Integrated packaging allows for improvement in switching characteristics of silicon carbide devices

Cyril Buttay¹, Khalil El Falahi¹, Rémi Robutel¹, Stanislas Hascoët¹, Christian Martin¹, Bruno Allard¹, Mark Johnson²

> ¹ Laboratoire Ampère, Lyon, France ² University of Nottingham, UK

> > 22/5/14

Outline

Introduction

Analysis of the switching cell

Design improvements
Integration of the gate driver
Low inductance packaging
Integration of common-mode filtering

Conclusion

Outline

Introduction

Analysis of the switching cell

Design improvements
Integration of the gate driver
Low inductance packaging
Integration of common-mode filtering

Conclusion

New components...

Millán, J. et al. A Survey of Wide Bandgap Power Semiconductor Devices IEEE transactions on Power Electronics, 2014, 29, 2155-2163

- SiC (and GaN) devices are becoming available;
- ► Faster than Si;
- Can manage higher voltage/current density.

... but old issue

- ► Circuit parasitics cause:
 - ► increase in power dissipation;
 - EMC issues (ringing, common mode);
- Investigated for Si IGBTs and MOSFETs:
 - Power modules with reduced inductance;
 - Busbar structures;
 - ▶ Development of cabling modelling tools (Q3D, InCa, ...);
- → Faster SiC makes it necessary to go further.

Outline

Introduction

Analysis of the switching cell

Design improvements
Integration of the gate driver
Low inductance packaging
Integration of common-mode filtering

Conclusion

Devices capacitances

- ► From 100s of pF to few nF, but non-linear;
- Tend to be larger for SiC than for Si;
- Slow down switching;
- May oscillate with stray inductances;
- Increase power dissipation (charge in control and power circuits).

Gate inductance

- Slows down switching;
- ▶ May oscillate with C_{iss};
- ► May cause spurious turn-ons if impedance is too high;
- Often large (100 nH) because drivers are kept on separate boards

Drain inductance

- ► The energy stored $(\frac{1}{2}LI^2)$ is dissipated in the switches;
- ► May oscillate with *C*_{oss}, or cause avalanche;
- Often relatively large because capacitors are kept on separate board.

Source inductance

- ► Combines the effects of L_G and L_D;
- Introduces a negative feed-back that opposes (slows-down) turn-on and turn-off;
- ► Usually small (a few nH), but large consequences due to feed-back;
- A small value has a damping effect.

Output capacitance

- ► Offers an alternative (and un-controlled) path to HF signals;
- ► From a few 10s of pF (small copper track on a DBC substrate) up to several nF (load connected through a shielded cable);
- ► Requires input filtering.

Outline

Introduction

Analysis of the switching cell

Design improvements
Integration of the gate driver
Low inductance packaging
Integration of common-mode filtering

Conclusion

Prototypes designed for high temperature

- ► Active devices:
 - SiC power devices;
 - ► high temperature control electronics;
 - → put control and power on same substrate
- Sometimes need for efficient Cooling
- Few passive technologies available

Prototypes designed for high temperature

- ► Active devices:
 - ► SiC power devices;
 - high temperature control electronics;
 - → put control and power on same substrate
- Sometimes need for efficient Cooling:
 - → dual-side cooling (sandwich packaging)
- Few passive technologies available

Prototypes designed for high temperature

- Active devices:
 - SiC power devices;
 - high temperature control electronics;
 - → put control and power on same substrate
- Sometimes need for efficient Cooling:
 - → dual-side cooling (sandwich packaging)
- ► Few passive technologies available
 - fast switching for reduced filtering
 - → integrated filtering for further reduction

Prototypes designed for high temperature

- Active devices:
 - SiC power devices;
 - high temperature control electronics;
 - → put control and power on same substrate
- Sometimes need for efficient Cooling:
 - → dual-side cooling (sandwich packaging)
- ► Few passive technologies available
 - fast switching for reduced filtering
 - → integrated filtering for further reduction

Fast switching is attractive for high temperature electronics.

- ► Short control loop;
- ► Temperature capability of SOI;
- ► High temp.-rated passives (>200 °C);
- ► High-temp. packaging solutions.

- Short control loop;
- Temperature capability of SOI;
- ► High temp.-rated passives (>200 °C);
- ► High-temp. packaging solutions.

but some "standard" technologies:

- Wirebonding;
- ► Hermetic case with long leads.

Included: Power devices, small DC decoupling, driver output stage;

External: isolation, signal generation, main DC decoupling.

