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Abstract

Given a digital straight line D of known characteristics (a, b, c), and given two
arbitrary discrete points A(xa, ya) and B(xb, yb) of it, we are interested in com-
puting the characteristics of the digital straight segment (DSS) of D delimited
by the endpoints A and B. Our method is based entirely on the remainder
subsequence S = {ax − c mod b; xa ≤ x ≤ xb}. We show that minimum and
maximum remainders correspond to the three leaning points of the subsegment
needed to determine its characteristics. One of the key aspects of the method
is that we show that computing such a minimum and maximum of a remain-
der sequence can be done in logarithmic time with an algorithm akin to the
Euclidean algorithm. Experiments show that our algorithm is faster than the
previous ones proposed by Said and Lachaud in [11] and Sivignon in [16].

Keywords: Remainder, Digital Straight Line Subsegment Recognition,
Discrete geometry.

1. Introduction

One of the simplest primitives in digital geometry, the Digital Straight Line
(DSL) and the Digital Straight line Segment (DSS), have very interesting and
rich structures that have been studied for a long time now [12]. See [9] for
a historical overview. There are immediate links to Sturmian and Christoffel
words, the Stern-Brocot tree, the Farey fans, etc. [9]. The study are regained
some interest when J-P. Reveillès, proposed, among previous authors [3, 5], an
analytical description of a DSL 0 ≤ ax − by − c < ω in [13] (where (a, b, c) are
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called the characteristics or parameters of the DSL). The immediate possibili-
ties of extensions to higher dimensions and to different scales sparked interest
among arithmeticians [2] and researchers in image processing [15, 19].
In this paper we are interested in a particular class of DSS recognition problems.
The problem is related to multiscale geometry [15, 19]. It is indeed important,
when inspecting geometrical features at multiple scales, to be able to recompute
the new, scaled, characteristics and that, as rapidly as possible. The intricate
structure of DSLs is at the heart of many DSS recognition algorithms. While
there are too many papers to cite them all, let us just recall some emblematic
papers that did explore various approaches such as those based on convex hull
computation [1, 4], on arithmetic properties [18] or on pre-images of a digital
straight line segment [8, 17]. In [6], I. Debled-Rennesson proposed an algorithm
that allows to compute the characteristics of a DSS in linear time complexity
with a very simple straight forward algorithm that made the link between the
characteristics of a DSS and leaning points which can be described arithmeti-
cally as points with limit remainder values or geometrically as pivot points. Let
us consider a DSL with known characteristics (a, b, c) and two points A and B of
the DSL. What are the characteristics of the DSS defined by those two points?
We may consider a DSS as a segment of DSL at various scales and being able
to characterize those DSSs allows multiscale shape analysis for example. The
problem differs from the classical DSL recognition problem because we have a
very important information we usually do not have: the whole set of points of
the DSS belongs to a known DSL. This leads to algorithms in logarithmic time
which is, of course, not possible if we do not know in advance which points be-
long to the DSS [11, 16]. In classical Euclidean geometry, the characteristics of
a segment are the same as those of the straight line. This is not true in digital
geometry. There can be an infinite number of different triplets of DSS char-
acteristics for a same set of points (and no, using a simple Greatest Common
Divisor is not enough). Although there is an infinite set of characteristics, there
is a unique minimal characteristic triplet. For naive DSS (ω = b, 0 ≤ a ≤ b) it
corresponds to the characteristics with the minimal b.
This problem has been the focus of some attention lately in conjunction with
new multiscale shape analysis methods [11, 15], and various approaches have
been tried: in [20], De Vieilleville and Lachaud exhibited relations describing
the possible changes in the characteristics of a DSS by examining its combina-
toric description. They established new analytic relations and made explicit the
relation with the Stern Brocot tree. In [11] Said and Lachaud used these results
and presented two algorithms. Those determine the minimal characteristics of
a DSS by moving in a bottom-up and top-down way along the Stern-Brocot
tree. They demonstrated that the worst-time complexity is proportional to the
difference of depth, in the Stern-Brocot tree, of the slope of the input line and
the slope of the output segment and is thus logarithmic in the coefficients of
the input slope. Sivignon in [16] proposed a method that computes the char-
acteristics of a DSS using a walk in the so called Farey Fans; this algorithm is
logarithmic in terms of the length of the subsegment. The main problem with
both these methods, aside from the fact that they are not trivial to program, is
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that they do not offer an obvious extension to higher dimensions.
In this paper we propose a new algorithm for the computation of the min-

imal characteristics of a DSS defined as a subsegment of a DSL with known
characteristics. Our approach is entirely based on the remainders of the DSL
points. For a DSL defined by 0 ≤ ax− by− c < b (with 0 ≤ a ≤ b), the remain-
der is simply the value Ra,b,c(x) = ax − by − c =

{

ax−c
b

}

where
{

n
m

}

stands
for n mod m (y is a function of x; there is one and only one DSL point per
abscissa). We show that there is, under some conditions, an order relationship
between the remainders of a point relatively to the DSL and to the DSS minimal
characteristics. We show especially that the points with minimum and maxi-
mum DSL remainders are leaning points of the DSS. The third leaning point
is obtained in a similar way on a sub-interval. The second important result
of the paper is that the minimum and maximum of a remainder sequence can
be computed in logarithmic time with a very simple algorithm that is akin to
the Euclidean algorithm. Determining the three leaning points of a DSS that
allow us to determine its characteristics is resumed by searching three times for
a minima or maxima in remainder sequences. The resulting algorithm is very
simple and efficient, being significantly faster as previous methods [11, 16]. An
interesting aspect of this approach is that it offers a new way, with remainders,
to explore higher dimensions. It is not however, as can be seen in the conclusion,
straightforward.

This paper is organized as follows: Section 2, deals with remainders and
the properties of minimal DSS. Section 3 is devoted to the computation of the
minimum and maximum of a remainder sequence. Section 4 presents briefly the
algorithm for DSS characterization and shows some results and some compar-
isons of our approach with previous ones. Finally section 5 proposes a conclusion
and some perspectives.

2. Remainders of minimal DSS

In this section we present our notations, definitions and properties of Digital
Straight Segments. We are especially going to explore the properties of the
remainders of minimal DSS and relations to the remainders of corresponding
DSL.

