi = yi}
n
i=1 from a univariate normal distribution N (µy, σ

2
y), where µy ∈ R

is an unknown parameter, σ2
y ∈ R

∗
+. We study the effect of Gaussian randomization when

i) σ2
y is known and ii) σ2

y should be estimated.

Let us first treat case i). Since the initial model m is Gaussian it is well-known that

the MLE exists, is unique and is given by the sample mean, that is, µ∗
y = ȳ.
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Now assume that a Gaussian randomization is introduced for the parameter µy. In

particular, set µ = µy and consider the Gaussian randomization m̃(µ). In this case,

Y ∼ Nn

(
Θ1n, σ

2
yIn
)
, Θ ∼ N (µ, σ2), (20)

where 1n is the column-vector of ones and In is the identity matrix of rank n. By writing,

Yi = µ+ σξ + σyǫi, i = 1, . . . , n,

where {ξ, ǫi ; i = 1, . . . , n} are mutually independent standard Gaussian random variables,

we get easily that

Y ∼ Nn

(
µ1n,Σσ2

)
, (21)

where the elements of the covariance matrix Σσ2 are given by

Σσ2(i, j) =

{
σ2 + σ2

y if i = j,

σ2 if i 6= j.
(22)

Notice that in the extended model m̃(µ) the r.v. {Yi}
n
i=1 are no longer independent. Now,

we take φ = (µ, σ2), Φ = R× R
∗
+ and we write the equivalent log-likelihood in the sense

of maximization

L̃(φ)
max
∼ −

1

2
log detΣσ2 −

1

2
(y − µ1n)

⊤ Σ−1
σ2 (y − µ1n), φ ∈ Φ. (23)

By Theorem 1, we should have that a continuous extension of L̃(φ) from Φ to Φ̃ = R×R+

is feasible, the MLE exists in the extended model, is unique and is given by φ∗ = (µ∗, 0).

As far as the extension is concerned, we verify by (23) that limσ2→0 L̃(φ) = L(µ), where

L(µ) is the likelihood function of the initial model m, and consequently a continuous

extension is possible. In order to verify the aforementioned properties of the MLE, it is

advantageous to use the simple form of the covariance matrix Σσ2 given by (22). We can

easily get that

detΣσ2 = (σ2
y )

n−1(nσ2 + σ2
y), n ≥ 1, (24)

and also that

Σ−1
σ2 (i, j) =





1

σ2
y

(
1−

σ2

nσ2 + σ2
y

)
if i = j, n ≥ 1,

−
σ2

σ2
y(nσ

2 + σ2
y)

if i 6= j, n ≥ 2.
(25)
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Now, by inserting (24) and (25) in (23), we get

L̃(φ)
max
∼ −

1

2
log(nσ2 + σ2

y)−
1

2σ2
y

n∑

i=1

(yi − µ)2 +
σ2

2σ2
y(nσ

2 + σ2
y)

{
n∑

i=1

(yi − µ)

}2

. (26)

By taking the partial derivative of (26) w.r.t. µ we get

∂L̃(φ)/∂µ =
1

nσ2 + σ2
y

n∑

i=1

(yi − µ). (27)

By setting (27) equal to zero, we get indeed as unique solution µ∗ the sample mean ȳ. By

inserting this solution into (26) the third term of the right-hand member of (26) gets null.

So, the maximization w.r.t. σ2 is equivalent to the maximization of the first term, which

is a strictly decreasing function of σ2 and consequently attains its maximum at σ2 = 0.

This shows that φ∗ = (µ∗, 0) as expected. Conversely, and this is the most interesting

direction in applications, since the MLE has the form (µ∗, 0) in the extended model, we

conclude by Theorem 1 that µ∗ is the MLE in the initial model.

It is noteworthy that in interesting problems that this idea can be applied, the di-

rect maximization problem in the extended model will in general be no easier than the

maximization in the initial model. But, its formulation as a hidden variable model gives

directly a recursive procedure via an appropriate version of the EM algorithm to estimate

the parameters of the model. In this example the M-step is explicit since the conditional

distribution of Θ given Y is normal. Let φ′ denote the current update of φ. We obtain

easily that

[Θ|Y = y] ∼ N

(
n(σ2)′ ȳ + σ2

y µ
′

n(σ2)′ + σ2
y

,
(σ2)′σ2

y

n(σ2)′ + σ2
y

)
. (28)

Consequently, by Proposition 2, the update equations for µ and σ2 are given by the mean

and the variance of this normal distribution respectively. Note also that the likelihood

of the extended model given by (23) has a unique stationary point which coincides with

the MLE, so the sequence of EM iterates given by (28) is guaranteed to converge to the

MLE.

