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QUADRATIC JULIA SETS WITH POSITIVE AREA.

XAVIER BUFF AND ARNAUD CHERITAT

ABSTRACT. We prove the existence of quadratic polynomials having a Julia set
with positive Lebesgue measure. We find such examples with a Cremer fixed
point, with a Siegel disk, or with infinitely many satellite renormalizations.

To Adrien Douady
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INTRODUCTION

Assume P : C — C is a polynomial of degree 2. Its Julia set J(P) is a compact
subset of C with empty interior. Fatou suggested that one should apply to J(P)
the methods of Borel-Lebesgue for the measure of sets.

It is known that the area (Lebesgue measure) of J(P) is zero in several cases
including:

e if P is hyperbolic;!
e if P has a parabolic cycle ([DH1] or [L1]);
e if P is not infinitely renormalizable ([L3] or [Sh1]);

1Conjecturally7 this is true for a dense and open set of quadratic polynomials. If there were an
open set of non-hyperbolic quadratic polynomials, those would have a Julia set of positive area
(see [MSS)).
1



2 XAVIER BUFF AND ARNAUD CHERITAT

e if P has a (linearizable) indifferent cycle with multiplier e2™® such that

a=ag+ % with loga,, = O(y/n) ([PZ]).2
a;+——
ag + -
In [L1], Lyubich showed that the postcritical set is a measure-theoretic attractor,
which implies that the Julia sets of Misiurewicz and parabolic maps have area
zero. In the same note, he also observed that the filled-in Julia set depends upper
semi-continuously on the map, and concluded that generic (in the Baire sense)
quadratic maps in the boundary of the Mandelbrot set have Julia set of zero area
(see also [L2]). Of course, the later result of [L3] and [Sh1] implies this since non-
renormalizable maps are generic in the boundary of the Mandelbrot set.

Recently, we completed a program initiated by Douady with major advances
by the second author in [C1]: there exist quadratic polynomials with a Cremer
fixed point and a Julia set of positive area. For a presentation of Douady’s initial
program, the reader is invited to consult [C2]. In this article, we present a slightly
different approach (the general ideas are essentially the same).

Theorem 1. There exist quadratic polynomials which have a Cremer fixed point
and a Julia set of positive area.

We also have the following two results.

Theorem 2. There exist quadratic polynomials which have a Siegel disk and a Julia
set of positive area.

Theorem 3. There exist infinitely satellite renormalizable quadratic polynomials
with a Julia set of positive area.

We will give a detailed proof of Theo. 1 and 2. We will only sketch the proof of
Theo. 3.
The proofs are based on
e McMullen’s results [McM] regarding the measurable density of the filled-in
Julia set near the boundary of a Siegel disk with bounded type rotation
number;
e Chéritat’s techniques of parabolic explosion [C1] and Yoccoz’s renormaliza-
tion techniques [Yo] to control the shape of Siegel disks;
e Inou and Shishikura’s results [IS] to control the post-critical sets of pertur-
bations of polynomials having an indifferent fixed point.
In [Ya], Yampolsky outlines an alternative to deal with the final piece of the
argument by means of the Renormalization Theorem for Siegel disks (also using
the Inou-Shishikura’s result).
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2This is true for almost every o € R/Z.
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1. THE CREMER CASE
Let us introduce some notations.
Definition 1. For o € C, we denote by P, the quadratic polynomial
P,z ey 4 52,
We denote by K, the filled-in Julia set of P, and by J, its Julia set.
1.1. Strategy of the proof. The main gear is the following

Proposition 1. There exists a non empty set S of bounded type irrationals such
that: for all « € S and all € > 0, there exists o’ € S with
o |0/ —a] <e¢,
e P, has a cycle in D(0,¢) \ {0} and
o area(Ky ) > (1 —e)area(K,).
The proof of Prop. 1 will occupy sections 1.2 to 1.7.

Remark. Since a € S has bounded type, K, contains a Siegel disk [Si] and thus,
has positive area.

FIGURE 1. Two filled-in Julia sets K, and K./, with o/ a well-
chosen perturbation of o as in Prop. 1. This proposition asserts
that if o and o are chosen carefully enough the loss of measure
from K, to K,/ is small.

Remark. We do not know what is the largest set S for which Prop. 1 holds. It
might be the set of all bounded type irrationals.

Proposition 2. The function o« € C +— area(K,) € [0,4o00[ is upper semi-
continuous.