2.1. Notations, Definitions

A Digital Straight Line (DSL for short) D (a, b, c) of integer characteristics
(a, b, c) is the set of digital points (x, y) ∈ Z

2 such that 0 ≤ ax − by − c <

max (|a| , |b|) with gcd (a, b) = 1. These DSL are 8-connected and called naive
DSL [6]. The slope of the DSL is the fraction a

b
. The value c is sometimes called

the translation constant. In this paper, without loss of generality, we assume
that 0 ≤ a ≤ b. This corresponds to a DSL in the first octant with slopes
0 ≤ a

b
≤ 1. In this case, we have one and only one point, denoted PD(x), in D

with abscissa x. The ordinate is then y =
⌊

ax−c
b

⌋

.
A DSL can also be defined as the integer points of a strip delimited by the lower
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leaning line DL : ax−by−c = b−1 and the upper leaning line DU : ax−by−c = 0
[6]. Upper (resp. Lower) leaning points are the digital points of the DSL lying
on the upper (resp. lower) leaning lines. A weakly exterior point is a point of
D that verifies ax− by − c = −1 (in this case we speak also of a weakly upper
exterior point) or ax− by − c = b (in this case we speak also of a weakly lower
exterior point).

A Digital Straight Segment (DSS for short) S (D,u, v) associated to the DSL
D = D (a, b, c) and endpoints PD(u) and PD(v) is the subset of D with points
of abscissa in [u, v]. A DSS is a finite 8-connected subset of a DSL.
The characteristics of a DSS are those of a corresponding DSL however con-
trary to what happens for continuous straight line segments, a DSS is a subset
of an infinite number of DSLs with different characteristics: for instance, the
DSS of characteristics (5, 8, 0) and (8, 13,−1) have the same points of abscissa
on interval [0, 11]. The characteristics of a DSL are therefore not adapted for
manipulating DSSs especially since there is no direct method to establish the
equality between two DSSs with two different sets of characteristics without
comparing the points on the interval. For this reason we use the notion of mini-
mal characteristics: the minimal characteristics of a DSS are the characteristics
of the corresponding DSL with a minimal b. It is easy to see that there exists
only one DSL with minimal b [6]. The DSL with minimal characteristics is
called the minimal DSL for the DSS. By extension, we refer simply to a DSS
defined by minimal characteristics as a minimal DSS. The notions of leaning
lines, leaning points and weakly exterior points are extended to minimal DSS.
Two DSSs are said to be equivalent if they share the same minimal character-
istics DSL even if the endpoints are different. A DSS is minimal if and only if
the DSS contains at least three leaning points [6, 20] of the minimal DSL. This
means that two minimal DSSs with different endpoints will be equivalent if they
contain a common set of three leaning points or if they contain each a set of
three leaning points from the same DSL. The upper and lower leaning points
alternate in a DSL: between two consecutive upper (respectively lower) leaning
points we have one lower (respectively upper) leaning point.
A span of a DSL or a DSS is a set of (connected) points that have the same
ordinate.

We will use the notation
{

a
b

}

for a mod b [13]. The remainder Ra,b,c (x) at

abscissa x is the value Ra,b,c (x) = ax − by − c =
{

ax−c
b

}

. The sequence of
the remainders for a DSS S (D,u, v) of minimal characteristics (a, b, c) is noted
Ra,b,c (u, v).

Let us call DSS dilation or simply dilation the operation of adding a dis-
crete point at the left or right of a DSS S of minimal characteristics (a, b, c):
S (D,u, v)∪(v+1, y) or S (D,u, v)∪(u−1, y′). From the line segment recognition
algorithm of I. Debled-Renesson [6], we have some immediate dilation properties:
let us dilate the DSS by the right (respectively the left) then the resulting set is
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a DSS iff the remainder of the new point relatively to the minimal characteris-
tics of S verifies −1 ≤ Ra,b,c (v + 1) ≤ b (respectively −1 ≤ Ra,b,c (u− 1) ≤ b).
The new DSS is equivalent to S (the minimal characteristics are (a, b, c)) iff
0 ≤ Ra,b,c (v + 1) ≤ b− 1 (respectively 0 ≤ Ra,b,c (u− 1) ≤ b− 1). This means
that the dilated S is a DSS with new minimal characteristics iff the new point
is weakly exterior. In this case the added point is a leaning point for the new
minimal characteristics (upper leaning point if it was a weakly upper exterior
point and lower leaning point if it was a weakly lower exterior point).
Let us call DSS erosion or simply erosion the operation of removing an endpoint
of a DSS S. Except, of course, if S is composed only of one point, the erosion
of a DSS is always a DSS. The erosion of a DSS is not equivalent to S (the
minimal characteristics are different) iff S contained only three leaning points
and if the removed point was one of them [6, 14].

Definition 1. Let us consider a DSS S = S (D,u, v). We say that S′ is a
right pivot dilation (or simply pivot dilation when there is no ambiguity) of S
iff S′ = S (D,u, v′) is not equivalent to S but its erosion S (D,u, v′ − 1) is.
We say that S′′ is a right pivot erosion (or simply pivot erosion when there is
no ambiguity) of S iff S′′ = S (D,u, v′′) is not equivalent to S but its dilation
S (D,u, v′′ + 1) is. An equivalent definition goes for left pivot dilation and left
pivot erosion.

There are some immediate properties of pivot dilations and pivot erosions.
Within a DSS associated to a minimal DSL, the right dilation of a right pivot
erosion is equivalent to the right erosion of a right pivot dilation and vice-versa
(same for the left). The pivot dilation of a DSS always contains exactly three
leaning points (with regard to the minimal characteristics of the pivot dilated
DSS).

On Figure 1, we can see a DSS Si and its right pivot dilation DSS Si+1. The
DSS S′

i is the right pivot erosion of Si+1. The DSSs Si and S′
i are equivalent,

so DSS Si+1 is also a right pivot dilation of S′
i. Note that for the clarity of

some figures, we will represent a DSS not by its set of points (x, y) but by
a set of points (x,Ra,b,c (x)). This way the lines ax − by − c are represented
horizontally and it is easier to see how leaning points or weakly exterior points
play a role in the evolution of minimal characteristics. In Figure 1, the blue
disks correspond to interior points of the DSS and the blue circles to leaning
points of the right pivot dilation DSS Si+1. All the DSSs that have equivalent
right pivot dilations are equivalent. All the DSS that have equivalent right pivot
erosions are equivalent. Same goes for the left of course.

