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Abstract

In this paper, we present a novel method for the

computation of compositionality within a distri-

butional framework. The key idea is that com-

positionality is modeled as a multi-way interac-

tion between latent factors, which are automat-

ically constructed from corpus data. We use

our method to model the composition of sub-

ject verb object triples. The method consists

of two steps. First, we compute a latent factor

model for nouns from standard co-occurrence

data. Next, the latent factors are used to induce

a latent model of three-way subject verb object

interactions. Our model has been evaluated on

a similarity task for transitive phrases, in which

it exceeds the state of the art.

1 Introduction

In the course of the last two decades, significant

progress has been made with regard to the automatic

extraction of lexical semantic knowledge from large-

scale text corpora. Most work relies on the distribu-

tional hypothesis of meaning (Harris, 1954), which

states that words that appear within the same contexts

tend to be semantically similar. A large number of

researchers have taken this dictum to heart, giving

rise to a plethora of algorithms that try to capture

the semantics of words by looking at their distribu-

tion in text. Up till now, however, most work on the

automatic acquisition of semantics only deals with

individual words. The modeling of meaning beyond

the level of individual words – i.e. the combination

of words into larger units – is to a large degree left

unexplored.

The principle of compositionality, often attributed

to Frege, is the principle that states that the meaning

of a complex expression is a function of the meaning

of its parts and the way those parts are (syntactically)

combined (Frege, 1892). It is the fundamental prin-

ciple that allows language users to understand the

meaning of sentences they have never heard before,

by constructing the meaning of the complex expres-

sion from the meanings of the individual words. Re-

cently, a number of researchers have tried to reconcile

the framework of distributional semantics with the

principle of compositionality (Mitchell and Lapata,

2008; Baroni and Zamparelli, 2010; Coecke et al.,

2010; Socher et al., 2012). However, the absolute

gains of the systems remain a bit unclear, and a sim-

ple method of composition – vector multiplication –

often seems to produce the best results (Blacoe and

Lapata, 2012).

In this paper, we present a novel method for the

joint composition of a verb with its subject and di-

rect object. The key idea is that compositionality is

modeled as a multi-way interaction between latent

factors, which are automatically constructed from

corpus data. In order to adequately model the multi-

way interaction between a verb and its subject and

objects, a significant part of our method relies on

tensor algebra. Additionally, our method makes use

of a factorization model appropriate for tensors.

The remainder of the paper is structured as follows.

In section 2, we give an overview of previous work

that is relevant to the task of computing composition-

ality within a distributional framework. Section 3

presents a detailed description of our method, in-

cluding an overview of the necessary mathematical



machinery. Section 4 illustrates our method with a

number of detailed examples. Section 5 presents a

quantitative evaluation, and compares our method

to other models of distributional compositionality.

Section 6, then, concludes and lays out a number of

directions for future work.

2 Previous Work

In recent years, a number of methods have been de-

veloped that try to capture compositional phenomena

within a distributional framework. One of the first

approaches to tackle compositional phenomena in a

systematic way is Mitchell and Lapata’s (2008) ap-

proach. They explore a number of different models

for vector composition, of which vector addition (the

sum of each feature) and vector multiplication (the

elementwise multiplication of each feature) are the

most important. They evaluate their models on a

noun-verb phrase similarity task, and find that the

multiplicative model yields the best results, along

with a weighted combination of the additive and mul-

tiplicative model.

Baroni and Zamparelli (2010) present a method

for the composition of adjectives and nouns. In their

model, an adjective is a linear function of one vector

(the noun vector) to another vector (the vector for the

adjective-noun pair). The linear transformation for a

particular adjective is represented by a matrix, and

is learned automatically from a corpus, using partial

least-squares regression.