Let us now treat case ii). The previous analysis shows that the MLE of (µy, σ
2) does

not involve the parameter σ2
y and for this reason the MLE of µy and σ2 are identical with

those of case i). After maximizing L̃(φ) given by (23) with respect to (µy, σ
2), the MLE

12



of σ2
y can be obtained by maximizing the function

f(σ2
y) = −

n

2
log(σ2

y)−
1

2σ2
y

n∑

i=1

(yi − ȳ)2

with respect to σ2
y . This gives that (σ

2
y)

∗ = n−1
∑n

i=1(yi− ȳ)2, that is, the sample variance,

which obviously coincides with the MLE of the initial model of i.i.d. normal observations.

The point here is that these parameters that conditional on the others can be solved

explicitly (as function of the others) in the initial likelihood formulation, they still keep

this advantage when estimated with the EM algorithm. Indeed, in this example the second

term of the Q-function given by (16) can be written as:

Q2(σ
2
y ;φ

′

)
max
∼ −

n

2
log(σ2

y)−
1

2σ2
y

n∑

i=1

Eφ′

{
(yi −Θ)2 | y

}
. (29)

By maximizing the above quantity we get:

σ̂ 2
y = g(µ̂y, σ̂

2) = n−1

n∑

i=1

y2i − µ̂y (2ȳ − µ̂y ) + σ̂ 2, (30)

where µ̂y and σ̂ 2 are the current updates of µy and σ2 given by (28), and since µ̂y → µ∗

and σ̂ 2 → 0, we conclude by (30) that σ̂ 2
y converges to (σ2

y)
∗.

Remark 2. It is noteworthy that the addition of these artificial parameters does not affect

the MLE of the initial model, even if one could think at first sight that the extended model

is not identifiable. For example, consider the extreme and trivial case where n = 1 and σ2
y

is known. We have one available observation and two parameters µy and σ2 to estimate.

But in fact here, the subsequent degeneration of σ̂ 2 to zero, which we know that it is the

true value, causes no problem. On the contrary, notice the difference if one wished to

estimate in the initial model µy and σ2
y jointly (a truly non identifiable model). We have

L(µy, σ
2
y)

max
∼ (σ2

y)
−1/2 exp

{
−(y − µy)

2

2σ2
y

}
, µy ∈ R, σ2

y > 0, (31)

lim
σ2
y→0

L(µy, σ
2
y) =

{
+∞ if µy = y,

0 if µy 6= y.
(32)

We deduce that the likelihood function is unbounded and the MLE does not exist. Ad-

ditionally, it does not admit any continuous extension to be able to approach from the

larger model the obvious solution µy = y when µy is the only parameter to be estimated.
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4 An application to a plant growth model

Let us consider a nonlinear dynamic stochastic model of individual plant growth, the

LNAS (Log-Normal Allocation and Senescence) model [8], whose aim is to describe the

growth of the sugar beet plant in terms of the evolution of its biomass (mass for living

organisms) with a daily time step. This model can therefore be regarded as a simplified

version of the GreenLab model [18] which is more adapted to experimental trials when

only compartment data are available.

4.1 Description of the model

In this example, we present the case where the structure of the sugar beet can be simplified

as the set of two types of organ compartments, the leaves and the root, from now on labeled

as compartment 1 and 2 respectively. The development of sugar beet can be described via

three basic mechanisms, biomass production, biomass allocation to these compartments

and leaf senescence.

First, we describe the procedure of biomass production. The initial mass of the plant,

corresponds to the mass of the seed and is denoted by q0. The subsequent biomasses

qn, n ≥ 1, result from photosynthesis and under no modeling errors are assumed to be

given by an adaptation of the empirical Beer-Lambert law [14],

qn = µa · PARn ·
(
1− exp{−λ q g

n}
)
, (33)

where µa is a strictly positive biological parameter related to the radiation use efficiency,

q g
n is the total mass of green leaves at day n (leaves that are still (photosynthetically

active), PARn is the photosynthetically active radiation at the n-th day and λ an empir-

ical parameter. In [18], λ is decomposed in the product of the Beer-Lambert extinction

coefficient k by the specific leaf area divided by Sp, a characteristic surface related to

inter-individual competition.

In the sequel, for notational simplicity, we denote by Fn the function given by (33)

which relates qn with q g
n by omitting the dependence on the other variables. In order to

give some flexibility to this model and to explain some observed variability around the

theoretical values given by (33), we consider a modified model of the form:

Qn = Fn(Q
g
n;µa, λ) e

ξqn , n ≥ 1, (34)
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where Qn and Qg
n are the stochastic counterparts of qn and q g

n respectively, related via the

function Fn given by (33), and {ξqn}n≥1 is an independent sequence with ξqn ∼ N (0, σ2
q ).