2.2. Slope of a DSS and its pivot dilation/erosion

The goal of the following subsections is to establish a link between the re-
mainders of a DSL and its DSSs. This will allow us to determine the minimal
characteristics of the DSSs. In what follows, we are going to consider mainly a
right pivot dilation approach for the construction and definition of a sequence
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Figure 1: Illustration of the DSS in the dilation serie.

of DSSs. To establish the link between the characteristics of a DSL D and
the minimal characteristics of a segment S (D,u, v), we will start with the DSS
S (D,u, v) and repeatedly add points of D so as to establish a sequence of right
pivot dilations until we obtain a segment S (D,u, vn) where vn corresponds to
the abscissa of the third leaning point of D at the right of PD(u) (as mentioned
in the notations, PD(u) is the point of D of abscissa u). Then we know that the
minimal characteristics of S (D,u, vn) are those of D. We build the sequence
vi of the abscissa for which the minimal characteristics change with the pivot
dilations and the associated minimal characteristics of those successive DSSs.
Our aim is to show that the variations of the remainders for the minimal DSSs
are linked to the variations of the remainders of the minimal DSL D.

The following lemma shows a link between a minimal DSS and its pivot
dilation/erosion:

Lemma 1. Let us consider a DSL D and two DSSs S = S (D,u, v) of mini-
mal characteristics (a, b, c) and a pivot erosion (or pivot dilation) of S: S′ =
S (D,u′, v′) of minimal characteristics (α, β, γ). Then the following equality
stands:

aβ − αb = ±1.

Proof. Let us consider the DSS S = S (D,u, v) of minimal characteristics
(a, b, c) and a right pivot erosion of S: S′ = S (D,u, v′) of minimal char-
acteristics (α, β, γ). The right pivot dilation of S′: S′′ = S (D,u, v′ + 1) is
equivalent to S as we already mentioned. We know that S′′ has exactly three
leaning points for the characteristics (a, b, c). Let us suppose that in S′′ we
have U0(x0, v

′ + 1− a) and U2(x0 + b, v′ + 1) as two consecutive upper leaning
points in S′′. The point U2 is a weakly upper exterior point which means for
S′: α(x0 + b)− β(v′ + 1)− γ = −1. We know also from [6] that U0 remains an
upper leaning point for S′ so αx0 − β(v′ + 1 − a) − γ = 0 which leads to the
result. The arguments with two lower leaning points, with a left pivot dilation
or left or right pivot erosions are similar. �

The result is quite obvious actually. Indeed if the vectors (a, b) and (α, β) were
not unimodular then we would have additional discrete points on the interval
[u′, v′] which is contradictory to our construction.
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2.3. Remainders and Leaning Points

The following proposition states that the remainders of a DSS and the re-
mainders of its pivot dilation (respectively the remainders of its pivot erosion)
are ordered in the same way as long as the points we are considering are close
enough:

Proposition 1. Let us consider a DSL D and two DSSs S = S (D,u,w) of
minimal characteristics (a, b, c) and S′ = S (D,u, v) of minimal characteristics
(α, β, γ) such that either S is a right pivot dilation of S′ or S′ is a right pivot
erosion of S. Then:

∀x, x′ ∈ [u, v], |x− x′| ≤ b : Ra,b,c (x) < Ra,b,c (x
′)⇒ Rα,β,γ (x) ≤ Rα,β,γ (x

′)

Let us note that while [u, v] ⊂ [u,w], it does not mean however that v −
u ≤ b. For instance, for D = D (5, 13, 0), the DSS S (D,−7, 13) (of minimal
characteristics (5, 13, 0)) is the right pivot dilation of the DSS S (D,−7, 12) (of
minimal characteristics (3, 8, 0)). In this example, [u, v] = [−7, 12] while b = 13.
The proposition does not provide a complete answer over [u, v] because of the
condition |x − x′| < b. We believe that this condition is not necessary but we
have not a proof yet.

Proof. We have Ra,b,c (x) = ax − by − c and so y =
ax−c−Ra,b,c(x)

b
. We also

have Rα,β,γ (x) = αx − βy − γ. The same equalities stand for (x′, y′). Note
that, since both DSSs are segments of D, they have the same points (x, y) for
x ∈ [u, v]. The ordinates are equal. We can therefore write:

Rα,β,γ (x)−Rα,β,γ (x
′) = αx− βy − γ − (αx′ − βy′ − γ).

We replace y and y′ by their value expressed using the characteristics of D:

Rα,β,γ (x)−Rα,β,γ (x
′) =

αx− β

(

ax− c−Ra,b,c (x)

b

)

−

(

αx′ − β

(

ax′ − c−Ra,b,c (x
′)

b

))

.

Which leads to:

Rα,β,γ (x)−Rα,β,γ (x
′) =

(αb− βa)(x− x′)

b
−

β

b
(Ra,b,c (x

′)−Ra,b,c (x)).

Since Ra,b,c (x) < Ra,b,c (x
′) there exists 1 ≤ k ≤ b − 1 such that Ra,b,c (x

′) −

Ra,b,c (x) = k. So: Rα,β,γ (x) − Rα,β,γ (x
′) = (αb−βa)(x−x′)

b
− kβ

b
. We have

|x− x′| ≤ b and lemma 1 provides (αb− βa) = ±1.
We know that 1 ≤ β ≤ b−1 and 1 ≤ k ≤ b−1 so: Rα,β,γ (x)−Rα,β,γ (x

′) ≤ 1− 1
b
.

The remainder difference is an integer therefore Rα,β,γ (x)−Rα,β,γ (x
′) ≤ 0. �

The following corollary of proposition 1 states that a leaning point of a DSS
stays a leaning point for its pivot erosion.
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Corollary 1. Let us consider a DSL D, a DSS S = S (D,u,w) and the right
pivot erosion DSS S′ = S (D,u, v).

Let us denote m (resp. M) the upper (resp. lower) leaning point of S that
belongs to S′. Then the point m (resp. M) is also an upper (resp. lower) leaning
point for S′.