Coecke et al. (2010) present an abstract theoreti-

cal framework in which a sentence vector is a func-

tion of the Kronecker product of its word vectors,

which allows for greater interaction between the dif-

ferent word features. A number of instantiations of

the framework are tested experimentally in Grefen-

stette and Sadrzadeh (2011a) and Grefenstette and

Sadrzadeh (2011b). The key idea is that relational

words (e.g. adjectives or verbs) have a rich (multi-

dimensional) structure that acts as a filter on their

arguments. Our model uses an intuition similar to

theirs.

Socher et al. (2012) present a model for composi-

tionality based on recursive neural networks. Each

node in a parse tree is assigned both a vector and

a matrix; the vector captures the actual meaning of

the constituent, while the matrix models the way

it changes the meaning of neighbouring words and

phrases.

Closely related to the work on compositionality

is research on the computation of word meaning in

context. Erk and Padó (2008, 2009) make use of

selectional preferences to express the meaning of a

word in context; the meaning of a word in the pres-

ence of an argument is computed by multiplying the

word’s vector with a vector that captures the inverse

selectional preferences of the argument. Thater et

al. (2009, 2010) extend the approach based on se-

lectional preferences by incorporating second-order

co-occurrences in their model. And Dinu and La-

pata (2010) propose a probabilistic framework that

models the meaning of words as a probability distri-

bution over latent factors. This allows them to model

contextualized meaning as a change in the original

sense distribution. Dinu and Lapata use non-negative

matrix factorization (NMF) to induce latent factors.

Similar to their work, our model uses NMF – albeit

in a slightly different configuration – as a first step

towards our final factorization model.

In general, latent models have proven to be useful

for the modeling of word meaning. One of the best

known latent models of semantics is Latent Seman-

tic Analysis (Landauer and Dumais, 1997), which

uses singular value decomposition in order to auto-

matically induce latent factors from term-document

matrices. Another well known latent model of mean-

ing, which takes a generative approach, is Latent

Dirichlet Allocation (Blei et al., 2003).

Tensor factorization has been used before for the

modeling of natural language. Giesbrecht (2010)

describes a tensor factorization model for the con-

struction of a distributional model that is sensitive to

word order. And Van de Cruys (2010) uses a tensor

factorization model in order to construct a three-way

selectional preference model of verbs, subjects, and

objects. Our underlying tensor factorization – Tucker

decomposition – is the same as Giesbrecht’s; and

similar to Van de Cruys (2010), we construct a la-

tent model of verb, subject, and object interactions.

The way our model is constructed, however, is sig-

nificantly different. The former research does not

use any syntactic information for the construction

of the tensor, while the latter makes use of a more

restricted tensor factorization model, viz. parallel

factor analysis (Harshman and Lundy, 1994).



The idea of modeling compositionality by means

of tensor (Kronecker) product has been proposed

in the literature before (Clark and Pulman, 2007;

Coecke et al., 2010). However, the method presented

here is the first that tries to capture compositional

phenomena by exploiting the multi-way interactions

between latent factors, induced by a suitable tensor

factorization model.

3 Methodology

3.1 Mathematical preliminaries

The methodology presented in this paper requires

a number of concepts and mathematical operations

from tensor algebra, which are briefly reviewed in

this section. The interested reader is referred to Kolda

and Bader (2009) for a more thorough introduction

to tensor algebra (including an overview of various

factorization methods).

A tensor is a multidimensional array; it is the gen-

eralization of a matrix to more than two dimensions,

or modes. Whereas matrices are only able to cap-

ture two-way co-occurrences, tensors are able to cap-

ture multi-way co-occurrences.1 Following prevail-

ing convention, tensors are represented by boldface

Euler script notation (X), matrices by boldface capi-

tal letters (X), vectors by boldface lower case letters

(x), and scalars by italic letters (x).

