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Abstract

A three-step data assimilation approach is proposed in this paper to enhance crop model

predictive capacity in various environmental conditions. The most influential param-

eters are first selected by global sensitivity analysis and then estimated in a Bayesian

framework. The posterior distribution of the estimation step is then considered as prior

information for data assimilation. In this last step, a filtering method is sequentially

applied to update state and parameter estimates, with the purpose of improving model

prediction and assessing the prediction uncertainty.

The estimation and assimilation steps are based on the Convolution Particle Filter-

ing, whose features make it particularly suitable for data assimilation in crop models: the

method is easy to adapt to any general state-space models (both probabilistic and deter-

ministic ones) with very few tuning parameters, no approximation needs to be made for

nonlinear models, and it remains robust in situations with irregular and sparse datasets.

With the aim of illustrating the robustness and adaptive capacity of the proposed

approach, its predictive performance is evaluated with two crop models, the STICS model

for winter wheat and the LNAS model for sugar beet. The two models are built with

different perspectives. STICS is deterministic and provides a very detailed description

of the ecophysiological processes driving crop-environment interactions, while LNAS is

designed to describe only the essential ecophysiological processes of plant biomass budget

in a probabilistic framework, so as to put emphasis on the uncertainty assessment.

In order to evaluate the approach, five datasets obtained in various experimental

conditions were used for the sugar beet LNAS model, and three datasets for the winter

wheat STICS model. In both studies, one dataset was used for a priori parameter

estimation and the others were used to test the model predictive capacity, both with and
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without data assimilation. The CPF-based data assimilation approach showed promising

predictive capacity and provided robust and reduced credibility intervals in various test

configurations (different years for calibration and prediction by assimilation, different

experimental sites, different cultivars, different crop densities, different levels of water

stresses), which suggests that the combination of such an approach with both types of

crop models (simple probabilistic model or complex deterministic model) is quite reliable

and can therefore be regarded as a potential tool for yield prediction applications in

agriculture.

Keywords: parameter estimation, data assimilation, dynamic crop model, convolution

particle filtering, uncertainty analysis, sugar beet, winter wheat, LNAS, STICS, yield

prediction.

1. Introduction

To improve the predictive capacity of plant growth models in various environments has

been a long-standing challenge. A common idea is to enrich the mechanistic description

of plant ecophysiology (Yin and Struik, 2010). With this purpose, particular efforts have

been made to take into account abiotic stresses regarding temperature (Fowler et al.,

2003), water (Tardieu, 2003), or Nitrogen (Bertheloot et al., 2011). Some advanced

agro-environmental models even aim at addressing the full diversity of environmental

variations, like STICS (Brisson et al., 2003) or APSIM (Keating et al., 2003). However,

the complexity of the interaction between processes can make the task rather difficult,

particularly in the case when several stresses are involved (Mittler, 2006). As described

by Yin and Struik (2010), the tendency is still to complicate the mechanistic description

of biophysical processes, even by linking ecophysiology to “omics” sciences as an attempt

for the full comprehension of the regulatory networks from which plant robustness and

plasticity is supposed to emerge (Hirai et al., 2004). This direction is clearly leading

the way to great advances in research, especially in extending our understanding of how
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genotype leads to phenotype (Buck-Sorlin and Bachmann, 2000; Hammer et al., 2006;

Yin and Struik, 2010).

However, the more complex the models are, the more troublesome their parameteri-

zation and the assessment of the estimate uncertainty become (Ford and Kennedy, 2011;

Chen and Cournède, 2012), specifically due to the costly experimentation and the great

number of unknown parameters to consider. Likewise, local environmental conditions (in

terms of climatic and soil variables, as well as biotic stresses) and initial conditions in

specific fields are also very delicate to characterize. Consequently, it may raise important

issues regarding the identifiability of the parameters, the assessment of the confounding

noises and the propagation of uncertainty and errors related to both parameters and

inputs of these dynamic models. Failing to address these issues may finally result in

poor predictions of plant-environment interactions in real situations, that is to say the

opposite of the pursued objective.

Under these circumstances, an alternative pragmatic approach has been proposed for

the purpose of crop growth prediction in specific farming conditions: the combination

of a simplified crop model and sequential data assimilation technique to update the

model variables and / or parameters from observed data in the early stages of growth

(Bouman, 1992; Delécolle et al., 1992; Maas, 1988; Moulin et al., 1998). This approach

was particularly studied allowing the progress in deriving biophysical and biochemical

canopy state variables from optical remote sensing (Dorigo et al., 2007), which may

potentially give way to crop production forecast at large scales (Moran et al., 1997) and

thus be considered as a tool for decision support (Gabrielle et al., 2002; Houlès et al.,

2004).

The conventionally used strategy is to consider reference models like SUCROS (Guérif

and Duke, 1998, 2000; Launay and Guérif, 2005) or CERES (Dente et al., 2008) as the

framework to integrate the remotely sensed observations. Several methods were devel-

oped in this perspective (see Dorigo et al. (2007) for a review). The forcing method

consists in replacing a state variable of the model by the observed data, for instance the

Leaf Area Index (LAI) in (Delécolle et al. (1992); Dente et al. (2008)). One important

drawback is that generally a considerable part of the model state variables cannot be or

are not observed and thus cannot be updated simultaneously at each time step. More-

3



over, the method does not take into account the observation error, which should not

be neglected considering the general lack of accuracy of remote sensing data. Another

possibility is to use the available observation data to recalibrate some model parameters

and / or initial states that may presumably vary with local conditions (Bouman, 1992;

Guérif and Duke, 2000; Launay and Guérif, 2005). The main limitation of this method

is that it requires sufficient data to perform the calibration, while we would prefer to

benefit directly from the data assimilation technique based on the early growth stages

with regular updates when observation data are available. Besides, the global approach

of this calibration step usually fails to capture and to maintain the system dynamics.

In other research domains, data assimilation problems have been commonly reformu-

lated and studied with a Bayesian probabilistic perspective, which allows the sequential

estimation of model states and parameters simultaneously (Van Leeuwen and Evensen,

1996; Jazwinski, 1970) in the framework of generalized state-space models. It permits us

to circumvent the above issues. In the light of these former applications, the first attempt

to adapt a relatively simple crop model into this perspective was made by Makowski et al.

(2004). The method implementation relies on a probabilistic framework of crop model

which is used to derive prior distributions of the model state variables and parameters

at time steps with available observations while taking into account uncertainty in model

prediction. Conditionally to the experimental observations and the observation model

error, posterior distributions are deduced according to Bayes’ law. An updated predic-

tion of the model state variables can thus be inferred. The procedure is repeated at

all measurement dates. Classical filtering methods used for this purpose are Ensemble

Kalman Filter (see Evensen (2006) for the general presentation of the method, or Jones

and Graham (2006) for an application in the context of crop models) or Particle Filter

(see for example Kitagawa (1996) for the general concepts or Naud et al. (2007) for an

application in the context of crop models).

Nonetheless, one of the difficulties to implement this approach comes from the fact

that it requires the plant growth model described in a probabilistic framework, as a hidden

Markov model (Cappé et al., 2005). The classical and complex crop models (like STICS

(Brisson et al., 1998), APSIM (Keating et al., 2003), CERES (Jones and Kiniry, 1986),

etc.) were not built in this perspective and their stochastic reformulation is therefore
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far from straightforward: the large number of involved processes may potentially lead

to a drastic increase in the number of parameters to model process errors. One simple

solution to circumvent this problem is to only consider observation errors (Guérif et al.,

2006), but it may hinder a proper update of hidden state variables.

In this context, the objective of this paper is to propose an alternative approach to

crop yield prediction with data assimilation, which would further be robust, efficient and

adapted to the specific characteristics of crop models (nonlinear dynamics, restricted and

irregular observation data).