Proof. Assume a,, — «. By [D2], for any neighborhood V' of K, we have K, , C V
for n large enough. According to the theory of Lebsegue measure, area(K,) is the
infimum of the area of the open sets containing K. Thus,

area(K,) > limsup area(K,,, ). O

n—-+oo

Proof of Theo. 1 assuming Prop. 1. We choose a sequence of real numbers &, in
(0,1) such that [J(1 —e,) > 0. We construct inductively a sequence #,, € S such
that for alln > 1
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FIGURE 2. A zoom on K, near its linearizable fixed point. The
small cycle is highlighted.

e Py has acyclein D(0,1/n)\ {0},

o area(Ky, ) > (1 —ep)area(Ky, ,).
Every polynomial Py with 6 sufficiently close to 6,, has a cycle in D(0,1/n) \ {0}.
By choosing 6,, sufficiently close to 6,1 at each step, we guarantee that

e the sequence (6,,) is a Cauchy sequence that converges to a limit 6,

e for all n > 1, Py has a cycle in D(0,1/n) \ {0}.
So, the polynomial Py has small cycles and thus is a Cremer polynomial. In that
case, Jp = Ky. By Prop. 2:

area(Jy) = area(Ky) > limsup area(Ky, ) > area(Ky,) - H(l —e,)>0. O

n—-+oo n>1

1.2. A stronger version of Prop. 1. For a finite or infinite sequence of integers,
we will use the following continued fraction notation:
1

[a0,a1,a2,...] == ag + 1

ai +

ag +
For a € R, we will denote by |« the integral part of .

Definition 2. If N > 1 is an integer, we set
Sy = {a = [ag,a1,a2,...] ER\Q | (a) is bounded and ay, > N for all k > 1}.

Note that Sy4+1 C Sy C --- C &1 and 87 is the set of bounded type irrationals.
If o € &1, the polynomial P, has a Siegel disk bounded by a quasicircle containing
the critical point (see [D1], [He], [Sw]). In particular, the post-critical set of P, is
contained in the boundary of the Siegel disk.

Prop. 1 is an immediate consequence of the following proposition.
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Proposition 3. If N is sufficiently large then the following holds. 3
Assume o € Sy, choose a sequence (Ay,) such that

wm/A, —Jr) +oo and %/logA, — 1.2
n——+00

n—+oo
Set

ap, = [ag,a1,...,an, An, N, N, N, .. .].
Then, for all € > 0, if n is sufficiently large,

e P, has a cycle in D(0,¢e) \ {0} and
o area(K,,) > (1 —e)area(K,).

The rest of section 1 is devoted to the proof of Prop. 3. In the sequel, unless
otherwise specified,
e « is an irrational number of bounded type,
e pi/qi are the approximants to « given by the continued fraction algorithm
and
e (a,) is a sequence converging to «, defined as in Prop. 3.
Note that for k& < n, the approximants pg/qr are the same for a and for «,.
The polynomial P, (resp. P,,) has a Siegel disk A (resp. A,). We let r (resp.
rn) be the conformal radius of A (resp. A,) at 0 and we let ¢ : D(0,7) — A
(resp. ¢ : D(0,7,) = A,,) be the conformal isomorphism which maps 0 to 0 with
derivative 1.

1.3. The control of the cycle. We first recall results of [C1] (see also [BCI]
Props. 1 and 2), which we reformulate as follows.

The first proposition asserts that as 6 varies in the disk D(p/q,1/¢®), the poly-
nomial Py has a cycle of period ¢ which depends holomorphically on /6 — p/q and
coalesces at z = 0 when 6 = p/q.

Proposition 4. For each rational number p/q (with p and q coprime), there exists
a holomorphic function

X D(0,1/¢%1) » C
with the following properties.
(1) x(0) = 0.
(2) X'(0) # 0.
(3) 1f 6 € D(0,1/g¥/)\ {0}, then x(5) # 0.
(4) If 6 € D(0,1/¢%9)\ {0} and if we set ¢ := e*™/9 and 0 := g + 09, then,

<X(6), x(¢o), ... ,x(gq—15)> forms a cycle of period q of Py. In particular,

V6 € D(0,1/¢%/9), X(€8) = Py (x(9))-

3The choice of N will be specified in equation 3

AFor example, one can choose A, := g&*. However, we think that the proposition holds for
more general sequences (a, ) for instance as soon as “%/A,, — +oco. This condition guaranties the
existence of a small cycle. The condition %/log A,, n_ﬁoo 1 is used at the end of the proof of

Lemma 5.
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A function x : D(0,1/¢%9) — C as in Prop. 4 is called an explosion function
at p/q. Such a function is not unique. However, if x1 and x2 are two explosions
functions at p/q, they are related by x1(8) = x2(e?7*7/4§) for some integer k € Z.

The second proposition studies how the explosion functions behave as p/q ranges
in the set of approximants of an irrational number « such that P, has a Siegel disk.