The n-mode product of a tensor X ∈ R
I1×I2×...×IN

with a matrix U ∈ R
J×In is denoted by X×n U, and

is defined elementwise as

(X×n U)i1...in−1 jin+1...iN =
In

∑
in=1

xi1i2...iN u jin (1)

The Kronecker product of matrices A ∈ R
I×J and

B∈RK×L is denoted by A⊗B. The result is a matrix

of size (IK)× (JL), and is defined by

A⊗B =











a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB











(2)

1In this research, we limit ourselves to three-way co-

occurrences of verbs, subject, and objects, modelled using a

three-mode tensor.

A special case of the Kronecker product is the

outer product of two vectors a ∈ R
I and b ∈ R

J , de-

noted a◦b. The result is a matrix A ∈ R
I×J obtained

by multiplying each element of a with each element

of b.

Finally, the Hadamard product, denoted A ∗B,

is the elementwise multiplication of two matrices

A ∈ R
I×J and B ∈ R

I×J , which produces a matrix

that is equally of size I× J.

3.2 The construction of latent noun factors

The first step of our method consists in the construc-

tion of a latent factor model for nouns, based on their

context words. For this purpose, we make use of non-

negative matrix factorization (Lee and Seung, 2000).

Non-negative matrix factorization (NMF) minimizes

an objective function – in our case the Kullback-

Leibler (KL) divergence – between an original matrix

VI×J and WI×KHK×J (the matrix multiplication of

matrices W and H) subject to the constraint that all

values in the three matrices be non-negative. Param-

eter K is set ≪ I,J so that a reduction is obtained

over the original data. The factorization model is

represented graphically in figure 1.

= xV W
H

k

k

no
un

s

context words
no

un
s

context words

Figure 1: Graphical representation of NMF

NMF can be computed fairly straightforwardly,

alternating between the two iterative update rules

represented in equations 3 and 4. The update rules

are guaranteed to converge to a local minimum in the

KL divergence.

Haµ ←Haµ

∑i Wia
Viµ

(WH)iµ

∑k Wka

(3)

Wia←Wia

∑µ Haµ

Viµ

(WH)iµ

∑v Hav

(4)

3.3 Modeling multi-way interactions

In our second step, we construct a multi-way interac-

tion model for subject verb object (svo) triples, based



on the latent factors induced in the first step. Our

latent interaction model is inspired by a tensor factor-

ization model called Tucker decomposition (Tucker,

1966), although our own model instantiation differs

significantly. In order to explain our method, we

first revisit Tucker decomposition, and subsequently

explain how our model is constructed.

3.3.1 Tucker decomposition

Tucker decomposition is a multilinear generaliza-

tion of the well-known singular value decomposition,

used in Latent Semantic Analysis. It is also known as

higher order singular value decomposition (HOSVD,

De Lathauwer et al. (2000)). In Tucker decomposi-

tion, a tensor is decomposed into a core tensor, multi-

plied by a matrix along each mode. For a three-mode

tensor X ∈ R
I×J×L, the model is defined as

X = G×1 A×2 B×3 C (5)

=
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqrap ◦bq ◦ cr (6)

Setting P,Q,R≪ I,J,L, the core tensor G repre-

sents a compressed, latent version of the original ten-

sor X; matrices A ∈R
I×P, B ∈R

J×Q, and C ∈R
L×R

represent the latent factors for each mode, while

G ∈ R
P×Q×R indicates the level of interaction be-

tween the different latent factors. Figure 2 shows a

graphical representation of Tucker decomposition.2
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k

Figure 2: A graphical representation of Tucker decompo-

sition

2where P=Q=R=K, i.e. the same number of latent factors

K is used for each mode

3.3.2 Reconstructing a Tucker model from

two-way factors

Computing the Tucker decomposition of a tensor

is rather costly in terms of time and memory require-

ments. Moreover, the decomposition is not unique:

the core tensor G can be modified without affecting

the model’s fit by applying the inverse modification

to the factor matrices. These two drawbacks led us

to consider an alternative method for the construc-

tion of the Tucker model. Specifically, we consider

the factor matrices as given (as the output from our

first step), and proceed to compute the core tensor G.