Although the literature on filtering methods is considerably rich (Extended, Un-

scented, Ensemble Kalman Filter or Particle Filter ...), the Convolution Particle Filter

(CPF) (Campillo and Rossi, 2009; Rossi and Vila, 2006) which can be regarded as a

generalization of the regularized particle filter proposed by Musso and Oudjane (1998),

stands out for its attractive features regarding the challenges raised by parameter estima-

tion and data assimilation of crop models. Firstly, the method is not only rather easy to

adapt (with very few tuning parameters), but also robust in terms of convergence since it

circumvents the classical problem of potential sample degeneracy in particle filters. This

property is valuable in real situations for which irregular or heterogeneous field data are

available. Moreover, it does not rely on the Gaussian assumption of distributions as the

Kalman Filter-based algorithms, and is thus adapted to the potentially highly nonlinear

plant / crop models. When these models are formalized as general state-space hidden

Markov models, CPF can achieve a proper evaluation of model uncertainty. Another

interesting feature is that it works as well with deterministic models, which makes the

method straightforwardly adaptable to the classical and widely used crop models.

Therefore, in this paper, a three-step data assimilation approach based on the Con-

volution Particle Filtering is proposed and tested based on real experimental data. The

most influential parameters are first selected and estimated in a Bayesian framework from

a calibration data set. The obtained estimation along with the evaluated uncertainty is

considered as prior information for the data assimilation step. With the purpose of im-

proving model prediction and assessing the prediction uncertainty, the filtering method

is sequentially applied again to update state and parameter estimates on a second data

set.
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To illustrate the robustness of the proposed data assimilation approach, we applied it

to two models of different types. The first one is the LNAS (Log-normal allocation and

senescence) model for sugar beet, describing biomass budget during crop growth, with

the particularity of being fully built in a probabilistic perspective (Chen and Cournède,

2012; Cournède et al., 2013) for the purpose of data assimilation. Based on the analysis of

Delécolle et al. (1992), the model describes only the major ecophysiological processes (at

least in terms of Carbon economy): biomass production, biomass allocation, senescence

and leaf surface development. Such a simplification allows an easier representation of the

model errors without increasing significantly the number of parameters.

Note that with the aim of improving the parameterization performance, especially

in the case of rare or irregular experimental data, a conditional Iterative version of the

Convolution Particle Filtering (ICPF) is proposed by Chen et al. (2012). In the param-

eter estimation step, the ICPF approach allows the estimation of the functional model

parameters (in the deterministic part of the model) and both modelling and observation

error distributions. Evaluation of the parameter uncertainty is also derived, which in

turn provides a reliable a priori for data assimilation.

The second model to which the data assimilation method is applied is STICS (Simu-

lateur mulTIdisciplinaire pour les Cultures Standard) (Brisson et al., 1998, 2008) which

is a classical and generic crop model, with a rich description of crop-environment in-

teractions. We consider in this study the STICS model for winter wheat. Contrary to

LNAS, STICS is a purely deterministic crop model. It will prove interesting to see how

the method also adapts to this case.

In Section 2, we first present our global approach in the framework of general state-

space models: parameter screening based on Sobol sensitivity analysis, estimation of

selected parameters to determine prior distributions by the Convolution Particle Filter

and an iterative version of this algorithm, and finally data assimilation. The application

of the method to the LNAS model of sugar beet is presented in Section 3, and to the

STICS model for winter wheat in Section 4. Finally, the conclusion suggests some research

perspectives.
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2. A Method for Data Assimilation in Crop Models

2.1. General State-Space Models

For parameter estimation and sequential data assimilation in crop models, we rely on

the statistical framework provided by the discrete nonlinear general state-space model,

with a state function and an observation function as follows:






X(t+ 1) = f (X(t),Θ, η(t), t) ,

Y (t) = g (X(t),Θ, ξ(t), t) .
(1)

The evolution equation is embodied in the function f , which is time dependent. X(t)

represents the state variables at time t, Θ is a vector of parameters of dimension p and the

modelling noise is represented with the random variables η(t) (corresponding to model

imperfections or uncertainty in the model inputs). The observation equation incorporates

observations on the state variables of interest. Y (t) is the output vector which is related

to the state variable vector X(t) through the function g. Y (t) consists of variables that

can be observed experimentally and usually differs from X(t) (for instance, biomasses of

some plant organs can be measured while the daily biomass production cannot). Mea-

surement noises are denoted by ξ(t). (η(t))t and (ξ(t))t are considered as sequences of

independent and identically distributed random variables. Since experimental observa-

tions are usually limited due to high costs, observations are only available at irregular

times. Let (t1, t2, ...tN ) be the N measurement time steps. For all n ∈ [1;N ], we set:

Xn := X(tn), Yn := Y (tn) and Y1:n := (Y (t1) , Y (t2) , . . . , Y (tn)).

Note that only in rare occasions (Makowski et al., 2004; Chen and Cournède, 2012;

Trevezas and Cournède, 2013), plant models were built by really taking into account

modelling and measurement noises. Models are generally written as deterministic dy-

namic systems. Of course, such deterministic models can still be represented with (1),

the stochastic variables being zero with probability 1.

2.2. Parameter Selection, Estimation and Data Assimilation

In this paper, we consider cases in which no satisfying prior distributions are avail-

able for the considered parameters, so that a first estimation step is performed from a

full dataset to provide appropriate prior distributions. Afterwards, the obtained prior
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distributions are used for data assimilation applications during which experimental data

of early growth stages are assimilated to improve model prediction at later stages. Of

course, the preliminary parameter estimation step can be skipped if satisfying prior dis-

tributions are available.

Under these circumstances, to achieve the prediction objective, we thus propose an

approach in three steps: parameter selection, parameter estimation, data assimilation.

In parameter selection, the least influential model parameters are screened thanks to

sensitivity analysis methods (Campolongo et al., 2007) based on the deterministic version

of the model. The remaining parameters (most influential ones) are therefore chosen to

be estimated.

In parameter estimation, a simple CPF or conditional iterative CPF approach is car-

ried out on the calibration dataset. For the latter as explained in section 2.5 and section

2.6, the filtering process is iterated: both selected model parameters and model hidden

states are estimated, while the noise parameters are supposed known. Once the conver-

gence of all the parameter estimates is achieved, both the modelling and measurement

noises are empirically evaluated from the estimation of the (deterministic) model param-

eters and hidden states variables. We then update the new noise parameters, and the

iterative CPF approach is performed again to obtain more coherent model parameter

estimations. The alternation of these two steps repeats until the convergence of both

the model parameters and the noise parameters. Regarding the uncertainty assessment,

parameter bootstrap is performed to provide a proper evaluation of the uncertainty in

model parameters.

In data assimilation, a new comparable experimental dataset (for instance same type

of crop but observed in a different year, or at a different location, or for a different

genotype) with few early measurements is introduced. With the purpose of performing

predictions of yield or other state variables of interest, the CPF approach is anew carried

out by regarding the results of the estimation step as prior information. In this step, the

probability density is represented by a large number of samples (particles) which evolve

with time. Hence, after a short readjustment period while model parameters and state

variables are updated based on the available measurements, the particles continue to

propagate so as to forecast the system evolution and to evaluate the uncertainty related
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to the state variables of interest.

2.3. Parameter Screening by Sensitivity Analysis

When a model contains a large number of parameters, as it is often the case for

plant growth models, parameter estimation based on limited experimental data is usually

considered to be a key issue which may affect strongly the quality of model prediction with

important estimates uncertainty. Therefore, sensitivity analysis is classically applied in

advance to select the most influential parameters to be estimated, whereas those screened

as the least influential ones can be fixed to any values in their domains. In the context

of sensitivity analysis, this method is called “screening” or “factor fixing” (Campolongo

et al., 2007).