Now, we describe the procedure of biomass allocation. Since we assume two organ

compartments, the allocation of each produced biomass Qn is divided into two parts, one

for the leaves compartment and one for the root. Let G(x;µ, σ2) denote the distribution

function of the log-normal distribution with location and scale parameters given by µ

and σ respectively, and Gc(x;µ, σ2) its corresponding survival function, that is, Gc(x) =

1−G(x). Let also τ be the cumulative daily temperature (thermal time in ❽.days) and

define the function

γ(τ ; γ0, γf , µγ, σ
2
γ) = γ0 + (γf − γ0)G(τ ;µγ, σ

2
γ), τ > 0, (35)

where γ0, γf are parameters such that 0 < γ0 < γf < 1. The allocated percentage to com-

partment 1 (leaves) on day n associated with thermal time τn, denoted by Γn, is assumed

to be a logit-normal distribution with mean the logit transform of γ(τn; γ0, γf , µγ, σ
2
γ))

and variance σ2
γγ, that is,

log

(
Γn

1− Γn

)
= log

(
γ(τn;µγ, σ

2
γ)

1− γ(τn;µγ, σ2
γ)

)
+ ξγn, (36)

where ξγn ∼ N (0, σ2
γγ). In this way, the total leaf mass and the total root mass can be

computed recurrently by:

Qf
n+1 = Qf

n + Γn Qn, (37)

Qr
n+1 = Qr

n + (1− Γn)Qn, (38)

where the initial conditions Qf
0 = Qr

0 = 0 hold, Qn and Γn satisfy (34) and (36) respec-

tively.

The last important process to consider is leaf senescence. We model with the following

equation the senescent leaf mass Qs
n until day n, which corresponds to the part of the

total leaf mass at day n that is no longer photosynthetically active (it may have already

fallen from the plant or is still on the plant but yellow). We assume that

Qs
n = G(τn;µs, σ

2
s)Q

f
n. (39)

By (39) we deduce directly that the total green leaf mass is given by:

Qg
n = Qf

n −Qs
n = Gc(τn;µs, σ

2
s)Q

f
n. (40)
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The potentially available data consist in the compartment mass measurements {Qg
n, Q

r
n}

N
n=1,

where N is a given time horizon, observed under measurement errors. Let us denote Zn,1

and Zn,2 the measurements of Qg
n and Qr

n respectively corrupted by error. In particular,

we assume that for n = 1, . . . , N ,

Yn = (logZn,j)j =

(
logQg

n + ǫgn

logQr
n + ǫrn

)
=

(
log
(
Gc(τn;µs, σ

2
s)Q

f
n

)
+ ǫgn

logQr
n + ǫrn

)
, (41)

where {ǫgn, ǫ
r
n}n≥1 are mutually independent and ǫgn ∼ N (0, σ2

g), ǫ
r
n ∼ N (0, σ2

r).

We are now in the position to represent the model given by equations (34)-(41) as a

state space model.

4.2 State space model representation

A possible choice of the state vector of the model is Xn = (Qf
n, Q

r
n). In order to have the

state and the observation equation of the model we need the following representation:

Xn+1 = Φn(Xn, ξn;µ), (42)

Yn = Rn(Xn, ǫn;µ), (43)

where Xn = (Xn,1, Xn,2) = (Qf
n, Q

r
n) and {ξn}n≥1 and {ǫn}n≥1 are appropriately chosen

sequences of random vectors. The parameter vector of our model is denoted by µ and

includes all structural parameters {µa, λ, µγ, σ
2
γ, γ0, γf} eventually together with some of

error variances {σ2
γγ, σ

2
q , σ

2
g , σ

2
r}. In the following lemma we explicit the state equation

and the observation equation corresponding to our model.

Lemma 3. The model given by equations (34)-(41) can be described as a state space

model. The state equation is given by the following system of equations:

Xn+1,1 = Φn,1(Xn, ξn;µ) = Xn,1 +
Fn

(
Gc(τn;µs, σ

2
s)Xn,1;µa, λ

)
e ξn,1

1 +
(
γ−1(τn;µγ, σ2

γ)− 1
)
e−ξn,2

(44)

Xn+1,2 = Φn,2(Xn, ξn;µ) = Xn,2 +
Fn

(
Gc(τn;µs, σ

2
s)Xn,1;µa, λ

)
e ξn,1

1 +
(
γ−1(τn;µγ, σ2

γ)− 1
)−1

e ξn,2

, (45)

where {ξn}n≥1 is an independent from X0 sequence of mutually independent bi-dimensional

centered Gaussian random vectors with diagonal covariance matrix and variances σ2
1 and
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σ2
2 for Xn,1 and Xn,2 respectively. The observation equation is given by

Yn = Rn(Xn, ǫn) =

(
logGc(τn;µs, σ

2
s) + logXn,1

logXn,2

)
+

(
ǫn,1

ǫn,2

)
, (46)

where {ǫn}n≥1 is an i.i.d. sequence of 2-dimensional centered Gaussian random vectors

with diagonal covariance matrix, variances σ2
i for each ǫn,i, i = 1, 2, and assumed to be

independent from {ξn}n≥1.