Additionally, we do not use a latent representation

for the first mode, which means that the first mode is

represented by its original instances.

Our model can be straightforwardly applied to lan-

guage data. The core tensor G models the latent

interactions between verbs, subject, and objects. G

is computed by applying the n-mode product to the

appropriate mode of the original tensor (equation 7),

G=X×2 WT ×3 WT (7)

where XV×N×N is our original data tensor, consisting

of the weighted co-occurrence frequencies of svo

triples (extracted from corpus data), and WN×K is

our latent factor matrix for nouns. Note that we do

not use a latent representation for the verb mode. To

be able to efficiently compute the similarity of verbs

(both within and outside of compositional phrases),

only the subject and object mode are represented by

latent factors, while the verb mode is represented

by its original instances. This means that our core

tensor G will be of size V ×K×K.3 A graphical

representation is given in figure 3.

Note that both tensor X and factor matrices W are

non-negative, which means our core tensor G will

also be non-negative.

3.4 The composition of svo triples

In order to compute the composition of a particular

subject verb object triple 〈s,v,o〉, we first extract the

appropriate subject vector ws and object vector wo

(both of length K) from our factor matrix W, and

3It is straightforward to also construct a latent factor model

for verbs using NMF, and include it in the construction of our

core tensor; we believe such a model might have interesting

applications, but we save this as an exploration for future work.
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Figure 3: A graphical representation of our model instan-

tiation without the latent verb mode

compute the outer product of both vectors, resulting

in a matrix Y of size K×K.

Y = ws ◦wo (8)

Our second and final step is then to weight the

original verb matrix Gv of latent interactions (the

appropriate verb slice of tensor G) with matrix Y,

containing the latent interactions of the specific sub-

ject and object. This is carried out by taking the

Hadamard product of Gv and Y.

Z = Gv ∗Y (9)

4 Example

In this section, we present a number of example com-

putations that clarify how our model is able to capture

compositionality. All examples come from actual cor-

pus data, and are computed in a fully automatic and

unsupervised way.

Consider the following two sentences:

(1) The athlete runs a race.

(2) The user runs a command.

Both sentences contain the verb run, but they rep-

resent clearly different actions. When we compute

the composition of both instances of run with their

respective subject and object, we want our model to

show this difference.

To compute the compositional representation of

sentences (1) and (2), we proceed as follows. First,

we extract the latent vectors for subject and object

(wathlete and wrace for the first sentence, wuser and

wcommand for the second sentence) from matrix W.

Next, we compute the outer product of subject and

object – wathlete ◦wrace and wuser ◦wcommand – which

yields matrices Y〈athlete,race〉 and Y〈user,command〉. By

virtue of the outer product, the matrices Y – of size

K×K – represent the level of interaction between the

latent factors of the subject and the latent factors of

the object. We can inspect these interactions by look-

ing up the factor pairs (i.e. matrix cells) with the high-

est values in the matrices Y. Table 1 presents the fac-

tor pairs with highest value for matrix Y〈athlete,race〉;

table 2 represents the factor pairs with highest value

for matrix Y〈user,command〉. In order to render the fac-

tors interpretable, we include the three most salient

words for the various factors (i.e. the words with the

highest value for a particular factor).

The examples in tables 1 and 2 give an impression

of the effect of the outer product: semantic features

of the subject combine with semantic features of the

object, indicating the extent to which these features

interact within the expression. In table 1, we notice

that animacy features (28, 195) and a sport feature

(25) combine with a ‘sport event’ feature (119). In

table 2, we see that similar animacy features (40,

195) and technological features (7, 45) combine with

another technological feature (89).

Similarly, we can inspect the latent interactions of

the verb run, which are represented in the tensor slice

Grun. Note that this matrix contains the verb seman-

tics computed over the complete corpus. The most

salient factor interactions for Grun are represented in

table 3.