Proposition 5. Assume a € R\Q is an irrational number such that P, has a Siegel
disk A. Let pi/qr be the approzimants to .. Let r be the conformal radius of A at
0 and let ¢ : D(0,r) — A be the isomorphism which sends 0 to 0 with derivative 1.
For k > 1, let xi be an explosion function at py/qi and set A\, = x},(0). Then,
(1) | M| — 7 and
k—+oo

(2) the sequence of maps Yy : & — xk(0/Ag) converges uniformly on every
compact subset of D(0,7) to ¢ : D(0,7) = A.

Corollary 1. Let (cv,) be the sequence defined in Prop. 8. Then, for all e > 0, if
n is sufficiently large, P,, has a cycle in D(0,¢) \ {0}.
Proof. Let x, be an explosion at p, /¢, and let C,, be the set of ¢,-th roots of

—1)"
 —Pn (=1) with A’ :=[4,,N,N,N,...].

dn dn (QnA{n + anl)

Since %/ Al —+> 400, for n large enough, the set C,, is contained in an arbitrarily
n—-+0oo

small neighborhood of 0 and x,,(Cy) is a cycle of P,, contained in an arbitrarily
small neighborhood of 0. O

1.4. Perturbed Siegel disks.

Definition 3. If U and X are measurable subsets of C, with 0 < area(U) < +o0,

we use the notation
area(U N X)

densy (X) := arca(0)

In the whole section, « is a Bruno number, p,/g, are its approximants, and
Xn : Dn := D(0, 1/q,3/q") — C are explosion functions at p,/qp.
Proposition 6 (see figure 3). Assume a := [ag,a1,...] and 0 := [0,t1,...] are
Brjuno numbers and let p,/q, be the approzimants to . Assume
Ay, = [ao,al, e ,an,An,tl,tg, .. ]

with (A,,) a sequence of positive integers such that
(1) limsup %/log A, < 1.5
n—-+o0o

Let A be the Siegel disk of P, and let Al, be the Siegel disk of the restriction of Py,
to A For any non empty open set U C A,

lim inf densy (A]) >
n—+oo

N =

5We think that the condition lim sup R/log A, < 1 is not needed. It is used at the end of the
proof of Lemma 5.

GA; is the largest connected open subset of A containing 0, on which P,, is conjugate to a
rotation. It is contained in the Siegel disk of Pq,,
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F1Gure 3. Mlustration of Prop. 6 for « = 6 = [0,1,1,...],n =7
and A, = 10'°. We see the Siegel disk A of P, (light grey), the
Siegel disk Al of the restriction of P,, to A (dark grey) and the
boundary of the Siegel disk of P, .

Proof. Set
_Pn (=" (="

an  G2(An +0) + gugn_1 n—too 2A,

En 1= Qy

Note that 1

,/|En| n—::-oo 2 /—An
(where the notation u,, ~ v, means u, = v, - (1 + d,,) with 6,, — 0). For p < 1,
define

dn an

pin A+ len|”

This domain is star-like with respect to 0 and avoids the g,-th roots of &,.” It
is contained but not relatively compact in D(0, p). For all non empty open set U
contained in D(0, p),

Xn(p) := {z eC; € D(O,sn)} with s, :

z2In — ey

1

lim inf d X, > -,

it densy (X, (6)) 2 5
Since the limit values of the sequence (x, : D,, = C) are isomorphisms x : D — A,
Prop. 6 is a corollary of Prop. 7 below. (I

Proposition 7. Under the same assumptions as in Prop. 6, for oll p < 1, if n is
large enough, the Siegel disk Al contains xn (Xn(p))

Tt is the preimage by the map z +— 297 of a disk which is not centered at 0, contains 0 but
not €.
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FIGURE 4. The boundary of a set X,,(p).

Proof. We will proceed by contradiction. Assume there exist p < 1 and an in-
creasing sequence of integers ny, such that xn, (Xn,(p)) is not contained in A, .
Extracting a subsequence, we may assume

A;{Cq"" — Ae[l,4+].

To simplify notations, we will drop the index k.

e Assume A = 1. Then, any compact K C A is contained in A/, for n large
enough (for a proof, see for example in [ABC], Prop. 2, the remark following
Prop. 2 and Theo. 3). Note that X,,(p) C D(0,p) and the limit values of
the sequence (xy, : D, — C) are isomorphisms y : D — A. It follows that
for n large enough,

Xn(Xn(p)) C xa(D(0,p)) € x(D(0,y/p)) C A,

This contradicts our assumption.

e Assume A > 1. Without loss of generality, increasing p if necessary, we may
assume that p > 1/A. We will show that for p < p’ < 1, if n is large enough,
the orbit under iteration of P,, of any point z € x, (X, (p)) remains in
xn(D(0,p")) C A. This will show that x,(Xn(p)) C Al completing the
proof of Prop. 7.