Proof: Due to the choice of the state vector Xn = (Qf
n, Q

r
n) and equations (37)

and (38), we only have to show that ΓnQn and (1 − Γn)Qn coincide with the second

summand of the right-hand member of (44) and (45) respectively. In both terms the

numerator is common and equals Qn. Indeed, this can be deduced by (34) by substituting

Qg
n with its expression in (40). Let us now denote by φ : (0, 1) × R → R such that

φ(x, y) = log(x/1 − x) + y. Note by (36) that the left-hand member of this equation

corresponds to the logit transformation of Γn, which is the inverse of the standard logistic

sigmoid function. We deduce that

Γn =
1

1 + e−φ(γ(τn),ξn,2)
=

1

1 +
(
γ−1(τn)− 1

)
e−ξn,2

, (47)

and

1− Γn =
1

1 + eφ(γ(τn),ξn,2)
=

1

1 +
(
γ−1(τn)− 1

)−1
e ξn,2

. (48)

By multiplying both members of (47) and (48) with Qn given by (34) and substituting

these expressions in the state equations we obtain (44) and (45). The observation equa-

tion (46) of the model can be deduced directly by (41). �

4.3 Gaussian randomization of the plant growth model

In this part we apply the ideas developed in Section 2 for the state space model described

in Lemma 3. Assume for simplicity of presentation that all error variances {σ2
γγ, σ

2
q , σ

2
g , σ

2
r}

are known or a priori fixed to some values. The interest will be focused on the estimation

of the structural parameters and let µ = (µa, λ, µγ, σγ, γ0, γf ). Note also that this state

space model can equivalently be described as a non-homogeneous hidden Markov model

[5], and usual estimation techniques are based on some variant of the EM algorithm, by
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combining an approximation of the E-step and a usually explicit M-step. Nevertheless,

we can easily see that even in the complete log-likelihood of this model there is no explicit

solution for µ, therefore leading to a non-explicit M-step. Otherwise, conditional max-

imization approaches should be invoked and this often leads to complicated generalized

EM-type algorithms (see, eg., [25]), where a numerical maximization procedure should be

implemented as well. It is also well known (see, eg., [19]) that the EM-type sequences do

not necessarily converge to the true MLE (if it exists). In typical plant growth models

with a large number of parameters, it is very difficult to ensure the existence of the MLE

and the subsequent convergence of the EM iterates to the true MLE. The best that we can

hope is to have a robust algorithm and the solutions to the initial maximization problem

to be biologically relevant. For this reason, we take Assumption 1 for granted.

Let us first consider a suitable reparameterization of the state space model m in such

a way that a Gaussian randomization can be applied. Let µ = (µa, λ, µγ, σγ, γ0, γf ). By

Remark 1 and since µa, σ
2
γ ∈ (0,+∞) we deduce that a possible reparameterization can

be given by η = (log µa, λ, µγ, log σ
2
γ, γ0, γf ), where the range of η is R

6. The functional

parameters µs and σs which are related to the senescent process can be estimated only

based on the senescent leaf mass and thus are fixed in our study case. The results of Section

2 are now directly applicable to η. In particular, let m̃(η) the Gaussian randomization

of m w.r.t. η. By Definition 1 we have that m̃(η) is an incomplete data model which

consists in:

i) a Gaussian hidden vector Θ, where

Θ ∼ N6(η,Σ),

and Σ = diag{σ2
i }1≤i≤6, where σ2

i > 0,

ii) an observed vector Y , where conditioned on Θ = θ is a state space model which

satisfies (42) and (43), with the parameter µ replaced by θ.

The parameter of the extended model is given by φ = (η, σ2) ∈ R
6×(R∗

+)
6. By Proposition

2, the problem of parameter estimation of φ is transformed in an iterative state estimation

problem. Starting with a fixed value φ(0), the EM-update equations given by (14) and (15)

produce a sequence φ(n) which converges to a stationary point of the initial likelihood.
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Unfortunately, the conditional moments involved in these equations cannot be computed

explicitly for nonlinear models of this type and for this reason we need to implement

a stochastic variant of the EM-algorithm to approximate them. In order to tackle this

problem, we describe in the next section an appropriate particle filtering method.

5 Particle filtering approximation of the E-step

At each iteration of the EM-algorithm, given the current parameter update φ′, our ob-

jective is to approximate Eφ′

(
Θ | Y0:n = y0:n

)
and

(
Varφ′(Θi | Y0:n = y0:n)

)
1≤i≤dµ1

where

n corresponds to the observation length, since the update equations for the parameters

of the model given in Proposition 2 generally lead to non-explicit solutions. This is also

the case for the specific application that we present in the previous section. One could

think of several alternative algorithms to make this approximation, like Markov chain

Monte-Carlo or particle filters. In this paper we opt for the latter type of algorithms.

The Monte-Carlo particle filters (PFs) have been studied a lot in the literature. The

most adapted to our application context can be cast into the framework of the generic

sequential importance sampling (SIS) algorithm, or SISR, when a resampling step is in-

troduced (see, e.g., [1] or [12]). The first efficient implementation of Monte-Carlo particle

filters of this type dates back to Gordon, Salmond and Smith (1993). The authors give

a generic formulation of the bootstrap PF, using importance sampling ideas in the cor-

rection step and systematic use of resampling in order to avoid degeneracy of the particle

filter. For this reason, the algorithm is also named SIR algorithm (sampling/importance

resampling). The term interacting particle filter (IPF) is also used by [9] for the same PF

algorithm. For other names of the same algorithm see [1] (page 178) and the references

therein. Before describing an appropriate particle filter for our purposes let us explain

how the filtering approach is feasible in our context.