With this purpose, we implement the algorithm proposed by Wu et al. (2012) to com-

pute Sobol’s indices (first order and total order) for all considered parameters, choosing

as output a generalized least-squares criterion for the parameter selection.

An important issue in sensitivity analysis is the determination of the distributions

representing the uncertainty in the inputs, particularly when the parameters are empirical

with no explicit biological meaning, and specific methods have to be devised (Wernsdörfer

et al., 2008). In the LNAS model, all the functions used represent well-known processes

for sugar beet, with an important literature, so that it was relatively easy to assess proper

variation intervals for the parameters. Likewise, several varieties of winter wheat have

already been modelled with the STICS model so that different values were available in

literature (Brisson et al., 2008), from which we could deduce intervals of variations. The

question for us is the following: for each parameter, what is the reasonable range of

possible values, or when calibrating our system what would be acceptable values for the

parameters? In regard to such criteria, it also seems appropriate to select the uniform

distribution after assessing the appropriate variation intervals. Moreover, some tests were

performed by increasing the range of the least important parameters while decreasing the

range of the most important ones to check the possible bias induced by the choice of the

ranges, but it did not affect the importance ranking of the parameters, which is the result

of interest for parameter screening.
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2.4. Convolution Particle Filter for Bayesian Parameter Estimation

Particle filter is a recursive Bayesian filter based on Monte Carlo simulations (Aru-

lampalam et al., 2002). The basic idea is the recursive approximation of the filtering

distribution by a time evolving weighted sample.

Inspired by the post-Regularized Particle Filter (Oudjane and Musso, 1998), the

objective of the Convolution Particle Filter (Rossi and Vila, 2006; Campillo and Rossi,

2009) is to estimate jointly the parameters and the hidden states of the dynamic system

by processing the data online. When the representation of the state-space model is better

described in terms of conditional distributions, its formulation as a hidden Markov model

is preferred. A possible way to incorporate the parameter vector Θ in the state equation is

by considering Θn with a constant evolution. An augmented state vector Xa
n = (Xn,Θn)

is consequently defined which contains Xn the true hidden state at time tn and Θn the

vector of unknown parameters. In the following, if X represents a random variable with

values in X , then for all x ∈ X , p(x) denotes the probability density of X in x. The

first-order hidden Markov model is characterized by the transition density p(xa
n|x

a
n−1)

corresponding to the state equation (Quach et al., 2007), the observation density p(yn|x
a
n)

corresponding to the observation equation, and the initial density p(xa
0).

In the initialization step of our implementation, the parameters are initialized from

either informative distributions (p(xa
0)) or non-informative distributions for all the

particles. Particle weights are assigned uniformly. Each filtering step is performed

recurrently in two stages and occurs only at time steps when the observation is available

(Campillo and Rossi, 2009).

Prediction:

The objective is to provide a kernel estimator of p(xa
n+1, yn+1|y0:n) denoted by

p̂(xa
n+1, yn+1|y0:n). M particles {x̃a

n
(i), i = 1, . . . ,M} are sampled from the distribution

with conditional density p̂(xa
n|y0:n). The M particles are propagated through the

evolution model until the next available measurement to obtain the predicted states

{x̃a
n+1−

(i), i = 1, . . . ,M}. The updating scheme relies directly on Bayes’ law. The

particle weights are calculated based on the experimental measurements and the

predictions, and then normalized. The empirical kernel approximation of the probability

density of (Xa
n+1, Yn+1) conditional to Y0:n can accordingly be deduced using the
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Parzen-Rosenblatt kernel KX
hX
M

, with bandwidth parameter hX
M :

p̂(xa
n+1, yn+1|y0:n) =

1

M

M
∑

i=1

KX
hX
M

(

xa
n+1 − x̃a

n+1−
(i)
)

· p
(

yn+1|x̃
a
n+1−

(i)
)

. (2)

Correction:

The a posteriori form of the estimation is deduced from Bayes’ law and the kernel ap-

proximation for p(xa
n+1|y0:n+1) is given by:

p̂(xa
n+1|y0:n+1) =

M
∑

i=1

p(yn+1|x̃
a
n+1−

(i)) ·KX
hX
M

(xa
n+1 − x̃a

n+1−
(i))

M
∑

i=1

p(yn+1|x̃
a
n+1−

(i))

. (3)

The part p(yn+1|x̃
a
n+1−

(i))/
∑M

i=1p(yn+1|x̃
a
n+1−

(i)) can be considered as the normal-

ized weight w̃
(i)
n+1 associated to the particle x̃a

n+1−
(i). When the analytic form of the

observation density p(yn+1|x̃
a
n+1−) is unknown, or in the case of a deterministic model,

an observation kernel can similarly be introduced (Campillo and Rossi, 2009) with an-

other Parzen-Rosenblatt kernel KY
hY
M

, associated with bandwidth parameter hY
M :

p̂(xa
n+1|y0:n+1) =

M
∑

i=1

KX
hX
M

(xa
n+1 − x̃a

n+1−
(i))KY

hY
M

(yn+1 − ỹ
(i)
n+1−

)

M
∑

i=1

KY
hY
M

(yn+1 − ỹ
(i)
n+1−

)

. (4)

The new set of particles
{

x̃a
n+1

(i), 1 ≤ i ≤ M
}

are then sampled from p̂(xa
n+1|y0:n+1).

2.5. Iterative Convolution Particle Filter

In the case of off-line estimation with a finite number of observations, in order to de-

termine the a priori distribution for data assimilation, an iterative version of CPF can be

applied accordingly. The idea is to repeat the filtering process in order to provide better

estimations based on the available experimental observation vector. A resampling step is

therefore introduced (Arulampalam et al., 2002; Doucet et al., 2001) at the end of each

iteration. The Gaussian Randomization method is applied during the reinitialization,

referring to a resampling step which allows us to transform the discrete approximation of

the filtering density at the end of one iteration to a continuous approximation in order to

avoid sample impoverishment (Musso and Oudjane, 1998). At iteration k, the particles
11



xa
0
(i) are obtained as follows: the initial state vectors {x̃0

(i), i = 1, . . . ,M} are selected in

the same fashion as for the classical filtering process (sampled from p(x0)), and the vectors

of unknown parameters {Θ̃
(i)
0 , i = 1, . . . ,M} are sampled from the multivariate Gaus-

sian distribution defined by the mean and covariance matrix of {Θ̃N
(i), i = 1, . . . ,M} at

iteration k − 1.

Due to the stochastic nature of this method, the averaging technique (Cappé et al.,

2005) (Chap.4) is carried out to smooth and to decrease the fluctuations of the estimates

after a burn-in period of K iterations. If we denote Θ̂(l) and x̂
(l)
n the estimates of the

parameters and the hidden state variables at the l-th filtering iteration respectively, then

for l > K :

¯̂
Θ(l) =

1

l −K

l
∑

j=K+1

Θ̂(j) and ¯̂x(l)
n =

1

l −K

l
∑

j=K+1

x̂(j)
n , (5)

if a constant number of particles are simulated.

2.6. Conditional ICPF for Uncertainty Assessment

In order to estimate the noise parameters and to evaluate the uncertainty related to

the estimates of the ICPF approach, we partition Θn: Θn = (Θ1,Θ2). Θ1 denotes the

parameters from the deterministic part of the model (state equation and measurement

equation) and Θ2 denotes those of the noise model (the parameters of the distributions

of η and ξ in (1)). A conditional ICPF algorithm proposed by Chen et al. (2012) is

therefore implemented.