Table 3 illustrates that different senses of the verb

run are represented within the matrix Grun. The first

two factor pairs hint at the ‘organize’ sense of the

verb (run a seminar). The third factor pair repre-

sents the ‘transport’ sense of the verb (the bus runs

every hour).4 And the fourth factor pair represents

the ‘execute’ or ‘deploy’ sense of run (run Linux,

run a computer program). Note that we only show

the factor pairs with the highest value; matrix G con-

tains a value for each pairwise combination of the

latent factors, effectively representing a rich latent

semantics for the verb in question.

The last step is to take the Hadamard product of

matrices Y with verb matrix G, which yields our final

4Obviously, hour is not an object of the verb, but due to

parsing errors it is thus represented.



factors subject object value

〈195,119〉 people (.008), child (.008), adolescent (.007) cup (.007), championship (.006), final (.005) .007

〈25,119〉 hockey (.007), poker (.007), tennis (.006) cup (.007), championship (.006), final (.005) .004

〈90,119〉 professionalism (.007), teamwork (.007), confi-

dence (.006)

cup (.007), championship (.006), final (.005) .003

〈28,119〉 they (.004), pupil (.003), participant (.003) cup (.007), championship (.006), final (.005) .003

Table 1: Factor pairs with highest value for matrix Y〈athlete,race〉

factors subject object value

〈7,89〉 password (.009), login (.007), username (.007) filename (.007), null (.006), integer (.006) .010

〈40,89〉 anyone (.004), reader (.004), anybody (.003) filename (.007), null (.006), integer (.006) .007

〈195,89〉 people (.008), child (.008), adolescent (.007) filename (.007), null (.006), integer (.006) .006

〈45,89〉 website (.004), Click (.003), site (.003) filename (.007), null (.006), integer (.006) .006

Table 2: Factor pairs with highest value for matrix Y〈user,command〉

matrices, Zrun,〈athlete,race〉 and Zrun,〈user,command〉. The

Hadamard product will act as a bidirectional filter

on the semantics of both the verb and its subject

and object: interactions of semantic features that are

present in both matrix Y and G will be highlighted,

while the other interactions are played down. The

result is a representation of the verb’s semantics tuned

to its particular subject-object combination. Note that

this final step can be viewed as an instance of function

application (Baroni and Zamparelli, 2010). Also

note the similarity to Grefenstette and Sadrzadeh’s

(2011a,2011b) approach, who equally make use of

the elementwise matrix product in order to weight

the semantics of the verb.

We can now go back to our original tensor G, and

compute the most similar verbs (i.e. the most similar

tensor slices) for our newly computed matrices Z.5

If we do this for matrix Zrun,〈athlete,race〉, our model

comes up with verbs finish (.29), attend (.27), and

win (.25). If, instead, we compute the most similar

verbs for Zrun,〈user,command〉, our model yields execute

(.42), modify (.40), invoke (.39).

Finally, note that the design of our model natu-

rally takes into account word order. Consider the

following two sentences:

(3) man damages car

(4) car damages man

5Similarity is calculated by measuring the cosine of the vec-

torized and normalized representation of the verb matrices.

Both sentences contain the exact same words, but the

process of damaging described in sentences (3) and

(4) is of a rather different nature. Our model is able

to take this difference into account: if we compute

Zdamage,〈man,car〉 following sentence (3), our model

yields crash (.43), drive (.35), ride (.35) as most sim-

ilar verbs. If we do the same for Zdamage,〈car,man〉 fol-

lowing sentence (4), our model instead yields scare

(.26), kill (.23), hurt (.23).