5.1 The filtering approach

In our application context the initial model m is a state space model and Θ can be

considered as a part of the hidden state vector. The most natural way of dealing with

Θ dynamically in time is to construct copies Θn which remain constant in time, that

is, for all n, we have Θn = Θn+1. Despite these constant dynamics, the version of the
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particle filter that we describe in the sequel enables us to modify sequentially in time the

distribution of Θ given the increasingly data vector. The corresponding augmented state

vector will be denoted by Xa
n = (Xn,Θn). In this context, all we need to approximate

is Eφ′

(
Θn | Y0:n = y0:n

)
and

(
Varφ′(Θn,i | Y0:n = y0:n)

)
1≤i≤dµ1

. If we have a way to

approximate the intractable filtering density p(xa
n|y0:n) by a suitable p̂(xa

n|y0:n), then since

xa
n = (xn, θn), we can obtain an approximation of the first two conditional moments

of Θn given the complete data vector with the help of the marginal p̂(θn|y0:n). In this

direction, we describe in the sequel an appropriate particle filtering technique to make

this approximation.

5.2 The regularized particle filter

A particular feature of the Gaussian randomization is that the optimal variance param-

eters equal zero (see Theorem 1). When the variances are close to zero, and this will

indeed happen after some iterations of the EM-algorithm, classical particle filters cannot

perform well. This is due to the fact that the particles make a discrete approximation

of the filtering distribution and consequently degenerate easier under a low variance sce-

nario due to the resampling mechanism (this is known as sample impoverishment). A

successful strategy to overcome this problem was devised in [21] with the so-called post-

regularized particle filter (post-RPF). The regularization refers to the use of a kernel

smoothing method to change the discrete approximation of the filtering density (induced

by the weighted particles in the classical IPF) into an absolutely continuous approxima-

tion. The term post-RPF is used to indicate that the regularization step takes place after

the correction step. A comprehensive exposition of RPFs and improvements can be found

in [22] and some theoretical results in [15] and [16]. In [21] and [23], the authors compare

the performance of the RPFs with the IPFs in some classical tracking problems. Let us

now describe the adaptation of this method in our context.

We denote by K the regularization kernel (usually Epanechnikov or Gaussian) asso-

ciated to Xa
n and by Kh the rescaled kernel given by:

Kh(x
a) = h−dK(h−1xa),

where h > 0 is the bandwidth parameter and d is the dimension of the state vector. In

our application, we used the Gaussian kernel and with M particles the optimal bandwidth
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parameter (when the underlying density is Gaussian) is given by (see, eg., [22]):

hM =

(
4

d+ 2

) 1
d+4

M− 1
d+4 . (49)

Let us assume that at the end of the n-th step, the estimate of p(xa
n|y0:n) is given by:

p̂(xa
n|y0:n) =

M∑

i=1

w̃(i)
n KhM

(xa
n − x̃a (i)

n ),

where {(w̃(i)
n , x̃

a (i)
n )} is the weighted sample before the regularization step. The basic

filtering step can be described as follows:

❼ Sampling with regularization: For all i = 1, . . . ,M :

– Generate I(i) ∈ {1, . . . ,M}, with P(I(i) = j) = w̃
(j)
n .

– Generate ǫ(i) ∼ K(xa).

– Compute x̃
a (i)
n = x̃

a (I(i))

n− + hM Σ̂
1/2
n ǫ(i), where Σ̂

1/2
n is the square root of the

empirical covariance matrix (whitening is used)

❼ Prediction step

– Generate x̃
(i)
n+1 ∼ p(xn+1|x̃

a (i)
n ).

– Set θ̃
(i)
n+1 = θ̃

(i)
n .

❼ Correction step and regularization:

– Set w̃
(i)
n+1 = p(yn+1|x̃

a (i)
n+1), for all i = 1, . . . ,M ,

– Regularize the weighted sample {(w̃(i)
n+1, x̃

a (i)
n+1)} by taking

p̂(xa
n+1|y0:n+1) =

M∑

i=1

w̃
(i)
n+1KhM

(xa
n+1 − x̃

a (i)
n+1).

As far as the regularization is concerned, it is noteworthy to mention the recent ap-

proach presented in [24] (see also [4]). The authors proposed a particle filter where a

convolution kernel is used to regularize the likelihood of the observations as well. The

new filter, called convolution particle filter, seems to be more appropriate to use when

the likelihood cannot be computed explicitly or when signal-to-noise ratio is very low or

very high (see, eg., [24]).
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5.3 A simulation case study for a plant growth model

With the purpose of testing the performance of the proposed algorithm, we performed

simulations based on the true experimental conditions of one experiment conducted by

the French institute for Sugar beet research in 2010 (see [2] for a detailed description of

the experimental protocol). Here, we present the results of simulations in two different

scenarios: (i) the complete dataset is observed, that is, 320 observations (from day 1 to

day 160) and (ii) we have only access to 28 observations from this dataset, green leaf and

root masses measured at the 14 dates included in O2010:

O2010 = {54, 68, 76, 83, 90, 98, 104, 110, 118, 125, 132, 139, 145, 160} ,

which exactly correspond to the 14 dates of measurement in the 2010 experiment. In this

way, we can assess the consequences of the missing information in parameter estimation.