In the first place, the estimation of the hidden states and of Θ1 is performed by

considering that Θ2 is known. In practice, small initial variances for the noises seem to

ensure the convergence of the algorithm towards satisfactory estimation results for the

hidden states and for Θ1. From this first estimation of Θ1 and of the hidden states,

we can estimate the parameters of the distributions of the modelling and measurement

noises Θ2 from the results. Conditionally to the new estimated Θ2, the ICPF approach

is then carried out again to estimate Θ1 together with the hidden states. In this way,

the algorithm can be iterated in turns between the model parameters Θ1 and the noise

parameters Θ2 until the convergence of both.

However, since the posterior distributions of the parameters are no longer represen-

tative of the estimates’ uncertainty because of the successive iterations of the filtering
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process, parametric bootstrap (Efron and Tibshirani, 1994) is implemented to calculate

the related credibility intervals. New observation vectors are hence randomly generated

with Θ̂ and the conditional ICPF algorithm estimation is performed for each of them.

The uncertainty related to the estimate Θ̂ can thus be evaluated properly. Moreover, we

highlight that the algorithmic uncertainty (linked to the stochastic algorithm) can also

be assessed by applying the conditional ICPF approach to the same experimental data

set a large number of times as presented by Chen et al. (2012). In the conditions used

for our test cases, the algorithmic uncertainty can be neglected.

3. Application to the LNAS Model for Sugar Beet

In this section, we apply the CPF-based estimation and assimilation methods to the

LNAS model of sugar beet growth for the prediction of crop biomass compartments in

various situations.

3.1. LNAS Model of Plant Growth

For data assimilation purpose, a general scheme for agrosystem models was given by

Delécolle et al. (1992) and adapted by Dorigo et al. (2007). They underlined the main eco-

physiological processes and key variables to describe the plant-environment interactions.

We adapt this scheme to the sugar beet case in Fig. 1. The principal processes they

suggested to consider are crop development, light interception, biomass accumulation,

biomass partitioning and senescence.

[Figure 1 about here.]

In the following, we recall the equations of the Log-Normal Allocation and Senescence

(LNAS) model (Chen and Cournède, 2012; Cournède et al., 2013) specifically derived for

the sugar beet, per unit surface area, with two organ compartments: foliage and root

system. The model is built based on a daily time step and environmental variables are

daily averages. Note that adaptations of the model are currently also derived for maize,

wheat and sunflower.

A specificity of the model is that the main growth processes underlined in Fig. 1 are

considered as stochastic processes when it appears relevant.
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Interception and assimilation: Q(t) is the biomass production on day t per unit

surface area (g ·m−2) which can be obtained by an adaptation of the Beer-Lambert law

(Monteith, 1977):
(

1− e−λ·Qg(t)
)

represents the fraction of intercepted radiation, with

Qg(t) the total mass of green leaves on day t (in g ·m−2) and λ a coefficient parameter

(in g−1 ·m2). The biomass production of the whole plant is then deduced by multiplying

the total amount of absorbed photosynthetically active radiation per unit surface area

(PAR, in MJ ·m−2) and an energetic efficiency µ (in g ·MJ−1):

Q(t) =
(

µ · PAR(t)
(

1− e−λQg(t)
))

· (1 + ηQ(t)) (6)

where we introduce the modelling noise ηQ ∼ N (0, σ2
Q). Since the characterization of the

environmental variables and of the light interception is not accurately described by the

Beer-Lambert law, the model noise appears relevant for the production equation. Despite

the fact that Q(t) should always be positive, we still make a normal assumption. With

the multiplicative form and the levels of noise generally considered (inferior to 10%), we

assure that there is no problem of positivity loss.

The parameter λ corresponds to λ = k SLA, where k is the Beer-Lambert extinction

coefficient and SLA is the specific leaf area, so that the term
(

1− e−λQg(t)
)

can classically

be rewritten as
(

1− e−k LAI
)

, with LAI the leaf area index. There is a slight difference

in the formulation however, because we consider λ as an empirical constant parameter,

whereas linking leaf mass to leaf surface via the SLA variable is not obvious since the

SLA is known to vary during crop growth and within plants (see for example Jullien et al.

(2009)), even though it is often regarded as constant in models. This simplification also

allows us to avoid the differentiation between blades and petioles (which is not always

easy from a botanical point of view in sugar beet), both constitute the leaf compartment.

Allocation to the foliage and root system compartments:

The description of the allocation process is a simplification of the GreenLab model (Yan

et al., 2004; Guo et al., 2006) with the organ sink dynamics being described at compart-

ment level: the proportion of biomass allocated to each compartment (foliage and root)

is described by an empirical function γ:

Qf (t+ 1) = Qf (t) + γ(t) ·Q(t), (7)

Qr(t+ 1) = Qr(t) + (1− γ(t)) ·Q(t), (8)
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γ(t) = (γ0 + (γf − γ0) ·Ga(τ(t))) · (1 + ηγ(t)) (9)

with τ(t) the thermal time, which corresponds to the accumulated daily temperature

(above a threshold temperature, which is taken as 0 for the sugar beet (Lemaire et al.,

2008)) since emergence, Ga the cumulative distribution function of a log-normal law

parameterized by its median µa and standard deviation sa (for more explicit biological

meanings of the parameters), and the modelling noise (process noise) denoted by ηγ(t) ∼

N (0, σ2
γ). The cumulative distribution of the log-normal law is chosen for its flexibility:

it allows to reproduce dynamics similar to the sigmoid-type functions often employed to

describe biological processes, while having the advantage to start with a null value in

zero. The transformation chosen to obtain γ is inspired by the simulation of biomass

allocation to root and leaf compartments of sugar beet described by SUCROS (Spitters

et al., 1989) and GreenLab (Lemaire et al., 2008).

Given the fact that the allocation strategy is very sensitive to environmental condi-

tions, we introduce a multiplicative perturbation, again under normal assumption.

Senescence: The senescent foliage massQs is a proportion of the accumulated foliage

mass based on its underlying cumulative distribution of a log-normal law characterized

by median µs and standard deviation ss:

Qs(t) = Gs(τ(t)− τsen)Qf (t) (10)

with τsen the thermal time at which the senescence process initiates. The green foliage

mass Qg can be hence easily obtained:

Qg(t) = Qf (t)−Qs(t). (11)

We choose a deterministic version of the senescence equation despite the strong variations

that can characterize the process. As a matter of fact, the influence of senescence in

the biomass budget is due to the decrease of photosynthetic foliage in Equation (6),

adding a perturbation in the senescence mass either would be of second order or could

be summarized in the modelling noise ηQ.

Note that both allocation and senescence processes are driven by the thermal time.

The phenological stage in Fig. 1 is thus simply represented in our model by the course

of the thermal time, from emergence.
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Observations: In this study, the observation variables potentially available from

field measurements for parameter estimation and data assimilation are:

Y (t) =





Qg(t) · (1 + ǫg(t))

Qr(t) · (1 + ǫr(t))



 (12)

with measurement noises: ǫg(t)) ∼ N (0, σ2
g), and ǫr(t) ∼ N (0, σ2

r). Again, the choice of

the normal law (instead of the log-normal one for instance) does not practically generate

problems of positivity loss, thanks to the multiplicative form and the low levels of noise

generally considered (inferior to 10%).

The proposed framework would still be applicable when using satellite image data with

LAI evaluation. In that case, LAI should be specified clearly as a state variable in the

system (with an explicit formulation of the SLA variable), consequently a corresponding

observation function should be defined.