Since the limit values of the sequence x, : D, — C are isomorphisms
X : D — A, there is a sequence 7/, tending to 1 such that x,, is univalent
on D) := D(0,r]) and the domain of the map

-1
fn = (Xn|D;L) OPOtnOXn|D£L
eventually contains any compact subset of . So, Prop. 7 is a corollary of
Prop. 7’ below.
O

Proposition 7. Assume

1
0< = <p<p<l.
Sq<pP<r

If n is large enough, the orbit under iteration of f, of any point z € X, (p) remains
in D(0,p").
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The rest of section 1.4, is devoted to the proof of Prop. 7’. There will be several
changes of coordinates which are summarized on Figure 5 in order to help the reader
(we would like to thank Misha Lyubich for suggesting this picture).

1.4.1. A wvector field. Let €, and f, be defined as previously. To prove Prop. 7,
it is not enough to compare the dynamics of f,, with the dynamics of a rotation.
Instead, we will compare it with the (real) dynamics of the polynomial vector field
&, which has simple roots exactly at 0 and the ¢,-th roots of ¢, and which has
derivative 2mig,e, at 0. Then, the time-1 map of &, fixes 0 and the g,-th roots of
en (which are also fixed points of f29) with multiplier e>7% ¢ at 0 (which is also
the multiplier of fo% at 0). Thanks to those properties, there is a good hope that
the time-1 map of &, very well approximates f; 9. This vector field is
n = gn(z)% = 27”@712(571 - an)%

The vector field &, is invariant by the rotation z — €27/ 2. It is semiconjugate

by z +— v = 29" to the vector field

2miqiu(en — v)%
which vanishes at 0 and €,,. Let us now consider the further change of coordinates
v w =v/(v— €&y,) in which the vector field becomes

d
27riq721w@.
This vector field is tangent to Euclidean circles centered at 0. The boundary of
Xn(p) is mapped to such a Euclidean circle by the map z — w = 2% /(29" — &,,).
It follows that the vector field &, is tangent to the boundary of X, (p) which is
therefore invariant be the real dynamics of &,.
In addition, the unit disk is invariant by its real flow, and the open set

z4n
Q= {zEC|w=7€]D)}
z2Im — ey
is invariant by the real flow of the vector field &,.

The map
z4n
2 w=——:Q, > D
2In — gy

is a ramified covering of degree q,,, ramified at 0. Thus, there is an isomorphism
Py : 2, — D such that

20n

(¢Yn(2))" = P

The change of coordinates 2, 3 z — 0 = 1,,(2) € D conjugates the vector field &,
to

. d
27mqn@.
Finally, let m, : H — Q, \ {0} (H is the upper half-plane) be the universal
covering given by
Wn(Z) = w;l(eQiﬂannz).

Then,
d

W:;gn = T

dz
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FI1GURE 5. Several changes of coordinates involved in the proof.
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FIGURE 6. Some real trajectories for the vector field &,; zeroes of
the vector field are shown.

FIGURE 7. An example of open set €2, for ¢, = 3. It is bounded
by the black curves. Some trajectories of the vector field &, (red
in Q,, and green outside).

1.4.2. Working in the coordinate straightening the vector field. For simplicity, we
assume from now on that n is even in which case &, > 0. In the sequel, r € [p,1).
Then, X,,(p) C X,(r) C Q, and the preimage of X,,(r) is the half-plane

Hy(r):=={Z € C; Im(Z) > 7,,(r)}

with

1 En 1
Tn(r) = e log (1 + —)

~ —_—.
rdn /) n—+oo 2mg2rin

The map 7, : Hy,(r) — X,,(r) \ {0} is a universal covering.
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Remark. Note that 7,(r) increases exponentially fast with respect to ¢,. More

precisely,
1
BT, (r) — -

n—-+oco r

Definition 4. We say that a sequence (B,,) is sub-exponential with respect to ¢y,

if
limsup 4/|B,| < 1.

n—-+oo
Proposition 8. Assumer < 1. If n is large enough, there exist holomorphic maps
F, :H,(r) = H and Gy, : H,(r) — H such that
o T, semi-conjugates F,, to fo% and G, to fn'" ':
o by =flrom, and mw,oG, = fI""'om,,
e I, —1d and G,, — Id are periodic of period 1/(qnen) and
e as Im(Z) — +o0, we have
F,(Z)=Z+4+140() and Gn(Z)=Z— (A, +0)+o(1).
In addition, the sequences
sup |Fo(Z2)—Z—1| and  sup |Gn(Z)—Z+ A, +0)
ZEH, (1) ZEH, (r)
are sub-exponential with respect to qy,.
Proof. We will use the following theorem of Jellouli (see [J1] or [J2] Theo. 1) to

show that the domains of fS% and f,?"~' eventually contain any compact subset
of D.