Note that the results of this corollary can also be deduced from the genera-
tion algorithm of I. Debled-Renesson [6] and the work on erosions in the PhD.
Thesis of T. Roussillon [14]. We provide here the result as a direct consequence
of the above proposed proposition.

Proof. Let us first note that S′ as pivot erosion of S contains exactly two
leaning points of S. Let (a, b, c) be the minimal characteristics of S. Since
m(xm, ym) is the only upper leaning point of S in [u, v], we have ∀x ∈ [u, v], 0 =
Ra,b,c (xm) < Ra,b,c (x) and ∀x ∈ [u, v], |xm − x| < b otherwise there would be
another upper leaning point of S in the DSS. The proposition 1 can be applied
and directly leads to the result. The demonstration for M is similar. �

This second corollary states that for two DSSs linked by a pivot dilation /
pivot erosion relation, on a subsegment common to both DSSs, the points of
minimal and maximal remainders are the same for both DSSs:

Corollary 2. Let us consider a DSL D, two DSSs S = S (D,u,w) of minimal
characteristics (a, b, c) and S′ = S (D,u, t) of minimal characteristics (α, β, γ)
such that S is the right pivot dilation of S′. Let us also consider an interval
[u, v] such that u ≤ v ≤ t < w Then:

min (Ra,b,c(u, v)) = Ra,b,c(xm)⇒ min (Rα,β,γ(u, v)) = Rα,β,γ(xm)

.

Proof. If v−u ≥ b then there exist an upper m(xm, ym) and a lower M(xM , yM )
leaning point of D in the DSS S (D,u, v). Corollary 1 can be applied and we
have Ra,b,c (xm) = 0 = Rα,β,γ (xm) and the result stands. When v−u < b then
proposition 1 can directly be applied. �

Let us now present one of the main results of this paper:

Theorem 1. Let us consider a DSL D = D (a, b, c) and the minimal DSS S =
S (D,u, v). Then the point m(xm, ym) (resp. M(xM , yM )) of minimal (resp.
maximal) remainder of D on [u, v] is an upper (resp. lower) leaning point for
S.

Proof. The proof is based on the recursive application of the preceding corol-
laries on a sequence of DSSs defined as follow: the sequence starts with S =
S0 = S (D,u, v0) (with v0 = v) of minimal characteristics (a0, b0, c0). The sec-
ond DSS of the sequence, S1 = S (D,u, v1) of minimal characteristics (a1, b1, c1),
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is defined as the right pivot dilation of S0. The minimum of the sequence of re-
maindersRa1,b1,c1(u, v) is the minimum of the remaindersRa0,b0,c0(u, v) (Corol-
lary 2). The DSS S = S0 is defined on [u, v] and thus the minimum remainder
for the minimal characteristics of S0 is 0 since there are three leaning points in
the DSS and therefore at least one upper leaning point. Since the remainder 0
defines an upper leaning point, the abscissa of the minimum of the remainders
of S1 is the abscissa of an upper leaning point of S. The next DSS S2 is defined
as the right pivot dilation of S1 and corollary 2 states that the minimum of the
remainders of S2 corresponds to the minimum of the remainders of S1 which is
an upper leaning point of S. This process is repeated until the minimal char-
acteristics of the pivot dilation Si are (a, b, c). The intervals defining the DSSs
of the sequence are strictly increasing. So, at some point, we reach an interval
such that there are three leaning points of D in the segment. Corollary 2 can
be applied at each step of the recursion. The same reasoning applies for the
maximum of the remainder sequence as well. �

Example 1. Let us consider the DSL D = D (5, 13, 0) and DSS S = S0 =
S (D, 6, 9) with minimal characteristics (1, 2, 2). We apply repeated right pivot
dilations and look at the sequence of remainders of the points of D on the interval
[6, 26] for the DSSs minimal characteristics. The minimal characteristics of each
DSS Si (underlined in the example) are computed with forthcoming proposition
2. We are interested in the behaviour of the remainders on the interval [6, 9]
(over-lined) defining S0:

• S = S0 = S (D, 6, 9) with minimal characteristics (1, 2, 2).
The sequence of remainders of the points of D for (1, 2, 2) on the interval
[6, 26] is {0, 1, 0, 1,2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4}.
The weakly lower exterior point is at abscissa 10 (in bold).

• S1 = S (D, 6, 10) with minimal characteristics (1, 3,−1).
The sequence of remainders of the points of D for (1, 3,−1) on the interval
[6, 26] is {1,2, 0, 1, 2, 0, 1, -1, 0, 1,−1, 0, 1,−1, 0,−2,−1, 0,−2,−1,−3}. The
weakly upper exterior point is at abscissa 13 (in bold). The minimum and
maximum remainders on [6, 9] (over-lined, bold) are upper and lower lean-
ing points for S. The reverse is not true: all the upper and lower leaning
points of S are not remainders’ minima and maxima for S1 on [6, 9]. Note
also that the two leaning points of S1 in [6, 9] are leaning points of S.

• S2 = S (D, 6, 13) with minimal characteristics (2, 5, 1).
The sequence of remainders of the points of D for (2, 5, 1) on the inter-
val [6, 26] is {1,3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3,5, 2, 4, 1, 3, 5, 2, 4, 1}. The weakly
lower exterior point is at abscissa 18 (in bold). The minimum and max-
imum remainders on [6, 9] (over-lined, bold) are upper and lower leaning
points for S. Note here that while we had two leaning points in [6, 9] for
S1 we have only one left in S2 in [6, 9].

• S3 = S (D, 6, 18) with minimal characteristics (3, 8,−1).
The sequence of remainders of the points of D for (3, 8,−1) on the interval
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[6, 26] is {3,6, 1, 4, 7, 2, 5, 0, 3, 6, 1, 4, 7, 2, 5, 0, 3, 6, 1, 4, -1}. The weakly
upper exterior point is at abscissa 26 (in bold). The minimum and max-
imum remainders on [6, 9] (over-lined, bold) are upper and lower leaning
points for S. There is no leaning point of S3 in [6, 9] any more. The
property of the minimum and maximum remainders stands however.

• S4 = S (D, 6, 26) with minimal characteristics (5, 13, 0). We reached the
characteristics of D.
The sequence of remainders of the points of D for (5, 13, 0) on the interval
[6, 26] is {4,9, 1, 6, 11, 3, 8, 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0}. There are
no more weakly exterior points. The minimum and maximum remainders
for D on [6, 9] (over-lined, bold) are upper and lower leaning points for S.