3.2. Experimental Data

The data used for this study were obtained by the French institute for sugar beet

research (ITB, Paris, France) in 2006, 2008 and 2010 with slightly different cultivars

and in different locations with different observed densities (details of the experimental

protocols can be found respectively in Lemaire et al. (2008), Lemaire et al. (2009) and

Baey et al. (2013)). For the test case, the 2010 dataset is chosen for estimation since more

observation points are available compared to the other four datasets (of course, in real

applications, the older datasets are supposed to be used for parameter estimation). Dry

matter of root and leaves were collected on 50 plants at 12 dates (in days after sowing):

O2010 = {54, 68, 76, 83, 98, 104, 110, 118, 125, 132, 145, 160} ,

whereas for assimilation and prediction, other datasets (2006 and 2008) are used. The

same type of observations were made only at 7 different dates given by

O2006 = {54, 59, 66, 88, 114, 142, 198} ,

O2008 = {39, 60, 67, 75, 88, 122, 158} ,

respectively. For each plant, the green foliage mass denoted by Qg and the root com-

partment mass denoted by Qr were measured. The observation vector Yn is obtained by
16



averaging each data on all the samples and extrapolated at m2 level by multiplying by

the observed density.

We note that the three 2008 datasets used for assimilation correspond to different

density conditions (5.4 plants·m−2, 10.9 plants·m−2, 16.4 plants·m−2) compared to the

2010 dataset (11.9 plants·m−2) and the 2006 dataset (9.6 plants·m−2).

3.3. Results

3.3.1. Parameter Screening by Sensitivity Analysis

Sobol’s indices (first order and total order) of all the functional parameters of the

LNAS model (without counting the noises parameters) were computed using a generalized

least-squares criterion as output (see Cournède et al. (2013)). According to the sensitivity

analysis result, we screened the parameters sa, µsen, ssen and fixed them to their mean

values of the variation interval, as their total order indexes are all below 0.02. For the

five other parameters, their total order effects cannot be neglected and they should be

estimated from experimental data.

3.3.2. Parameter Estimation

Based on the sensitivity analysis results, the unknown parameter vector for the de-

terministic part of the model is assumed to be Θ1 = (µ, λ, µa, γ0, γf ) and the unknown

noise parameter vector is Θ2 = (σQ, σγ , σg, σr). We compared the estimation perfor-

mances of the classical CPF and the iterative version, ICPF. For the CPF approach,

500000 particles were initialized with non-informative prior distributions (uniform dis-

tributions), while as for the conditional ICPF approach, 8000 particles were drawn from

the same prior distributions. The conditional ICPF estimation process began with the

estimation of Θ1 given Θ2, then Θ2 was estimated empirically based on the estimates of

the hidden states. The estimation then proceeded with the new value of Θ2 and iterated.

Finally, 3 repetitions of the conditional version of ICPF were performed in our test, each

of them contained 200 filtering iterations to ensure convergence. A parametric bootstrap

was subsequently carried out to evaluate the estimates’ uncertainty. Standard deviations

and confidence intervals were hence obtained from 200 bootstrap samples. Results are

given in Table 1. The estimated modelling noises are smaller with the ICPF method,

which implies a better adaptation of the model. For this reason, we choose to consider
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the estimates obtained with the conditional ICPF to provide the prior distribution for

data assimilation. The issues related to the uncertainty assessment and the comparison

between ICPF and CPF were further addressed in Chen and Cournède (2012).

[Table 1 about here.]

3.3.3. Data Assimilation with CPF

The distribution resulting from the parametric bootstrap of the ICPF estimation was

used to provide the prior information in the assimilation step, in which the (classical)

CPF algorithm was applied. For both the 2006 and 2008 datasets, 500000 particles were

simulated, all but the last two measurements (corresponding to data until day 114 for the

2006 dataset, and until day 88 for the 2008 dataset) were used to update and correct the

parameter and the state estimates. The propagation of particles through the stochastic

dynamic model was carried on without any further correction until day 198 for the 2006

dataset and day 158 for the 2008 dataset. At last, the simulated values of the state

variables Qg and Qr on day 142 and day 198 (resp. day 122 and day 158 for the 2008

dataset) given by all the particles as well as their associated weights were used to build

the posterior predictive distributions.

In order to provide reference values of the prediction without assimilation, an Uncer-

tainty Analysis (UA) was performed. 500000 particles were initialized in the same way as

in the CPF approach, from the prior distribution given by the parameter estimation step,

and the distribution of the model outputs of interest was approximated by propagating

independently through the stochastic dynamic system all the particles. No parameter or

state update is done from the experimental data of the early stages.

Based on the parameter estimation results of the 2010 dataset, we compared the

predictive capacity of the model for the 2006 and the 2008 experiments, with and without

data assimilation, regarding the last two observations (t142 and t198 for 2006 and t122

and t158 for 2008). Although the six experiments are quite different (different locations,

in different years, and different cultivars) the proposed CPF-based approach was shown

to provide fair predictions in most cases and managed to reduce the prediction errors

compared to the results obtained with UA (without data assimilation), as demonstrated

by Fig. 2. It is particularly spectacular for the leaf biomass (Qg) prediction (Table 2,

Table 3).
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[Figure 2 about here.]

Tables 2 to 5 illustrate the prediction results of the two methods (with or without

data assimilation) for different experiments. The average estimates are given with their

corresponding 95% credibility intervals. According to the result based on the 2006 dataset

(Table 2) and the 2008 dataset with observed density of 10.9 (Table 3), the prediction

results are clearly improved both in terms of mean prediction and credibility intervals for

nearly all the predictions given by the CPF-based approach compared to those provided

by UA. For the result of 2008 (density 10.9), all the predictions have a relative error close

or inferior to 10% which indicate that the CPF-based method had an excellent predictive

performance. The proposed credibility intervals all include the real value of the last two

measurements and generally narrower than those given by the UA.

On the other hand, as suggested by Fig. 2, the 95% credibility interval provided by the

UA can be considered non-reliable since it does not always contain the real measurement

values in several cases (cf. Table 4 and Table 5).

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

3.3.4. Discussion

The predicted credibility intervals provided by the CPF-based approach are nearly

in all cases narrower than those of the UA. It is of course an expected result for data

assimilation: to reduce the prediction uncertainty based on the available information.

However, regarding the point estimations, the results of the CPF-based method were

not always more accurate than those provided by UA, especially for the root mass, as

shown in Table 3 for Qr(t158) or in Table 5 for Qr(t122) or Qr(t158). However, when it

happened, the corresponding predictions of leaf biomass given by the UA were nonetheless

far from the real observed values and can be considered as unreliable. This may reveal

some particular plasticity in root biomass production that was not well captured by the
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model, which can be regarded as a drawback of the simplified model. However, even in

the few cases when the proposed method failed to improve the point prediction of some

variables, it always managed to provide reasonable credibility intervals which contained

the real values of the observations.

Regarding the uncertainty assessment, although the modelling noises are quite small

(around 1%), which implies a good adaptation of the model, the observation noises are

rather important (10% and 7%, cf. Table 1). Therefore, the prediction gain with data

assimilation remains quite limited since the observations may not be reliable enough to

update parameters and state variables, and the important observation noises used in the

assimilation step may also prevent the algorithm to retrieve the most useful information

out of the few available data.

Moreover, further tests (not detailed here) showed that the CPF-based data assim-

ilation is sensitive to the observation noise, and their proper evaluation is thus crucial

to improve the method accuracy and reliability. It is clearly a bottleneck for real ap-

plications since the observation noises in practice tend to vary a lot according to the

experimental configurations (for example in two different years or in two different fields),

so that their proper evaluation remains quite difficult.