The details of the model are given in Section 4.3. Different strategies were compared

for the augmentation of the Monte Carlo sample size (geometric and quadratic) and a

large constant sample size was also used to have a more ideal (but more expensive) EM

algorithm (150000 particles for the restricted dataset and 40000 for the complete dataset).

Two different initializations were carried out in each case and the averaging technique ([5])

was used to smooth parameter estimates after a small burn-in period. As a stopping rule

we used the one proposed in [3], which claims convergence when the relative change in the

estimates from three successive iterations is reasonably small [3]. A conditional version

of RPF-EM is implemented with the aim of providing reasonable estimates for the noise

parameters (8 conditional steps for the estimations of the noise parameters).

The parameters’ real values and the estimation results are presented in Table 1. The

standard errors of the variability of parameter estimates from independent runs of the

algorithm (20 repetitions based on the same dataset) are also given, which corresponds to

the algorithmic uncertainty. The log-likelihood values of the estimates are estimated by

the means of 10 independent evaluations (the standard errors were small, approximately

0.005).

In Table 1, we give an idea of the influence of the initial distribution. Note that for

the complete dataset the estimates based on these two different initializations are very

close, which suggests a negligible effect of the initial distributions. However, in the case
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Initialization 1

Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
Mean Std. Mean estimate Std. Mean estimate Std.

µa 3.56 3.40 0.15 3.664 0.049 3.564 0.005

λ 56.6 60.0 5.0 59.73 0.22 55.68 0.12

γ0 0.625 0.58 0.10 0.679 0.026 0.628 0.002

γf 0.1035 0.12 0.025 0.088 0.013 0.047 0.006

µγ 550.0 500.0 50.00 492.91 2.44 624.55 9.07

σγ 950.0 880.0 50.00 1338.75 20.25 1633.29 98.66

σg 0.1 0.08 - 0.106 0.001 0.108 0.001

σr 0.1 0.08 - 0.083 0.001 0.091 0.001

σq 0.05 0.035 - 0.047 0.010 0.037 0.005

σγγ 0.05 0.035 - 0.059 0.006 0.061 0.005

Log-likelihood
-136.875 ♠ -426.870 ♠

- -135.514 0.181 -929.404 1.626

-935.350 ♣ -17312.1 ♣

Initialization 2

Initial distribution Restricted dataset ♠ Full dataset ♣

Parameter Real value
Mean Std. Mean estimate Std. Mean estimate Std.

µa 3.56 3.60 0.15 3.668 0.058 3.566 0.003

λ 56.6 52.0 5.0 59.94 0.50 55.73 0.07

γ0 0.625 0.7 0.10 0.686 0.036 0.628 0.002

γf 0.1035 0.09 0.025 0.070 0.024 0.048 0.005

µγ 550.0 580.0 50.00 510.24 4.60 623.14 6.69

σγ 950.0 1000.0 50.00 1610.93 46.88 1609.01 82.70

σg 0.1 0.08 - 0.106 0.002 0.108 0.001

σr 0.1 0.08 - 0.083 0.001 0.091 0.001

σq 0.05 0.035 - 0.048 0.012 0.040 0.004

σγγ 0.05 0.035 - 0.055 0.011 0.060 0.004

Log-likelihood
-136.875 ♠ -388.465 ♠

- -135.534 0.327 -929.261 1.264

-935.350 ♣ -4106.015 ♣

Table 1: Comparison of the estimations from two different initializations, both for the
restricted (150000 particles) and the complete dataset (40000 particles). ♠: estimated log-
likelihood based on the restricted dataset (14 dates); ♣: estimated log-likelihood based
on the complete dataset (160 dates).
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of the restricted dataset, there is a difference in the estimates of the last three parameters

(γf , µγ, σγ) and the effect of the initialization seems to be non negligible, especially

in the case of σγ. This can be explained by the sensitivity of model outputs Qg and

Qr to parameters. A sensitivity analysis of the LNAS model based on Sobol’s method

was presented in [8] and showed that the last three parameters are the least influential

ones among the six which were estimated. The increased variability of these parameters

(see the corresponding standard deviations) from independent runs of the algorithm (20

repetitions) based on the same dataset is also an argument in this direction, since the

great loss of information seems to affect their estimation quality. The results of log-

likelihood evaluations also seem to suggest that despite that the estimated MLE could

slightly differ from two different initializations, the most sensitive functional parameters

can be estimated without difficulty even in the case of the restricted dataset, together

with the observation and model noise parameters. By comparing the estimation results

(with the same initialization) between the restricted and the complete dataset, we also

conclude that the estimates of the most influential parameters are closer to the real values

with the complete dataset than the restricted one, as expected, due to the great amount

of missing information.