Included: Power devices, small DC decoupling, driver output stage;

External: isolation, signal generation, main DC decoupling.

- ► Fast rising time (15 ns) with little ringing;
- ▶ Operation proven up to 310 °C ambient!

Low inductance packaging - 1

- Dies soldered to two DBC substrates to form a "sandwich" module:
- Power module clamped between heat-exchangers:
- Connection to DC capacitors using a low inductance link (busbar).

Low inductance packaging – 1

- Dies soldered to two DBC substrates to form a "sandwich" module;
- Power module clamped between heat-exchangers
- Connection to DC capacitors using a low inductance link (busbar).

Low inductance packaging – 1

- Dies soldered to two DBC substrates to form a "sandwich" module;
- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link (busbar).

Low inductance packaging - 1

- Dies soldered to two DBC substrates to form a "sandwich" module:
- Power module clamped between heat-exchangers;
- Connection to DC capacitors using a low inductance link (busbar).

Low inductance packaging – 2

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards:
- driver interconects:
- driver cover
- capacitor board;
- power terminals;
- busbar;
- ► capacitor cover.

Low inductance packaging – 2

- "top" heat-exchanger;
- ► power modules
- "bottom" heat-exchanger;
- driver boards:
- driver interconects:
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards:
- driver interconects
- driver cover
- capacitor board;
- power terminals;
- busbar;
- ▶ capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects
- driver cover
- capacitor board;
- power terminals;
- busbar;
- ▶ capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- ▶ busbar;
- ▶ capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- ▶ capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
 - power terminals;
- ▶ busbar:
- capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover

- "top" heat-exchanger;
- power modules
- "bottom" heat-exchanger;
- driver boards;
- driver interconects;
- driver cover
- capacitor board;
- power terminals;
- busbar;
- capacitor cover.

- Switching speed limited by switches (Si IGBTs, SiC diodes);
- No ringing measured at the terminals of the modules;
- DC link inductance estimated at 10 nH.

- Include some common-mode filtering directly inside the power module;
- Offers a short path to common-mode perturbations;
- Necessary with fast switching devices.

- ► 2 × 6 nF capacitors in the power module;
- Connected to ground through a damping resistor;
- External EMC filter for low frequency.

- ► 2 × 6 nF capacitors in the power module;
- Connected to ground through a damping resistor;
- External EMC filter for low frequency.

Switching speed not altered by integrated common-mode filtering.

Outline

Introduction

Analysis of the switching cell

Design improvements
Integration of the gate driver
Low inductance packaging
Integration of common-mode filtering

- ► Silicon Carbide devices enables faster switches than Si
- Current packaging technologies must be adapted accordingly
 - By designing intrinsically-low-inductance packages

 By integrating more functions, even with standard technology

Boundaries between module and converter less clear
 Design must be performed at die level

- Silicon Carbide devices enables faster switches than Si
- Current packaging technologies must be adapted accordingly
 - By designing intrinsically-low-inductance packages
 - ▶ PCB-embedded circuit
 - Interconnects with laminated busbars
 - by integrating more functions, even with standard technology
 - Filtering and decoupling
 Gate drives close to the devi
- Boundaries between module and converter less clear

- Silicon Carbide devices enables faster switches than Si
- Current packaging technologies must be adapted accordingly
 - By designing intrinsically-low-inductance packages
 - ► Sandwich modules
 - ► PCB-embedded circuit
 - interconnects with laminated busbars
 - By integrating more functions, even with standard technology
 - Filtering and decoupling
 Gate drives close to the devices
- Boundaries between module and converter less clear
 Design must be performed at die level

- Silicon Carbide devices enables faster switches than Si
- Current packaging technologies must be adapted accordingly
 - By designing intrinsically-low-inductance packages
 - ► Sandwich modules
 - ► PCB-embedded circuit
 - interconnects with laminated busbars
 - By integrating more functions, even with standard technology
 - ► Filtering and decoupling
 - Gate drives close to the devices
- Boundaries between module and converter less clea

- Silicon Carbide devices enables faster switches than Si
- Current packaging technologies must be adapted accordingly
 - By designing intrinsically-low-inductance packages
 - Sandwich modules
 - ► PCB-embedded circuit
 - interconnects with laminated busbars
 - By integrating more functions, even with standard technology
 - ► Filtering and decoupling
 - Gate drives close to the devices
- Boundaries between module and converter less clear
 - Design must be performed at die level.

Thank you for your attention,

cyril.buttay@insa-lyon.fr