4. Application to the STICS Model for Winter Wheat

To prove that the proposed approach is generic and adaptable to various models,

and robust enough to confront different situations, another study is conducted with an

application to the complex crop model STICS. Rather different from LNAS, STICS is

deterministic, and focuses on the detailed description of the crop-environment interac-

tions. As for the LNAS model, the proposed approach was applied to the STICS model

of wheat growth in interaction with the water resource, first for model calibration and

then for prediction of crop biomass compartments, LAI and the average water content

in soil with data assimilation. This application clearly demonstrates the strength of

the Convolution Particle Filtering approach which can be applied straightforwardly to

deterministic models.
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4.1. Principles of the STICS Model

The STICS model focuses on the crop-soil system and has already been applied to

various crops. It is divided into several modules, each representing different plant growth

mechanisms (Brisson et al., 2008). Among them, the development module is in charge of

the evolution of LAI and root compartment, and in the meantime defines the harvested

organ filling phase. Fig. 3 illustrates the main processes involved in the STICS model

adapted to the wheat crop.

Contrary to LNAS which is based on a biomass budget, the growth in STICS is

driven by an empirical law for the LAI growth. Three phases are involved, the first phase

(from emergence to the maximal LAI point) is approached by a logistic function with the

hypothesis that the ratio between blade and petioles is constant, followed by a stabilized

phase and a senescent phase of linearly decreasing LAI. Several stress factors limit the

potential daily increase in LAI. The daily biomass production is then computed as a

quadratic function of the intercepted radiation, given by the Beer-Lambert law. Hence,

crop total biomass results from the accumulation of the daily biomass increase, and the

final grain biomass is obtained through an harvest index.

[Figure 3 about here.]

In our study, the field experimentations were conducted without Nitrogen stress, but

in light water stress conditions. Therefore, the soil characteristics are taken into account

to compute the water balance of the plant-soil-atmosphere system and thus to estimate

several water stress indices impacting plant growth at different levels. For this purpose,

the water contents in three soil layers are calculated.

In consequence, the above model can be divided into two sub-models, one concerns the

plant system with state variables at time t denoted Xp(t) and the other the soil system

with state variables denoted Xs(t). Plant growth is described by the function fp. The

root compartment growth is directly affected by the soil temperature and water content.

Likewise, the soil water content determines several water stress indices impacting LAI

development, biomass production and senescence. On the other hand, water transfers

including evaporation and plant transpiration are calculated in the soil system by the

function fs:
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





Xp(t+ 1) = fp (Xp(t), Xs(t), Ep(t),Θp) ,

Xs(t+ 1) = fs (Xs(t), Xp(t), Es(t),Θs) .
(13)

Functions fp and fs are detailed in (Brisson et al., 2008). Given the complexity of the

STICS model, a large number of parameters are involved, some of which may be species

dependent or genotype dependent.

4.2. Experimental Data

The data used for this study were obtained by INRA (Institut National de

Recherche Agronomique) in the context of the Aquateam project (http://www.projet-

aquateam.org/) whose objective is to develop decision aid tools for crop irrigation. The

experiments were carried out at Villamblain (France). The growth of two commercial

varieties of winter wheat were monitored: Raffy in two experimental campaigns,

2011-2012 (sowing date: 25 October 2011; harvesting date: 25 July 2012) and 2012-2013

(sowing date: 29 October 2012; harvesting date: 30 July 2013) and Numeric in one

experimental campaign, 2012-2013 (sowing date: 29 October 2012; harvesting date: 30

July 2013). In our study, the 2012 dataset of variety Raffy was used for parameter

estimation. For the sake of clarity for the readers already familiar with the STICS model,

we use the classical notations for state variables and parameters recalled extensively in

Brisson et al. (2008). Dry matter of green leaves (denoted mafv, g·m−2), above-ground

dry matter (denoted masec, g·m−2), soil averaged water content (denoted hur, mm/unit

area) and dry matter of grain yield (denoted magrain, g·m−2) were measured and

collected at different dates in 2012 (in days after sowing):

Omafv
2012 = {155, 185} , Omagrain

2012 = {269} ,

Omasec
2012 = {155, 185, 213, 239, 269} ,

Ohur
2012 = {155, 171, 178, 192, 203, 219, 234, 247, 260} .

For data assimilation and prediction, the two 2013 datasets corresponding to both

varieties were used. Additional measurements of LAI (denoted LAI, m2 leaf ·m−2 soil)

were available for the 2013 dataset (obtained with the SunScan Canopy Analysis Sys-

tem of Delta-T Devices), while the dry matter of green leaves was not measured. The
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observation dates are given as follows:

Ohur
2013 = {21, 79, 114, 155, 170, 182, 198, 210, 226, 240, 255, 275} ,

Omagrain
2013 = {266} , OLAI

2013 = {162, 175, 191, 203, 212, 219, 233} .

Daily mean values of air temperature, solar radiation, potential evapotranspiration,

and total daily rainfall were obtained from French meteorological advisory services

(MÃl’tÃl’o France) 3 km away from the experimental site.

4.3. Results

4.3.1. Parameter Screening by Sensitivity Analysis

Since STICS has a large number of parameters, and regarding the reduced experimen-

tal data sets that are available for its parameterization, a preliminary parameter selection

was conducted in the first place. 16 variety-dependent parameters that are relevant to

the concerned model state equations were selected to perform the sensitivity analysis, for

the output chosen as a generalized least-square criterion based on the 2012 dataset.

According to Sobol total order indices, the four most influential parameters EFFI-

CIENCE, STAMFLAXV, UDLAIMAXP and VLAIMAXP were selected for the next

calibration step. Their definitions are given by Table 6. The other parameters (with

total order indices below 0.05) were hence fixed to the mean values of their variation

intervals (deduced from literature (Brisson et al., 2008)).

[Table 6 about here.]

4.3.2. Parameter Estimation

In the deterministic case, the conditional ICPF approach coupled with the parametric

bootstrap used for the LNAS model is not possible. We thus estimated the unknown pa-

rameter vector Θ = (EFFICIENCE,STAMFLAXV,UDLAIMAXP, V LAIMAXP )

with the classical CPF. 100000 particles were drawn from the distributions used for

sensitivity analysis and obtained from the literature (Brisson et al., 2008). Means and

standard deviations of all the four parameters are thus obtained based on the posterior

distribution provided by the population of the particles and their associated weights.

The results are presented in Table 7.
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[Table 7 about here.]

4.3.3. Data Assimilation with CPF

Data assimilation was subsequently performed using as prior distributions the pos-

terior distributions of the parameters provided by the estimation step. 100000 particles

were simulated for the two 2013 datasets. The recalibration was carried out based on the

first seven observations of soil water content hur and the first three observations of LAI,

corresponding for both cases to data obtained before Day 199 after sowing. The values

of these state variables along with the grain yield were then simulated for all particles

until the end of the growing season (Day 275 after sowing), which allows us to build the

posterior distribution of the prediction.

Uncertainty Analysis (UA) was also performed in this study to provide reference

values for the prediction with 100000 particles as well initialized in the same way as for

the prediction with assimilation.

Fig. 4 and Fig. 5 illustrate the model prediction for the LAI variable, with and

without data assimilation. The assimilation step has clearly enhanced the predictive

capacity of the model. The results are detailed in Table 8 for the variety Raffy and

Table 9 for the variety Numeric: the predictions and relative prediction errors as well as

the prediction uncertainty (given by the credibility intervals) are given for the soil water

content hur, LAI, and grain yield magrain, with and without data assimilation. The

relative error of prediction was greatly reduced when taking advantage of the early data

by assimilation, and the prediction uncertainty was also significantly decreased in almost

all the cases.

[Figure 4 about here.]

[Figure 5 about here.]

[Table 8 about here.]

[Table 9 about here.]

4.3.4. Discussion

As for the LNAS model for sugar beet, the mean prediction and prediction credibil-

ity intervals are generally greatly improved with data assimilation compared to simple
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prediction by uncertainty analysis.

A noteworthy point concerns the special climatic conditions of year 2013 for the winter

wheat data, since severe stresses due to heavy rain and frost in winter were observed which

resulted in a far lower plant density compared to 2012. However, since there was more

space available for each plant, a compensation phenomenon was observed. The LAI

curve got delayed but finally nearly caught up with what would have been observed with

the regular climate conditions, and therefore grain yield was not seriously influenced.