Theorem (Jellouli). Assume P, has a Siegel disk A and let x : D — A be a
linearizing isomorphism. For r < 1, set A(r) := x(D(O,r)). Assume a,, € R and
b, € N are such that b, - |a, —a| = 0(1).8 For all vy < rh < 1, if n is sufficiently
large, _

A(r) C {z € A(ry) ; Vj < by, PP (2) € A(ry)}.
Corollary 2. For allry < rqy < 1, if n is sufficiently large, then for all z € D(0,r1)
and for all j < q,, we have f27(z) € D(0,r2).
Proof. Choose ] and 74 such that 1 < 7] < 75 < r3. Let x : D — A be a
linearizing isomorphism of P,. Set

A(r)) = X(D(O,Tll)) and  A(ry) := x(D(0,75)).
Since limit values of the sequence x, : D], — C are linearizing isomorphisms
x : D — A, for n sufficiently large,

xn(D(0,71)) C A(r}) C A(rh) C xn(D(0,72)).

It is therefore enough to show that for n large enough,

A(ry) C {z € A(ry) 5 Vi < qn, P (2) € A1)},

This is Jellouli’s theorem with b,, = ¢, since

o(1). O

qn|05n - 05| n—;\-;-oo dn

8n fact, Jellouli’s theorem is stated for the sequence an = pn/gn and by = 0(gngn+1) but the
adaptation to by - |an — a| = o(1) is straightforward.
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In particular, for » < 1, if n is large enough, then fS% and f,"" "' are defined
on X, (r). We will show that if n is large enough, then

Vz € Xn(r)\ {0}, fr*"(2) € 2\ {0} and f;%'(2) € Q, \ {0}

We can then lift them via 7, so that the following diagrams commute:

H,(r) —= > H H,(r) — "~ H
S
)= 0 = =10} Kal) = {0} 2 {0}

The periodicity of F,, and G,, then follows from

qn5n> = ma(2).

The lifts F,, and G,, are determined uniquely up to addition of a integer multiple
of 1/(gnen). We have

s <Z+

1
AnQn — Pn = qn€n qn—-1Qn — Pn—1 = —— + qn—1En-
n

So, the lift F,, and G,, are uniquely determined if we require that

1 n—
Fu2)-Z — 1 and Gu(2)—Z — ———+B2__y, g
Im(Z)—4o00 Im(Z)—+oc0  ¢;&n dn
Lemma 1 below asserts that f.9" is very close to the identity and bounds the
difference.

Lemma 1. There exist a holomorphic function g,, defined on the same set as foo,
such that
fRim(2) = 2+ &n(2) - gn(2).

For all r < 1, the sequence sup |gn| is sub-exponential with respect to qy,.
D(0,r)

Proof. According to the definition of the map x,, the map f9 fixes 0 and the
gn-th roots of €,. This shows that f-9 can be written as prescribed. To prove
the estimate on the modulus of g,, note that f;9" takes its values in D and thus,
|€0(2) - gn(z)] < 2. Choose a sequence 7, € ]0, 1] tending to 1 so that g, is defined
on D(0,7,). By the maximum modulus principle, if n is large enough so that
rn > max(r,1/A), we have

2
sup [ga(2)| < sup [gn(2)| < By := sup ——.
|2I<r |2|<rn zl=ra [€n(2)]
As n — +o0,
‘ i‘nf ‘«En(z)| ~ 27rqn7°,11+q"' and thus /B, ~r, — 1. O
Z|=Tn
Recall that we assume n even, in which case
1
en >0 and ¢p_1- Pn_ -~ mod (1).
qn qn
Lemma 2 below asserts that f,,”"~" is very close to the rotation of angle —1/g,, and

bounds the difference.
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Lemma 2. There exists a holomorphic function h,, defined on the same set as
nIn=1  such that

eQiW/q"qu"’l(Z) =z + fn(Z) : hn(z)

n
For all r < 1, the sequence sup |hy| is sub-exponential with respect to qy,.
D(0,r)
Proof. According to the definition of the map x,, the map f,, coincides with the
rotation of angle p, /g, on the set of g,-th roots of &, and g,—1 - (Pn/qn) =
—1/¢, mod(1). Thus, e/ f9" =1 (2) fixes 0 and the g,-th roots of &,. This
shows that e%7/d» f,9"~1 can be written as prescribed. The same method as in
lemma 1 yields the bound on h,,. O

Proof of Prop. 8, continued. Now, given r < 1, set
. 1
R, :=min | ——,7,(r) | .
Qnsn

1
®/R, — min (A, —) .
n—-+o0o r

Hence, R, increases exponentially fast with respect to ¢,.