2.4. Third leaning point

In the previous subsection, we presented a way of locating an upper and a
lower leaning point of a minimal DSS S = S (D,u, v) with the remainders of D
on the interval [u, v]. In order to determine the minimal characteristics of S two
leaning points are not sufficient, we need a third leaning point. Once we have
a third leaning point, we have either at least two lower or two upper leaning
points which immediately yields the characteristics. The third leaning point is
either an upper or a lower leaning point. As the following proposition states,
the location of this third leaning point depends on the location of the first two
leaning points. The remainder of the third leaning point we are looking for is
the minimum or maximum remainder on a particular sub-interval.

Proposition 2. Let us consider a DSL D = D (a, b, c) and a DSS S = S (D,u, v)
such that m(xm, ym) is the upper leaning point of S with minimal remainder for
D on [u, v] and M(xM , yM ) is the lower leaning point of S with maximal remain-
der for D on [u, v]. The abscissa of the third leaning point we are searching is in
the largest interval [u′, v′] among the intervals [u, xm−1], [xm+1, v], [u, xM−1]
or [xM + 1, v]. Then:

• If the largest interval is [u, xm − 1] or [xm + 1, v], the third leaning point
is the point with the smallest remainder of the interval.

• If the largest interval is [u, xM − 1] or [xM + 1, v], the third leaning point
is the point with the biggest remainder of the interval.

If there are several largest intervals then the third leaning point can be found in
any of these largest intervals.

Proof. We know that there exists a third leaning point. Considering corollary
2, we know that this leaning point is an extremal remainder in one of the four
intervals. It is either a point of minimal remainder in [u, xm − 1], [xm + 1, v]
or a point of maximal remainder in [u, xM − 1] or [xM + 1, v]. Let us suppose
that the third leaning point is not located in the largest interval among the
four, but in one of the others. Since the consecutive leaning points of same type
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have always the same difference of abscissa β, where (α, β, γ) are the minimal
characteristics of the DSS S, there would also be a leaning point in the largest
interval. There is therefore always a leaning point is the largest interval among
the four. �

Proposition 2 is enough to determine the minimal characteristics. If T (xt, yt)
is the third leaning point found with help of the proposition and A(xA, yA) is

the other leaning point of same type then we know that β = |xA−xT |
k

and

α = |yA−yT |
k

for k = gcd (|xA − xT | , |yA − yT |), with (α, β, γ) the minimal char-
acteristics of the DSS. The translation constant γ is trivial to compute. Before
we show that the third leaning point obtained with help of the previous propo-
sition leads always to k = 1, let us introduce a lemma that links the remainders
of a DSL, of a minimal subsegment of it and their respective periods.

Lemma 2. Let us consider a DSL D = D (a, b, c) and a DSS S = S (D,u, v)
of minimal characteristics (α, β, γ). Then:

• if u ≤ x < x+ β ≤ v then Ra,b,c(x+ β) = Ra,b,c(x) + (aβ − αb) ;

• if u ≤ x < x+ b ≤ v then Rα,β,γ(x+ b) = Rα,β,γ(x)− (aβ − αb).

Proof. Let y (resp. α) be the y-coordinate of the point of D with x (resp. β)
as x-coordinate. Then Ra,b,c(x+β) = a(x+β)−b(y+α)−c. By developing the
last equation we obtain Ra,b,c(x+β) = ax−by−c+aβ−αb which is equivalent
to Ra,b,c(x + β) = Ra,b,c(x) + (aβ − αb). The proof for the second part of the
lemma is similar. �

We now have three leaning points which means that we have two leaning
points of the same type. We do not know, however, if the third leaning point
is close to the previous one of same type obtained with proposition 2. This is
the object of this last theorem that tells us that it is and therefore that we can
compute directly the minimal characteristics:

Theorem 2. Let us consider a DSL D = D (a, b, c) and a DSS S = S (D,u, v)
with minimal characteristics (α, β, γ) such that LP1(x1, y1) and LP2(x2, y2) are
the two leaning points of same type (upper or lower) determined by Theorem 1
and proposition 2. Then the minimal characteristics of S are given by:

(α, β, γ) = (|y1 − y2| , |x1 − x2| , αx1 − βy1)

Proof. Let us consider the DSL D = D (a, b, c) of minimal characteristics
(a, b, c) and a DSS S = S (D,u, v) of minimal characteristics (α, β, γ). Let us call
LP2 the third leaning point leaning point of S we are looking for. The different
leaning points belong to the leaning line of the DSS and verify lemma 2. All the
leaning points on this leaning line have remainders Ra,b,c(xm) + k |aβ − αb| or
Ra,b,c(xM )− k |aβ − αb| depending if LP2 is upper or lower leaning point. LP2

is the one with the leaning point with second largest or smallest remainder for
D on the corresponding largest sub-interval (proposition 2). �
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Figure 2 illustrates the last part of the proof of Theorem 2. We represented
the points of the DSL and DSS with a remainder representation (x,R13,28,0(x)).
Horizontally are the points with same DSL remainder. Diagonally (the black
thin lines) we have the points with same DSS remainder. We can see the aligned
upper leaning points of the DSS with the two leaning points at the bottom that
have respectively the lowest DSL remainder (black circle) and the lowest DSL
remainder on the left of the other leaning point (grey disk). A little additional
remark on the figure. The upper leaning points in the figure are on the bottom
because the figure represents horizontally the remainders of D. Upper leaning
points are called upper because when drawing the leaning lines ax− by − c = 0
and ax − by − c = b − 1 with 0 ≤ a ≤ b the leaning line ax − by − c = 0 lies
over the leaning line ax − by − c = b − 1 and thus the upper leaning points
(geometrically upper) are those with the lower remainder values.

b

β
Upper Leaning Point 

with minimal remainder

Lower Leaning Point with maximal remainder

Third Leaning Point

Figure 2: Remainder representation of the DSL D = D (13, 28, 0) and the convex Hull of the
DSS S (D, 3, 16) of minimal characteristics (5, 11,−1). The two big circles correspond the two
leaning points with maximal and minimal remainder. The grey disk corresponds to the third
leaning point.