However, the prediction performed without assimilation was not able to capture this

compensation phenomena and thus failed to provide a reasonable prediction for the LAI

and for the final yield (cf. variable magrain in Table 9 and Table 8), while the proposed

approach has remarkably tackled this issue by updating properly the parameters and

hidden variables based on the available data. As a result, the satisfactory predictions

demonstrated its robustness in case of extreme weather scenarios.

On the other hand, the prediction improvement is less impressive with the soil water

content variable, probably due to the fact that there was no soil parameter selected

by sensitivity analysis, and only light water stress conditions: the influence of the crop

parameters updated in the data assimilation is limited, so that the difference with the case

without assimilation is not so apparent (while still to the advantage of the assimilation

method). In the light of this example, we may also consider a more subtle selection of

parameters in the first step of our approach to improve the prediction of a specific output

variable of interest when needed.

Finally, it is important to underline that when the proposed approach is applied to

a deterministic model, the resulting uncertainty assessment is less rigorous in both the

estimation and assimilation steps. In this case, the posterior distributions obtained with

the CPF approach are extensively influenced by the tuning parameters of the algorithm,

especially the choice of the kernel functions and their bandwidth parameters, so that the

credibility intervals computed should be regarded as contextual approximations. This

directly results from the fact that the model does not have a probabilistic framework,

which of course restricts the validity of the statistical analysis.
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5. Conclusion

In this paper, we detailed CPF-based methods for parameter estimation and data

assimilation, and applied it to the LNAS stochastic crop model for sugar beet and the

STICS model for winter wheat. The methods can explicitly account for different sources

of uncertainty during the parameter estimation step, which provides prior distributions

for the following step of data assimilation. Both state variables and parameters are then

updated to improve model prediction and prediction uncertainty.

Various experimental conditions were considered for the test cases, including real

datasets from different years, in different locations, with different crop densities, dif-

ferent cultivars, in different stress conditions... In most cases the proposed approach

was able to provide fair predictions after a short period of adjustment and managed to

reduce significantly the prediction errors. Such performances raise interest for future

applications.

For a stochastic model like LNAS, a proper uncertainty assessment with the con-

ditional ICPF approach in the estimation step is possible. Based on these results, the

performance of the prediction with data assimilation is greatly improved both in terms

of mean prediction error and robustness of the provided credibility interval compared to

a simple uncertainty analysis.

Thanks to the kernel-based approach in the Convolution Particle Filtering, the

method can also cope with deterministic models, which is a very interesting feature

in crop modelling, since a lot of broadly used classical models are not formulated as

hidden Markov models. In this case, however, if the mean predictions are fair enough,

the credibility intervals should be seen as indicative, as a proper uncertainty assessment

cannot be achieved without a proper probabilistic framework. More generally, in

applicative contexts in agriculture, the specific local field conditions (like soil properties,

or Nitrogen budget) are not easy to evaluate, so that the characterization of appropriate

prior parameters and inputs for a complex model like STICS is a delicate task, involving

great efforts and a potentially important risk to deteriorate the predictive capacity of the

method. On the contrary, a simple model built with a minimal set of ecophysiological

processes (Delécolle et al., 1992) coupled with data assimilation should be able to adjust

and capture crop dynamics corresponding to very diverse environmental situations.
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As underlined above, our method implies a parameter estimation step, in order to de-

termine the prior distribution for the assimilation step. Of course, if this prior knowledge

is already available, then the estimation step can be skipped. Moreover, this preliminary

estimation step corresponds to an off-line estimation, for which other methods than CPF

could be used, such as Kalman filters-based algorithms or Markov chain Monte-Carlo

(MCMC) algorithms.

We have already tested the Unscented Kalman Filter (Julier et al., 2000) and Ensem-

ble Kalman Filter (Evensen, 2006) with the LNAS model for sugar beet in the same test

condition and compared their performances to the CPF approach. Our results showed

that Kalman filter-based approaches suffer from the important nonlinearity of the model,

contrary to the CPF-based methods. A clear advantage of the latter was shown, which

confirms the conclusion of Rossi (2004) obtained for different models.

Likewise, some preliminary results suggest the superiority of the CPF approach com-

pared to the classical implementation of the Markov chain Monte Carlo method for the

estimation step (Adaptive Metropolis (Gelman et al., 1996; Haario et al., 1999, 2001) with

multivariate random walk, based on the famous Metropolis-Hasting algorithm (Metropo-

lis et al., 1953)). As a matter of fact, the credibility intervals obtained for the prediction

with assimilation appear less robust when the preliminary estimation was achieved with

MCMC than with the CPF-based algorithm. It may be caused by some convergence

problems of the MCMC approach in the case of sparse datasets as already pointed out

by Geyer (1992). A solution to improve the mixture properties as well as the conver-

gence rate, according to Campillo et al. (2009), could involve making different copies

of the same Markov chain and letting them interact with each other. Note that this

idea corresponds to one of the key step of the Convolution Particle Filter, the resam-

pling, which allows to preserve the variability of updated state variables and parameters.

The acceptance probability can therefore be regarded as a sort of weight associated to

each particle. Moreover, when no satisfying prior distribution is available, iterating the

filtering step in our algorithm is an efficient way to refine the quality of the estimates

by taking advantage of the off-line estimation. We are currently testing the interacting

MCMC algorithm proposed by Campillo et al. (2009).

The CPF-based estimation and assimilation algorithms are implemented in the PYG-
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MALION modelling platform (Cournède et al., 2013) with the aim of making it available

to a large set of plant models implemented in the platform, and thus to carry out model

comparison and selection with the precise objective of model adaptation for data as-

similation. Likewise, the influence of the estimation and assimilation algorithms on the

performance of the method can be further tested in future studies.

Generally speaking, the assessment of uncertainty appears as a crucial point for the

usefulness of plant models (Ford and Kennedy, 2011). How do parameters vary across

years, different locations or genotypes? How to distinguish and to identify the different

sources of variations and uncertainty? How to extract most of the information from

the available data while still addressing the uncertainty in an appropriate way in order

to provide reliable credibility intervals? These issues should be considered crucial and

properly addressed for the new generation of plant models.
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Houlès, V., Mary, B., Guérif, M., Makowski, D., Justes, E., 2004. Evaluation of the ability of the

crop model STICS to recommend nitrogen fertilisation rates according to agro-environmental criteria.

Agronomie 24, 339–349.

Jazwinski, A., 1970. Stochastic Processes and Filtering Theory. Academic Press, New York.
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Figure 1: General scheme of an agroecosystem model for sugar beet (adapted from Delécolle et al. (1992)
and Dorigo et al. (2007)).
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Figure 2: Comparison of the predictions for Qg of the LNAS model given by the CPF approach with
ICPF’s estimates and predictions given by the uncertainty analysis (UA) based on the 2006 dataset.
The red squares correspond to the assimilated experimental data while the pink squares represent the
data used for validation.

35



Figure 3: General scheme of the STICS model for winter wheat (adapted from Brisson et al. (2008)).
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Figure 4: Comparison of the predictions of LAI obtained with CPF-based assimilation and by the
uncertainty analysis (without assimilation) based on the 2013 dataset for variety Raffy. The red squares
correspond to the assimilated experimental data while the pink squares represent the data used for
validation.
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Figure 5: Comparison of the predictions of LAI obtained with CPF-based assimilation and by the
uncertainty analysis (without assimilation) based on the 2013 dataset for variety Numeric. The red
squares correspond to the assimilated experimental data while the pink squares represent the data used
for validation.
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Parameter ICPF CPF
Estimates Std. Estimates Std.