For all n and all Z € H,,(r), the map m, is univalent on D(Z, R,,) and takes its
values in Q, \ {0}. By Koebe 1/4-theorem, its image contains a disk centered at
z = 7, (Z) with radius

Note that

R, R,
w(Z) - T =&n(2) - 1

In particular, if the sequence (B,,) is sub-exponential with respect to ¢, and if n is
large enough so that B,, < R,,/4, we have

Vz € X,(r), D(z,&(2) By) C Q, )\ {0}

T,

Therefore, it follows from lemmas 1 and 2 that for all » < 1, if n is large enough,
then

Vz e Xn(r)\ {0}, fi"(2) € 2\ {0} and fi"~'(2) € 2, \ {0}.

Lemmas 1 and 2 and Koebe distortion theorem applied to m, : D(Z, Rn) - C
imply that the sequences

sup ‘Fn(Z)—Z—1| and sup ‘Gn(Z)—Z+An+9|
Z€eH, (r) Z€eH,, (r)

are sub-exponential with respect to g,.
This completes the proof of Prop. 8. ([

We will need the following improved estimate for Fi,.

Proposition 9. Assumer < 1. There exists a sequence (By,), sub-exponential with
respect to qn, such that for all Z € H,,(r),

|Fn(Z2) = Z = 1| < By - (len] + |en — mn(2)™]) .

Proof. Lemma 3 below gives a similar estimate for f% on X, (r). This estimate
transfers to the required one by Koebe distortion theorem as in the previous proof.
O
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Lemma 3. There exist a complex number n, and a holomorphic function k,,, de-
fined on the same set as fr9, such that

fatn(2) = 2+ &n(2) - (L4 + (en = 27)kin(2))-

For all v < 1, there exists a sequence (By,), sub-exponential with respect to g, such
that

[nn| < By - len| and Yz € D(0,r) ‘kn(z)’ < Bp.
Proof. By lemma 1, we know that

[t (2) = 2+ 6a(2) - gn(2)

with, B, :== sup |g.| a sub-exponential sequence with respect to ¢,. The map
D(0,r)

fodn has the same multiplier at each ¢,-th roots of ,,. If w is a ¢,-th root of ¢,,

then

(fat)' (W) = 1 = 2migrengn(w)-
Thus, g,(w) is independant of the choice of g,-th root and we set
N = gn(w) — 1.
It follows that
gn(2) =140, + (en — 29)kn(2)

as prescribed. Since %/, — 1/A < r < 1, the g,-th roots of ¢, belong to D(0,r)
for n large enough. In that case, the bound on g,, taken at any of the g,-th roots
of €, shows that

and thus
Vz € D(0,7) |(en — 2%)kn(2)| < 2By,
As in lemma 1, we have for any sequence r, — 1 and for n large enough:
2B,

sup |kn(z §B;::n7

‘Z‘STI (2)] pT—
and (B},)) is sub-exponential with respect to g,. Looking at z = 0 gives:
(o) (@) =1 _ miomen 1

& (0)  2TignEn

As n — 400, the left hand of this equality expands to 1 + imgnen + 0(qnén).
Therefore

1+ M + Enkn(()) = gn(()) =

1| < En(lkn(0)| + 7y + O(Qn))-
Since |k, (0)| < BY,, we get the desired bound on 7. O

Corollary 3. Assume r < 1. Then,

sup |Fh(Z)-Z—-1 — 0 and sup |F.(Z)—-1] — 0.
zeHn(T)‘ &) n—+00 ZGHTL(T)‘ (2) ‘"*roo

Proof. The first is an immediate consequence of Prop. 9. For the second, use the
first on H, (r") with r < 7/ < 1. O
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1.4.3. Iterating the commuting pair (F,,Gp).
Proposition 10. Assume 1/A < r1 < ro < 1. If n is sufficiently large, the

following holds. Given any point Z € H,(r1), there exists a sequence of integers
(Je)e=o such that for any integer £ > 0 and any integer j € [0, j¢], the point

Fﬁj oG, o st"'*l oG,o0---0 Fﬁjl oG, o Fﬁj“(Z)
is well defined and belongs to H,,(r2).

Proof. We will need to control iterates of F), for a large number of iterates. We will
use the following lemma.