3. Determining minimal and maximal remainders

In Section 2, we have shown that remainders minima and maxima determine
the location of upper and lower leaning points of a minimal discrete straight
segment. In this section we will show how to determine such a minimum and a
maximum in an efficient way. Let us show that the minimum and maximum can
be determined in pretty much the same way as the Greatest Common Divisor
computation in the Euclidean algorithm. Let us first note that our method
supposes that we compute the Bezout coefficients for the DSL D = D(a, b, c).
This computation is one of the first steps in the method.

Let us also note that if the DSS S = S(D,u, v) of the DSL D = D(a, b, c)
is defined in such a way that v − u ≥ b then the remainder value 0 and the
remainder value b− 1 are necessarily in the remainder subsequence Ra,b,c (u, v)
and thus the search for the minimum and maximum is unnecessary.
Let us note as well that if we have the Bezout coefficients for a and b, it is easy
to determine if 0 or b−1 belong to Ra,b,c (u, v) which can of course happen even

12



if v − u < b. In these cases as well, we do not have to search for the minimum
and/or the maximum remainder.
Lastly, let us note that we may consider only DSL with a translation coef-
ficient equal to 0. Indeed, let us consider the Bezout coefficient (α, β) of
(a, b) such that aα − bβ = 1. Then a solution of ax − by = c is (cα, cβ)
and ax − by = c is equivalent to ax − by = a(cα) − b(cβ) which leads to
a(x − (cα)) − b(y − (cβ)) = 0. Therefore we have the following remainder
sequence equality Ra,b,c (u, v) = Ra,b,0 (u− cα, v − cα). However, since cα can
be a very big integer compared to u this can pose computational concerns. It
is however easy to see that, since there is a periodicity of b, this is the same as
Ra,b,c (u, v) = Ra,b,0

(

u−
{

cα
b

}

, v −
{

cα
b

})

.

3.1. Span Start and Span End remainder sequences

The following theorem states that the span start and end remainders are
arithmetic progression modulo sequences:

Theorem 3. Let us consider the remainder subsequence ζ = Ra,b,0(u, v), with
0 ≤ a ≤ b and gcd (a, b) = 1.

• if
⌊

au
b

⌋

=
⌊

av
b

⌋

then min(ζ) =
{

au
b

}

and max(ζ) =
{

av
b

}

;

• otherwise min(ζ) ∈ ζ ′ where ζ ′ = R{−b
a },a,0

(

1 +
⌊

a(u−1)
b

⌋

,
⌊

av
b

⌋

)

;

• and max(ζ) ∈ ζ ′′ where ζ ′′ = b− a+R{−b
a },a,0

(

1 +
⌊

au
b

⌋

,
⌊

a(v+1)
b

⌋)

.

These results have already been proposed in part by J-P Reveilles [13]. The
main difference lies in the determination of the interval bounds.

Proof. As preliminary remark, let us just recall that ζ = Ra,b,0(u, v) is the
remainder sequence of a minimal DSS S = S(D,u, v) associated to a DSL
D with minimal characteristics (a, b, 0). On each span of ordinate

⌊

ax
b

⌋

, the
remainders are ordered in increasing order. A span is a set of connected points
of D with same ordinate. If the points PD(u) and PD(v) are on the same span,
⌊

au
b

⌋

=
⌊

av
b

⌋

, then the minimum remainder can be found at abscissa u and the
maximum at abscissa v.
Let us suppose for what follows that PD(u) and PD(v) are not on the same
span. The minimum of the sequence is necessarily at the beginning of one of
these spans. Now, it is easy to see that the sequence of span starting remainders
is the remainder sequence we are looking for: Firstly, let us notice that the
remainder r is in the beginning of a span iff r − a < 0 and thus if 0 ≤ r < a.
The next starting span remainder r′ verifies r + k.a = b + r′, where k is the
number of times you add a to r to reach the next span. So r′ = r + k.a − b.
Since we have 0 ≤ r′ < a, r′ = r−b

a
. The sequence of starting remainder values

is thus given by the arithmetic progression congruence sequence

{

{−b
a }x
a

}

.

We know now that the span start remaining sequence is R{−b
a },a,0

(u′, v′) with
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u′ and v′ to be determined. The spans in the DSS may be incomplete spans
of D. The first span in S is incomplete iff PD(u − 1) is in the same span
than PD(u) and the last span is incomplete iff PD(v + 1) is in the same span
than PD(v) for D. Since all start span remainders are smaller than any other
remainder, for the last span of our sequence ζ it does not really matter if the
span is incomplete since we just want the start of the span. The value v′ is thus
simply given by the corresponding ordinate of the corresponding digital line (to
each ordinate, one span) so v′ =

⌊

av
b

⌋

. For the same reason, the minimum of ζ
can not be in the first span if it is incomplete (for PD(u) and PD(v) on different
spans). For the beginning of ζ ′ we want the first span start of the subsequence
which is on the first span if it is complete or otherwise the second span and thus

u′ = 1 +
⌊

a(u−1)
b

⌋

.

For the maximum of the remainders, it is easy to see that if the span start

remainders form the sequence

{{

a−{ b
a}x
a

}

;u′ ≤ x ≤ v′
}

then the end of the

span forms the sequence b−a+

{{

a−{ b
a}(x+1)

a

}

;u′′ ≤ x ≤ v′′
}

since the point

that follows the end of a span is the beginning of the next span. The first value
of this maximum sequence is the remainder that is followed by the second span
start remainder, thus the x + 1. The new sequence start and end values are

simply given by
⌊

au
b

⌋

and
⌊

a(v+1)
b

⌋

− 1. That is however not exactly what our

theorem says. In fact, in order to handle an abscissa x in our algorithm and not
x and x+1, we replace x by x+1 and thus u′′ becomes u′′ +1 and v′′ becomes
v′′ + 1 which leads to the given formulas. �

Theorem 3 tells us that we can build two sequences of remainder sequences
that allows us to compute the minimum and the maximum of a remainder
sequence. This process may however not be very efficient: we replace a sequence
modulo b by a sequence modulo a which means that we replace a number of
points in the DSS by a number of spans. If the slope if close to 1, the number of
points is similar to the number of spans and we do not gain much by replacing
one sequence by the other. There is however a simple way to make it efficient:

Lemma 3. Let us consider the remainder subsequence ζ = Ra,b,0(u, v), with
0 ≤ a ≤ b and gcd (a, b) = 1. Let us suppose that 2a > b then:

min(ζ) ∈ ζ ′ and max(ζ) ∈ ζ ′ where ζ ′ = R−a,b,0(−v,−u)

Proof. It is simple to see that
{

−ax
b

}

is the sequence ζ in reverse order with
a fixed remainder 0. The values of both sequences are the same. The minimum
and maximum values are thus preserved. �

With Lemma 3, we transform a sequence with a spans into a sequence with
b− a spans and a DSS of slope a

b
> 1

2 into a DSS of slope b−a
b

< 1
2 . The spans

are bigger and the computation time is reduced.
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Example 2. The remainder sequence ζ = R55,89,0(1, 88) =
{{

55x
89

}

; 1 ≤ x ≤ 88
}

leads to the following steps in the search for the minimum. Note that we took
Fibonacci sequence numbers as parameters (and of course an interval without
the remainder 0) to maximize the number of steps in this example. We call ζi
the minimum sequences:

• ζ0 = R55,89,0(1, 88) = {55, 21, 76, 42, 8, 63, 29, 84, 50, 16, 71, 37, 3, 58, 24, 79,

45, 11, 66, 32, 87, 53, 19, 74, 40, 6, 61, 27, 82, 48, 14, 69, 35,1, 56, 22, 77, 43,
30, 85, 51, 17, 72, 38, 4, 59, 25, 80, 46, 12, 67, 33, 88, 54, 20, 75, 41, 7, 62, 28, 83, 49,
15, 70, 36, 2, 57, 23, 78, 44, 10, 65, 31, 86, 52, 18, 73, 39, 5, 60, 26, 81, 47, 13, 68, 34}

• We had 2×55 > 89 so as first step we apply lemma 3: ζ1 = R34,89,0(−88,−1) =
{34, 68, 13, 47, 81, 26, 60, 5, 39, 73, 18, 52, 86, 31, 65, 10, 44, 78, 23, 57, 2, 36, 70,
15, 49, 83, 28, 62, 7, 41, 75, 20, 54, 88, 33, 67, 12, 46, 80, 25, 59, 4, 38, 72, 17, 51, 85,

30, 64, 9, 43, 77, 22, 56,1, 35, 69, 14, 48, 82, 27, 61, 6, 40, 74, 19, 53, 87,
32, 66, 11, 45, 79, 24, 58, 3, 37, 71, 16, 50, 84, 29, 63, 8, 42, 76, 21, 55}.
One can see that the two sequences ζ0 and ζ1 are exactly in reverse order
but while ζ0 has spans of size 1 and 2, ζ1 has spans of size 2 and 3. The
span starting and span end values stay the same.

• Now we start reducing the size of the sequence ζ2 = R13,34,0(−33,−1) =
{13, 26, 5, 18, 31, 10, 23, 2, 15, 28, 7, 20, 33, 12, 25, 4, 17, 30, 9, 22,1, 14, 27,
6, 19, 32, 11, 24, 3, 16, 29, 8, 21}.

The new parameters are:
{

−89
34

}

= 13, u′ = 1 +
⌊

34∗(−34)
89

⌋

= −12 and

v′ =
⌊

34∗(−1)
89

⌋

= −1. You can note that all the span start values are

forming up this new sequence (of course, the incomplete starting span
34, 68 excluded).

• ζ3 = R5,13,0(−12,−1) = {5, 10, 2, 7, 12, 4, 9,1, 6, 11, 3, 8}.

The new parameters are:
{

−34
13

}

= 5, u′ = 1 +
⌊

13∗(−13)
34

⌋

= −4 and

v′ =
⌊

13∗(−1)
34

⌋

= −1. You can note that all the span start values are

forming up this new sequence (of course, the incomplete starting span
13, 26 excluded).

• ζ4 = R2,5,0(−4,−1) = {2, 4,1, 3}.

• ζ5 = R1,2,0(−1,−1) = {1}. We have now the minimal value on the
interval.

3.2. Some thoughts on the computational complexity

Proposition 3. The complexity of searching a minimum (respectively a max-
imum) in a sequence of remainders defined on an interval [u, v] is bounded by
O(log(min(a, b− a))).
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Proof. In the first step we replace a sequence of v−u remainders by a sequence
of min(a, b− a) remainders. Then at each following step we divide the number
of values in the remainder sequence by at least a factor 2 (lemma 3). �

Proposition 3 is only a quite crude estimation of the computational com-
plexity of the minimum (and maximum) search. A closer look has to be taken.
Since the method is close to the Euclidean algorithm, some clues can be taken
from the complexity studies of the Euclidean algorithm. However, since many
intervals may contain the remainders 0 or b − 1 and thus transform some part
of the minimum (or maximum) search into constant time searches, our guess is
that the Euclidean algorithm complexity as it has been proposed, times three,
is also only an upper bound. The fine study of this computational complexity is
a difficult problem here and goes beyond the scope of the paper. It represents
an interesting question for the future.

Note also that the overall complexity of the method includes the computa-
tion of the Bezout coefficients for the DSL coefficients (a, b) with a well known
complexity of O(log(a)) (since 0 ≤ a < b and in regard of Theorem of Lamé
[10]). This is therefore the overall complexity of the method. Of course, if many
different DSS are computed for a single DSL, then the Bezout coefficients need
to be computed only once.

Algorithm 1 presents the search for the minimum. The search for the maxi-
mum is similar (do not forget to accumulate the values b− a from the formula
describing the maximum sequences in Theorem 3). Once a minimum or a max-
imum is obtained, it is easy to determine its position but that supposes that we
have computed the Bezout coefficients of the DSL slope coefficients.

4. Experiments

We implemented our algorithm in C++ and used the open-source library
DGTAL [7] in order to compare our approach to the algorithm proposed by I.
Sivignon and the ReversedSmartDSS algorithm proposed by Saïd and al. [11].