µ 3.55 0.16 3.50 0.01
λ 56.6 3.9 57.7 7.7
γ0 0.925 0.091 0.864 0.104
γf 0.104 0.027 0.099 0.013
µa 553.9 86.5 678.7 26.1
σQ 0.011 - 0.021 -
σγ 0.013 - 0.080 -
σg 0.098 - 0.102 -
σr 0.070 - 0.072 -

Table 1: Estimated values and approximated standard deviations provided by the conditional ICPF
approach and the classical CPF approach for the 5 functional parameters and 4 noise parameters of the
LNAS model based on the 2010 experimental data.
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Real Data 2006 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qb (t142) 355.2 348.1 (2.0%) [258.7; 437.4] 507.8 (43.0%) [368.4; 647.3]
Qb (t198) 320.6 301.3 (6.0%) [219.0; 383.6] 435.7 (35.9%) [384.3; 560.7] ⋆

Qr (t142) 1459.2 1716.2 (17.6%) [1427.9; 2004.5] 1930.7 (32.3%) [1603.0; 2258.4] ⋆

Qr (t198) 2400.0 2644.3 ( 10.2%) [2209.4; 3079.2] 2942.9 (22.6%) [2455.0; 3430.7] ⋆

Table 2: Comparison of the prediction results of the LNAS model with and without data assimilation
based on the 2006 dataset (density 9.6) according to estimated noises. ⋆: the predicted credibility
interval does not contain the real observed data.
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Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qb (t122) 373.5 417.8 (11.9%) [314.8; 520.8] 527.1 (41.1%) [380.8; 673.5]
Qb (t158) 380.6 399.2 (4.9%) [294.8; 503.5] 502.9 (32.1%) [359.8; 646.0]
Qr (t122) 1559.1 1531.1 (1.8%) [1275.5; 1786.7] 1656.4 (6.2%) [1373.8; 1938.9]
Qr (t158) 2327.7 2192.9 ( 5.8%) [1831.2; 2554.6] 2352.4 (1.1%) [1960.4; 2744.4]

Table 3: Comparison of the prediction results of the LNAS model with and without data assimilation
based on the 2008 dataset (density 10.9) according to estimated noises.
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Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qb (t122) 318.6 426.5 (33.9%) [317.8; 535.3] 552.8 (73.5%) [403.1; 702.5]⋆

Qb (t158) 385.5 409.5 (6.2%) [300.0; 519.1] 523.6 (35.2%) [378.2; 669.0]
Qr (t122) 1319.5 1539.5 (16.7%) [1302.0; 1777.0] 1689.2 (28.0%) [1401.5; 1977.0]⋆

Qr (t158) 2368.5 2260.9 (4.5%) [1934.0; 2587.8] 2416.0 (2.0%) [1983.4; 2848.7]

Table 4: Comparison of the prediction results of the LNAS model with and without data assimilation
based on the 2008 dataset (density 16.4) according to estimated noises. ⋆: the predicted credibility
interval does not contain the real observed data.
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Real Data 2008 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

Qb (t122) 297.6 383.1 (28.7%) [283.4; 482.8] 483.0 (62.3%) [342.1; 624.0]⋆

Qb (t158) 408.1 376.5 (7.7%) [300.0; 480.8] 467.5 (14.6%) [328.5; 606.6]
Qr (t122) 1551.4 1482.8 (4.4%) [1232.5; 1733.1] 1590.7 (2.5%) [1316.9; 1864.5]
Qr (t158) 2535.0 2157.8 (14.9%) [1779.6; 2536.0] 2285.6 (9.8%) [1886.3; 2684.8]

Table 5: Comparison of the prediction results of the LNAS model with and without data assimilation
based on the 2008 dataset (density 5.4) according to estimated noises. ⋆: the predicted credibility
interval does not contain the real observed data.
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EFFICIENCE: maximum radiation use efficiency (g·MJ−1)
STAMFLAXV: duration between the day of stage maximal of leaf growth (the end of juvenile phase) and the

day of the stage maximal of leaf area index (deg C.days)
UDLAIMAXP: maximal daily relative development of LAI (no unit)
VLAIMAXP: daily relative development of LAI at the inflexion point (no unit)

Table 6: Definition of the selected parameters for the calibration of STICS.
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Parameter Prior CPF
Distribution Estimates Std.

EFFICIENCE N (4.00, 0.202) 3.62 0.19
STAMFLAXV U (250, 350) 277.05 35.88
UDLAIMAXP N (3.00, 0.52) 2.89 0.67
VLAIMAXP N (2.20, 0.22) 1.91 0.14

Table 7: Estimated values and approximated standard deviations obtained by CPF for the 4 selected
parameters of the STICS winter wheat model, based on the 2012 experimental data.

46



Real Data 2013 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

hur (t210) 0.296 0.311 (5.2%) [0.298; 0.324] 0.308 (4.0%) [0.304; 0.312]
hur (t226) 0.296 0.305 (3.2%) [0.292; 0.318] 0.303 (2.3%) [0.296; 0.310]
hur (t240) 0.293 0.304 (3.7%) [0.291; 0.317] 0.301 (2.8%) [0.294; 0.308]
hur (t255) 0.247 0.266 (7.8%) [0.253; 0.279] 0.273 (10.6%) [0.255; 0.292]
hur (t275) 0.252 0.253 (0.4%) [0.238; 0.268] 0.268 (6.5%) [0.233; 0.304]
LAI (t203) 3.51 2.91 (17.2%) [1.94; 3.87] 2.04 (41.9%) [0.271; 3.809]
LAI (t212) 4.39 3.87 (11.9%) [3.37; 4.69] 2.25 (49.8%) [0.000; 4.512]
LAI (t219) 4.37 4.06 (7.2%) [3.36; 4.75] 2.33 (46.7%) [0.000; 5.062]
LAI (t233) 5.21 5.00 (4.0%) [3.65; 6.35] 2.48 (52.4%) [0.000; 6.557]
magrain (t266) 829.933 769.700 (7.3%) [613.176; 926.224] 449.111 (45.9%) [41.079; 857.143]

Table 8: Comparison of the prediction results of the STICS model with and without data assimilation
based on the 2013 dataset for variety Raffy.
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Real Data 2013 DA estimates 95% CI UA estimates 95% CI
(relative error in %) (relative error in %)

hur (t198) 0.276 0.272 (1.7%) [0.260; 0.283] 0.290 (5.0%) [0.286; 0.295]
hur (t210) 0.274 0.303 (10.3%) [0.284; 0.322] 0.308 (12.2%) [0.303; 0.313]
hur (t226) 0.289 0.297 (2.6%) [0.278; 0.316] 0.303 (4.7%) [0.295; 0.310]
hur (t255) 0.239 0.262 (9.7%) [0.240; 0.283] 0.272 (14.0%) [0.253; 0.291]
hur (t275) 0.257 0.260 (1.2%) [0.229; 0.291] 0.267 (4.0%) [0.233; 0.302]
LAI (t203) 4.235 4.514 (6.6%) [3.144; 5.883] 3.482 (17.8%) [0.471; 6.494]
LAI (t212) 4.735 4.627 (2.3%) [3.192; 6.062] 3.842 (18.9%) [0.000; 7.693]
LAI (t219) 4.225 4.867 (15.2%) [2.394; 7.340] 3.994 (5.5%) [0.000; 8.638]
LAI (t233) 4.910 5.215 (6.2%) [0.969; 9.462] 4.274 (13.0%) [0.000; 11.214]
magrain (t266) 819.38 804.33 (1.8%) [611.68; 996.98] 550.58 (32.8%) [128.97; 972.20]

Table 9: Comparison of the prediction results of the STICS model with and without data assimilation
based on the 2013 dataset for variety Numeric.
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