Lemma 4. Assume F : H — C satisfies
|F(Z2) - Z — 1| <u(Re(2))

with u : R — 10,1/10[ a function such that logu is 1/2-Lipschitz. Let T be the graph
of an antiderivative of —2u. Then, every Z € H which is above I' has an image
above T

Proof. Let U be the antiderivative whose graph is I'. Let Z = X +1¢Y € H.
The point Z' = X’ + Y’ = F(Z) satisfies X' € [X + 5, X + 15]. Since logu is
1/2-Lipschitz

11

11
vz € [XX + 10} , logu(z) > logu(X) - o

Therefore, from X to X', U decreases of at least

X/

1

2/ u(z)de > 2(X" — X)e W 20u(X) > 1—36*”/2%()() >u(X)>Y -Y'. O
X

2
B

Lemma 5. Assume 1/A < r < v’ < 1. If n is sufficiently large, then for all
Z € H,,(r) there exists an integer j(Z) such that

e for all j < j(Z), we have F% o G,,(Z) € H, (1) and
e Re(F'? 0 G,(2)) > Re(2).
Proof. Let us first recall that there exists a sequence (B,,), sub-exponential with
respect to ¢y, such that for n large enough, for all Z € H,(r),
|Gn(Z) — Z + A + 0] < B,
In particular, if n is sufficiently large,
Re(G,(Z)) > Re(Z) — A, — 0 — B, and Im(Gn(2)) > 7,(r) — By.

We will apply lemma 4 to control the orbit of G,,(Z) under iteration of F,,. More
precisely, we will prove the existence of a function w,, such that:
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a) |Fn(Z2) — Z — 1| < un(Re(2)),
b) for n large enough u,, €1]0,1/10],
¢) for n large enough, log u,, is 1/2-Lipschitz and
Re(Z)
d) the sequence C,, := / 2u,(X)dX is sub-exponential with respect
Re(C(2))
to qn.

Since 7, (r) /7 (") grow exponentially with respect to ¢y, if n is taken sufficiently
large, we have
1
10°
It then follows from lemma 4 that there is an integer j(Z) such that

e for all j < j(Z), we have F9 0 G, (Z) € H,, (') and
. Re(Fﬁj(z) 0 Gn(Z)) > Re(Z).

(1) > Tn(r') + Bn + Cp +

o PoGn(2)

Hy, (r')

a) By Prop. 9, there is a sequence (B,), sub-exponential with respect to gy, such
that for all Z € H,, ('),

|Fo(Z2) = Z — 1| < B (en + |en — mn(2)]).

Set T, := 1/(2wq%e,) — +00. We have (see Figure 5)

dn __ En
(ma(2))™ = 1_ e—i2/Ty

Using
Bl (en + |en — mn(2)™]) < By, (260 + |70 (2)"])

we see that for all Z € H, ('),
1
/ -
Ben <2+ ‘1 — eiZ/Tn|>

, 1
By en (2 + }Sne,me(z)/Tn _ 1})

|Fn(2) — Z — 1|

IN

IN

with
En

()

(D) T > g . g/ T — 1 4
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Since 1/A < 7/, we have ¢, /(") — 0 and thus s, — 1. Thus, for n large enough
1 1

3 |Sn€7iRe(Z)/Tn _ 1|’

IN

and for all Z € H,, (1),

) TBlen
[Fn(2) = 2 = 1] < un(Re(2)) - with un(X) := -2t

b) Let us show that for n large enough u,, € ]0,1/10[. Note that

7Bl en
< —0

VX R, |un(X)| < =7B,(")" — 0.

Sp — 1 n—s—+oo

Thus u,, tends uniformly to 0 as n — +o0.

¢) Let us now check that for n large enough, logu,, is 1/2-Lipschitz. Letting s,, =
cotan(w/2), we have

log |spe 2 = log(1 — sinw cos ) + const

where 8 = X/T,, and the constant stands for something independent of it). The
[-derivative of this expression is equal to

tanw_CoswsimnB (LB W)y o 2
1 —sinwcos 3 1 —sinwcospf 2 —1
It follows that
d 1 d .
— log u, (X) — log |sneZX/T"' —12 < _ S 7q> (r') .

ax T 2dx T(s2 — 1) notoo

d
Thus, ax log uy, (X) converges uniformly to 0 as n — 400, and for n large enough,
log u,, is 1/2-Lipschitz.
d) Let us finally show that the sequence

Re(Z)
C, = / 2u,(X)dX
Re(G.(2))

is sub-exponential with respect to q,. Let us recall that 27T}, ~ 1/(q2e,) ~ Ap. If
n is large enough,

Re(Gn(Z)) > Re(Z) — Ay, — 0, — By, > Re(Z) — 4nT,,.
Since u,, is 27T,,-periodic,

Re(2) 7T,
Cn, < B! ::/ 2un(X)dX:4/ un(X)dX.
Re(Z)—4nT, —7nTy
The change of variable § = X /T,,, which yields
B 14B;, ™ do

