Velocity effects on the shape of pure H2O isolated lines: Complementary tests of the partially correlated speed-dependent Keilson-Storer model
Résumé
Complementary tests of the partially correlated speed-dependent Keilson-Storer (pCSDKS) model for the shape of isolated transition of pure water vapor [N. H. Ngo et al., J. Chem. Phys. 136, 154310 (2012)] are made using new measurements. The latter have been recorded using a high sensitivity cavity ring down spectrometer, for seven self-broadened H2O lines in the 1.6 μm region at room temperature and for pressures from 0.5 to 15 Torr. Furthermore, the H218O spectra of [M. D. De Vizia et al., Phys. Rev. A 83, 052506 (2011)] in the 1.38 μm region, measured at 273.15 K and for pressures from 0.3 to 3.75 Torr have also been used for comparison with the model. Recall that the pCSDKS model takes into account the collision-induced velocity changes, the speed dependences of the broadening and shifting coefficients as well as the partial correlation between velocity and rotational-state changes. All parameters of the model have been fixed at values previously determined, except for a scaling factor applied to the input speed-dependent line broadening. Comparisons between predictions and experiments have been made by looking at the results obtained when fitting the calculated and measured spectra by Voigt profiles. The good agreement obtained for all considered lines, at different temperature and pressure conditions, confirms the consistency and the robustness of the model. Limiting cases of the model have been then derived, showing the influence of different contributions to the line shape.