5 Evaluation

5.1 Methodology

In order to evaluate the performance of our tensor-

based factorization model of compositionality, we

make use of the sentence similarity task for transi-

tive sentences, defined in Grefenstette and Sadrzadeh

(2011a). This is an extension of the similarity task

for compositional models developed by Mitchell and

Lapata (2008), and constructed according to the same

guidelines. The dataset contains 2500 similarity

judgements, provided by 25 participants, and is pub-

licly available.6

The data consists of transitive verbs, each paired

with both a subject and an object noun – thus form-

ing a small transitive sentence. Additionally, a ‘land-

mark’ verb is provided. The idea is to compose both

the target verb and the landmark verb with subject

and noun, in order to form two small compositional

6http://www.cs.ox.ac.uk/activities/

CompDistMeaning/GS2011data.txt



factors subject object value

〈128,181〉 Mathematics (.004), Science (.004), Economics

(.004)

course (.005), tutorial (.005), seminar (.005) .058

〈293,181〉 organization (.007), association (.007), federa-

tion (.006)

course (.005), tutorial (.005), seminar (.005) .053

〈60,140〉 rail (.011), bus (.009), ferry (.008) third (.004), decade (.004), hour (.004) .038

〈268,268〉 API (.008), Apache (.007), Unix (.007) API (.008), Apache (.007), Unix (.007) .038

Table 3: Factor combinations for Grun

phrases. The system is then required to come up with

a suitable similarity score for these phrases. The cor-

relation of the model’s judgements with human judge-

ments (scored 1–7) is then calculated using Spear-

man’s ρ . Two examples of the task are provided in

table 4.

p target subject object landmark sim

19 meet system criterion visit 1

21 write student name spell 6

Table 4: Two example judgements from the phrase simi-

larity task defined by Grefenstette and Sadrzadeh (2011a)

Grefenstette and Sadrzadeh (2011a) seem to cal-

culate the similarity score contextualizing both the

target verb and the landmark verb. Another possibil-

ity is to contextualize only the target verb, and com-

pute the similarity score with the non-contextualized

landmark verb. In our view, the latter option pro-

vides a better assessment of the model’s similar-

ity judgements, since contextualizing low-similarity

landmarks often yields non-sensical phrases (e.g. sys-

tem visits criterion). We provide scores for both

contextualized and non-contextualized landmarks.

We compare our results to a number of different

models. The first is Mitchell and Lapata’s (2008)

model, which computes the elementwise vector mul-

tiplication of verb, subject and object. The second

is Grefenstette and Sadrzadeh’s (2011b) best scoring

model instantiation of the categorical distributional

compositional model (Coecke et al., 2010). This

model computes the outer product of the subject and

object vector, the outer product of the verb vector

with itself, and finally the elementwise product of

both results. It yields the best score on the transitive

sentence similarity task reported to date.

As a baseline, we compute the non-contextualized

similarity score for target verb and landmark. The up-

per bound is provided by Grefenstette and Sadrzadeh

(2011a), based on interannotator agreement.

5.2 Implementational details

All models have been constructed using the UKWAC

corpus (Baroni et al., 2009), a 2 billion word corpus

automatically harvested from the web. From this data,

we accumulate the input matrix V for our first NMF

step. We use the 10K most frequent nouns, cross-

classified by the 2K most frequent context words.7

Matrix V is weighted using pointwise mutual infor-

mation (PMI, Church and Hanks (1990)).

A parsed version of the corpus is available, which

has been parsed with MaltParser (Nivre et al., 2006).

We use this version in order to extract our svo triples.

From these triples, we construct our tensor X, using

1K verbs × 10K subjects × 10K objects. Note once

again that the subject and object instances in the sec-

ond step are exactly the same as the noun instances

in the first step. Tensor X has been weighted using a

three-way extension of PMI, following equation 10

(Van de Cruys, 2011).

pmi3(x,y,z) = log
p(x,y,z)

p(x)p(y)p(z)
(10)

We set K = 300 as our number of latent factors.

The value was chosen as a trade-off between a model

that is both rich enough, and does not require an

excessive amount of memory (for the modeling of

the core tensor). The algorithm runs fairly effi-

ciently. Each NMF step is computed in a matter of

seconds, with convergence after 50-100 iterations.