In Fig. 1, we illustrate the convergence of the estimations of the six functional param-

eters (for the restricted dataset) based on a single run of the algorithm. The uncertainty

related to parameter estimation is evaluated by parametric bootstrap. As a better approx-

imation of the MLE, we considered the means from the estimates of both initializations.

In Table 2 we present the results that we obtained with a bootstrap sample of size 100.

Except for the least influential parameters, the bootstrap means are very close to the

MLE in the case of the complete dataset, but when a great amount of data is missing a

small bias is introduced. By comparing the standard deviations of the estimates for the

complete and the restricted dataset, it is clear that the additional amount of informa-

tion reduces considerably the standard deviations of all the estimated parameters, except

for the 3 least influential functional parameters. Moreover, the standard deviations of

γf and σγ are prohibitively high to allow for reliable estimations. However, for all the

other parameters, despite the increased standard deviations in the case of the restricted

dataset, we finally get reliable estimates of the true values within the range of one standard
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Figure 1: Evolution of the estimated values of six functional parameters: µa, λ, γ0, γf ,
µγ and σγ with the RPF-EM algorithm (150000 particles) for the restricted dataset.

deviation.

In order to alleviate the burden of a large constant number of particles, we implemented

and compared two different strategies of increasing the sample size during iterations, that

is, a geometric and a quadratic increase. The geometric increase provided better results.

In Table 3, we compare the results of the geometric increase with those that we obtained

with the constant number of particles. The increase of the particles’ number takes place

every time that the Monte Carlo error in the evaluation of the Q-function is considered to

be significant, for example, by detecting a zig-zagging in parameter estimates. Without

a strong effort to optimize the increasing strategy, the computational time was reduced

by 23%. The results show that the geometric increase induces slightly higher variability

in the estimates among different runs of the algorithm than in the case with a constant

particle number. Consequently, the gain in computational time from the decrease of the

total number of simulations is counterbalanced by this effect. In this paper, we do not

focus on aspects concerning the most efficient use of Monte Carlo resources and further
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Restricted dataset ♠ Full dataset ♣

Parameter Real value
MLE Mean Std. MLE Mean Std.

µa 3.560 3.666 3.615 0.137 3.565 3.567 0.058

λ 56.6 59.8 57.7 4.6 55.7 55.7 1.2

γ0 0.625 0.680 0.660 0.057 0.628 0.626 0.017

γf 0.1035 0.079 0.097 0.033 0.048 0.040 0.030

µγ 550.00 501.58 503.60 77.95 623.85 633.29 53.62

σγ 950.00 1474.84 1292.37 314.81 1621.15 1852.70 308.58

σg 0.1 0.106 0.101 0.016 0.108 0.106 0.005

σr 0.1 0.083 0.079 0.021 0.091 0.092 0.006

σq 0.05 0.047 0.049 0.012 0.038 0.038 0.004

σγγ 0.05 0.057 0.054 0.016 0.061 0.052 0.006

Table 2: Uncertainty assessment in the case of both restricted and complete simulated
datasets by parametric bootstrap. The means and the standard deviations are given on
the basis of a 100-bootstrap sample for the restricted (14 dates) and the complete (160
dates) datasets.

investigations are needed in this direction.

Initial distribution Constant → Geometric increase ↑
Parameter Real value

Mean Std. Mean estimate Std. Mean estimate Std.

µa 3.56 3.40 0.15 3.664 0.049 3.662 0.082

λ 56.6 60.0 5.0 59.73 0.22 59.67 0.54

γ0 0.625 0.58 0.10 0.679 0.026 0.677 0.063

γf 0.1035 0.12 0.025 0.088 0.001 0.089 0.001

µγ 550.0 500.0 50.00 492.91 2.44 495.27 7.71

σγ 950.0 880.0 50.00 1338.75 20.25 1372.40 32.92

σg 0.1 0.08 - 0.106 0.001 0.107 0.002

σr 0.1 0.08 - 0.083 0.001 0.085 0.001

σq 0.05 0.035 - 0.047 0.010 0.051 0.013

σγγ 0.05 0.035 - 0.059 0.006 0.061 0.009

Log-likelihood -136.875 -426.870 - -135.514 0.181 -135.648 0.173

Table 3: Comparison of parameter estimates with two different configurations of particle
numbers. →: a constant number of 150000 particles. ↑: starting from 80000, the number
of particles increases geometrically until a maximum number of 150000.
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6 A real-data application

In this section, we present the identification results from a real dataset with the LNAS

model (described in Section 4), where parameter estimation is performed with the RPF-

EM algorithm, as described in Section 5.