Firstly, we accomplished experiments along the same protocol as the one
proposed in [11, 16] on a 2.10 GHz Intel Dual Core. We first choose a maximal
value N that corresponds to the maximal value that b can take. We fix a maxi-
mal value for the length n of the DSS. Then we randomly choose the parameters
of the DSL, a and b such that a < b ≤ N , and the translation constant c as
well as an abscissa for the first point of the DSS. Each experiment has been
conducted with 10000 randomly chosen parameters. For each experiment, we
find the minimal characteristics of the DSS contained in the DSL and compute
the average running time. Figure 3 shows the results of our algorithm compared
to the two algorithms in [11, 16] for the value of N : 109. On this figure, the
experiments are done by varying the length n of the DSS in the form 10× 2k in
the interval [10, N ]. We can observe that our approach (Ouat and al.) is faster
than the two other algorithms regardless of the length n of the DSS. This first
diagrams give an idea on how these different algorithms behave on a long range
of values.
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Algorithm 1: ComputeMin (In: a, b, c, u, v. Out: mini) - - a,b,c: char-
acteristics of the DSL; u,v: abscissa of the DSS endpoints; mini: minimal
remainder)

begin

if 0 is in the interval then
mini=0;

else
a′ ← a; b′ ← b; u′ ← u; v′ ← v;
while true do

if 2a′ > b′ then
(* Dealing with longer spans reduce computation time *)
a′ ← b′ − a′; v′′ ← b′ − u′; u′ ← b′ − v′ ; v′ ← v′′;

yu ←
⌊

a′u′

b′

⌋

; yv ←
⌊

a′v′

b′

⌋

;

if yu = yv then
(* It remains only one span *)

mini←
{

a′u′

b′

}

;

break (* We have our minimal remainder *) ;

at ← a′; bt ← b′; ut ← u′; vt ← v′ ;

a′ ←
{

−bt
at

}

;

b′ ← at;

u′ ← 1 +
⌊

at(ut−1)
bt

⌋

; v′ ←
⌊

atvt

bt

⌋

;

end
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Then we accomplished experiments in order to check the previous compar-
isons when common values of b are used in regard of the common sizes of pic-
tures. On Figure 4, the experiments are done for the value of N : 104 by varying
the length n of the DSS in the form ni+k where ni is the length of the previous
step, k is a random value in the interval [1, 100] and ni is in the interval [10, N ].
We can observe that our approach is still faster than the two other algorithms
regardless of the length n of the DSS. Note that with this protocol, Figure 4 is
not a simple zoom of Figure 3 as the complexity of the different algorithms may
vary with v − u (as charted) but also with a or b.

Finally, On Figure 5, we show the logarithmic behaviour of our approach in
terms of the distance yv − yu. To do so, we vary a value e that corresponds to
yv−yu in an interval [1, 400000] by step of 1000. For each value of e, we ran our
algorithm 10000 times with randomly chosen parameters. For this, we randomly
choose a value for a but we ensure e

2 ≤ a ≤ e
2 + 106. We choose a random b

such that a < b and for each pair of characteristics a and b we randomly choose
10 values u and v so that yv − yu = e and v − u ≤ 2 × b (to avoid having 3
leaning points in the interval). At last, for each pair of values u and v we make
10 times the computation of the minimal characteristics of the DSS contained
in the DSL. After 106 runs for a given e we compute the average running time.
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Figure 3: Maximal value for b: 109. DSS Length charted.
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Figure 4: Maximal value for b: 104. DSS Length charted.

5. Conclusion

We have proposed a new logarithmic-time algorithm to determine the min-
imal characteristics of any DSS. This algorithm takes, as input, the charac-
teristics of the digital straight line (DSL) as well as the two endpoints of the
DSS. Our method is based on modulo remainders that can be associated to
each point of the DSL and DSS. We show that these remainders are ordered
in a similar way for the DSL and DSS and that the extremes in the DSL re-
mainders correspond to leaning points in the DSS. This allows us to determine
the minimal characteristics of the DSS. The main algorithmic aspects of the
method is the computation of the remainder minimum and maximum on an
interval. We give a method, akin to the Euclidean algorithm, that determines
this minimum and this maximum in logarithmic time. Experiments show that
our algorithm is faster than previous algorithms proposed in [11, 16]. One of
the advantages compared to previous methods is that it is extremely simple
with the main procedure akin to the Euclidean algorithm. This opens the way
to future improvements especially in the computational aspects although our
method is already the fastest so far.

Previous methods [11, 16] were based on the exploration of the Stern-Brocot
tree or Farey fans. A link between these methods and our approach should shed
new lights on these exploration schemes. We have considered a DSL with a
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Figure 5: Varying the distance yv − yu let be e. Minimal value for a is e

2
+ k, where k is a

randomly chosen positive integer. Likely b is chosen so that v−u ≤ 2× b. DSS vertical length
(yv − yu) charted.

rational slope. What about irrational slopes and the link to Sturmian words?
One of the main interest of this new method is that it opens the way to ex-
ploring remainder properties in higher dimensions. This however seems to be
complicated. As one can see on Figure 6. By removing a row from the 3D plane
segment P of characteristics (3, 7, 18, 0) (0 ≤ 3x + 7y + 18z + 0 < 18) on the
(x, y)-interval [1, 7]× [2, 5], we obtain a new plane segment P ′ of characteristics
(2, 5, 11,−3) where a point of remainder 2 in P becomes leaning point for P ′

while a point of remainder 1 in P does not. The equivalent of Theorem 1 is not
verified in, at least, dimension 3. This raises numerous questions: the remainder
order property of Theorem 1 seems however still mostly true. Is there a weaker
property? In this example we chose to minimize the coefficient in z (with ap-
propriate symmetries) to determine the 3D minimal characteristics of the plane
segment. Are there other possible choices that would preserve the remainder
order of Theorem 1 in 3D? What about the erosion process in dimension 3? Is
there a more appropriate alternative to removing a complete row or column?
This opens numerous perspectives.

Acknowledgements: We would like to thank Valérie Berthé for her
suggestions. Our special thanks to Isabelle Debled-Renesson for the result in
Lemma 1 which proved to be the link between the remainders of DSL and DSS
we were looking for.
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Figure 6: 3D Planes with remainders. In the center, the plane of characteristics (3, 7, 18, 0) on
the (x, y)-interval [1, 7]× [2, 5]. Around it, the plane segments obtained by removing one row
or column with the new plane characteristics. In red, leaning points. In pink (in the center),
points that have maximal and minimal remainders, would be leaning points in all the plane
segments if Theorem 1 were respected in dimension 3.
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