The construction of the core tensor is somewhat more

7We use a context window of 5 words, both before and after

the target word; a stop list was used to filter out grammatical

function words.



evolved, but does not exceed a wall time of 30 min-

utes. Results have been computed on a machine with

Intel Xeon 2.93Ghz CPU and 32GB of RAM.

5.3 Results

The results of the various models are presented in ta-

ble 5; multiplicative represents Mitchell and Lapata’s

(2008) multiplicative model, categorical represents

Grefenstette and Sadrzadeh’s (2011b) model, and

latent represents the model presented in this paper.

model contextualized non-contextualized

baseline .23

multiplicative .32 .34

categorical .32 .35

latent .32 .37

upper bound .62

Table 5: Results of the different compositionality models

on the phrase similarity task

In the contextualized version of the similarity task

(in which the landmark is combined with subject

and object), all three models obtain the same result

(.32). However, in the non-contextualized version

(in which only the target verb is combined with sub-

ject and object), the models differ in performance.

These differences are statistically significant.8 As

mentioned before, we believe the non-contextualized

version of the task gives a better impression of the

systems’ ability to capture compositionality. The

contextualization of the landmark verb often yields

non-sensical combinations, such as system visits crite-

rion. We therefore deem it preferable to compute the

similarity of the target verb in composition (system

meets criterion) to the non-contextualized semantics

of the landmark verb (visit).

Note that the scores presented in this evalua-

tion (including the baseline score) are significantly

higher than the scores presented in Grefenstette and

Sadrzadeh (2011b). This is not surprising, since the

corpus we use – UKWAC – is an order of magni-

tude larger than the corpus used in their research –

the British National Corpus (BNC). Presumably, the

scores are also favoured by our weighting measure.

8 p< 0.01; model differences have been tested using stratified

shuffling (Yeh, 2000).

In our experience, PMI performs better than weight-

ing with conditional probabilities.9

6 Conclusion

In this paper, we presented a novel method for the

computation of compositionality within a distribu-

tional framework. The key idea is that composition-

ality is modeled as a multi-way interaction between

latent factors, which are automatically constructed

from corpus data. We used our method to model

the composition of subject verb object combinations.

The method consists of two steps. First, we com-

pute a latent factor model for nouns from standard

co-occurrence data. Next, the latent factors are used

to induce a latent model of three-way subject verb

object interactions, represented by a core tensor. Our

model has been evaluated on a similarity task for tran-

sitive phrases, in which it matches and even exceeds

the state of the art.

We conclude with a number of future work issues.

First of all, we would like to extend our framework in

order to incorporate more compositional phenomena.

Our current model is designed to deal with the latent

modeling of subject verb object combinations. We

would like to investigate how other compositional

phenomena might fit within our latent interaction

framework, and how our model is able to tackle the

computation of compositionality across a differing

number of modes.

Secondly, we would like to further explore the

possibilities of our model in which all three modes

are represented by latent factors. The instantiation

of our model presented in this paper has two latent

modes, using the original instances of the verb mode

in order to efficiently compute verb similarity. We

think a full-blown latent interaction model might

prove to have interesting applications in a number of

NLP tasks, such as the paraphrasing of compositional

expressions.

Finally, we would like to test our method using a

number of different evaluation frameworks. We think

tasks of similarity judgement have their merits, but in

a way are also somewhat limited. In our opinion, re-

search on the modeling of compositional phenomena

within a distributional framework would substantially

9Contrary to the findings of Mitchell and Lapata (2008), who

report a high correlation with human similarity judgements.



benefit from new evaluation frameworks. In particu-

lar, we think of a lexical substitution or paraphrasing

task along the lines of McCarthy and Navigli (2009),

but specifically aimed at the assessment of composi-

tional phenomena.
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