This dataset concerns limited experimental observations realized by the French insti-

tute for Sugar Beet research in 2010 (details of the experimental protocols are presented

in [17]). Dry matter of root (denoted by Qr) and leaves (denoted by Qg) were collected

on 50 plants at 14 different dates. The observation vector, which records at each available

date the average mass per square meter, is given by Table 6.

n 54 68 76 83 90 98 104 110 118 125 132 139 145 160

Yn,1 85.2 372.9 447.6 440.8 620.4 523.8 541.4 620.2 627.5 757.6 760.5 598.3 670.7 628.4

Yn,2 23.1 199.8 302.4 409.2 709.2 768.1 863.9 1232.5 1498.8 1770.2 1878.2 1913.7 2118.4 2274.7

Table 4: Experimental dataset provided by the French institute for Sugar beet research
(ITB) based on an experiment in 2010. 14 dates of measurement are available (denoted
by n). The observation vector contains the averaged mass (from 50 plants) per square
meter of green leaf compartment (denoted by Yn,1) and root compartment (denoted by
Yn,2) in g.

The details of the model are given in Section 4.3. The estimation results are presented

in Table 5 together with estimated standard errors from 20 independent runs. The Monte

Carlo sample size was increased geometrically and other implementation details can be

found in Section 5.3.

Note that the influence of the initialization is negligible for all the parameters but σγ,

which is the least influential parameter. This is also suggested by the small difference

of the log-likelihood evaluations at the corresponding solutions. The variability from

independent runs of the algorithm was relatively high for the modeling noise parameters

(σq, σγγ), but by averaging a moderate number of independent runs a better precision

can be obtained.

The uncertainty related to parameter estimation was assessed by parametric bootstrap,

by averaging the estimates obtained from both initializations. In Table 6, we present the

means and the standard deviations of a 100-bootstrap sample. Notice that the estimates of

the 3 most important parameters (high sensitivity indices) are very satisfactory, with low
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standard deviations relatively to their mean values. Nevertheless, the estimations from

the least influential parameters are less satisfactory with higher standard deviations as

expected from the synthetic case in Section 5.3. A small bias in the mean estimated values

from the bootstrap sample also confirms the difficulty in estimating these parameters.

Note also that the estimates of the noise parameters are satisfactory.

Initialization I Initialization II

Parameter Initial distribution Estimation Initial distribution Estimation

Mean Std. Mean Std. Mean Std. Mean Std.

µa 3.40 0.2 3.565 0.062 3.45 0.4 3.563 0.059

λ 58.0 3.0 59.78 0.37 57.0 5.0 59.33 0.46

γ0 0.90 0.10 0.844 0.017 0.78 0.15 0.836 0.021

γf 0.18 0.05 0.190 0.002 0.20 0.05 0.198 0.001

µγ 650.0 40.0 642.64 5.96 630.00 50.0 641.02 6.46

σγ 350.0 30.00 319.59 13.62 300.0 40.0 297.78 14.80

σg 0.10 - 0.142 0.004 0.12 - 0.143 0.001

σr 0.10 - 0.164 0.004 0.12 - 0.167 0.001

σq 0.02 - 0.042 0.012 0.03 - 0.043 0.012

σγγ 0.05 - 0.064 0.012 0.03 - 0.064 0.012

Log-likelihood -173.914 - -165.586 0.116 -169.355 - -165.591 0.132

Table 5: Comparison of the estimations resulting from two different initializations in the
case of the 2010 experimental dataset.

Parameter MLE Mean Std.

µa 3.564 3.562 0.123

λ 59.55 59.70 3.13

γ0 0.840 0.843 0.044

γf 0.194 0.182 0.053

µγ 642.33 654.89 62.40

σγ 308.69 336.62 109.95

σg 0.142 0.143 0.032

σr 0.165 0.158 0.024

σq 0.042 0.039 0.008

σγγ 0.064 0.073 0.015

Table 6: Uncertainty assessment of estimates based on the 2010 experimental dataset
performed by parametric bootstrap.
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7 Conclusion

In the context of complex dynamic stochastic models, parameter estimation is a diffi-

cult and challenging problem. For a likelihood-based approach, many complex stochastic

EM-type algorithms have been proposed to approach the maximum likelihood estimator.

In real data applications the M-step is never explicit and complex numerical algorithms

should be combined to make parameter estimation feasible. The proposed Gaussian ran-

domization process allows us to make the M-step explicit and to circumvent the numerical

difficulties, under the assumption that the initial model has a unique maximum likelihood

estimator. The proposed RPF-EM algorithm, which consists of an E-step performed by

the post-regularized particle filter circumvents classical problems such as the divergence of

the filters induced by weak noises and low variance scenarios during the last iterations of

the algorithm. Additionally, noise related variance parameters can easily be estimated by

conditional maximization steps. Synthetic examples and results based on a real dataset

suggest that the proposed algorithm performs well when confronted to scarce observations.

As a conclusion, the proposed RPF-EM algorithm based on Gaussian randomization

appears as a promising alternative for robust estimation of plant growth models, and

moreover in a general way for models in life sciences.
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