S T - \/5%4—1—25”0059-

It follows that
28B’ 1 28B’ 1dn 28B’
B! ~ 5 1o =—"1lo L ~
notoo mgk T sp—1  mg? en notoo w2

log(r'™ A,,).
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By assumption (condition (1) in the statement of Prop. 6; this is the only place
where it is used), the sequence log A,, is sub-exponential with respect to ¢,. As a
consequence, (Bl/), and thus (C,,), is sub-exponential with respect to g,. O

Proof of Prop. 10, continued. Remember that we are given 1 and r9 with 1/4 <
r1 < 19 < 1 and we want to prove that for n sufficiently large, any point of H,,(r1)
has an infinite orbit remaining in H,,(r2) along a well chosen composition of F,, and
G, It is enough to show that this is true for any sequence of points

Zn = Xn + 1Y, € H,(r1).

We will use Douady-Ghys-Yoccoz’s renormalization techniques and follow the pre-
sentation in [ABC] Section 3.2.

Step 1. Construction of a Riemann surface: V,,. Choose n sufficiently large
so that F, is defined in the upper half-plane {Z € C ; Im(Z) > 7,(r2) — 1/10}
with ) )
9
|Fu(2)—Z—1| < 5 and |Fi(Z)—1] < o
Set

) 1

P,=X, +1 <7‘n(7"2) 10) .
Let

Ly :={X,+it; t >Im(P,)}
be the vertical half-line starting at P, and passing through Z,, (see Figure 8). The
union

Ln U [Py, Fry(Pn)] U Fp (L) U {oo}

forms a Jordan curve in the Riemann sphere bounding a region U,, such that for
Y > Im(P,), the segment [X,, + 1Y, F,,(X,, +iY)] is contained in U,, (see [ABC]
Section 3.2). We set U,, := U, U L,,. If we glue the sides L,, and F,(L,) of U,, via
F,,, we obtain a topological surface V,,. We denote by ¢ : U, — V, the canonical
projection. The space V,, is a topological surface with boundary, whose boundary
Ln([Pn,Fn(Pn)]) is denoted 0V,,. We set V,, = V,, \ 9V,. Since the gluing map
F,, is analytic, the surface V,, has a canonical analytic structure induced by the
one of U,. It is possible to show that V,, is quasiconformally homeomorphic, thus
isomorphic to H/Z ~ D* (see [ABC] Section 3.2 for details). Let ¢, : V,, — D* be
an isomorphism. Hence, we have the following composition:

G © Ly : Up — D*.

We set
Cn = Gn 0 tn(Zy) € D.

Step 2. The renormalized map g,,. Choose r3 € |ry,r2[. Set
1
P =X, +i(r, ~ ).
! +Z(T (r3)+10)

Let U], be the set of points of U, which are above the segment [P, F,,(P,)] and
let V! be the image of U}, in V,,. Choose n sufficiently large so that lemma 5 can

9This is possible by Cor. 3 applied with » > ry. Indeed, for n large enough, we have that
Tn(rz) —1/10 > 7, (r) and thus {Z € C ; Im(Z) > 7n(r2) — 1/10} C Hn(r).
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Ly, Fn(Ln)
Hn(rl) Zm Cnl
u: Vn
| Z Z
H (rs) A PRTESN
G, Z. ® © 0o 0 0 ¢ 0 0 000 e o ° °
) W 9nf[2])

Un

Hn(TQ)

P,
FIGURE 8. Construction of the Riemann surface V,, and the renor-

malized map g,.

be applied with r» = r5 and 7' = ro. Then, for all Z € U/, C H,,(r3), there exists an
integer j(Z) such that

W=F% oG, (Z)eU, and Vje€[0,j(Z2)] FYoGn(Z) € Hy(rs).

The map Z +— W induces a univalent map g, : ¢, (V)) — D*. 1° By the removable
singularity theorem, this map extends holomorphically to the origin by g, (0) = 0.
Since

F.(Z)=Z+140(1) and G,(Z2)=Z—- A, —0+0(1)
as Im(Z) — +oo, we have that

g;(O) — e*2i7r(An+9) — 6721'71'9

(see the Proposition on page 33 in [Yo] for details).
Step 3. The orbit of (,.

We will show that the orbit of {,, under iteration of g, is infinite. For this, let
pn be the radius of the largest disk centered at 0 and contained in ¢, (V},). We will
show that

a) Jc > 0 such that g, has a Siegel disk which contains D(0, cp,)
b) [Cal = o(pn).

a) The restriction of g,, to D(0, p,) is univalent. It fixes 0 with derivative e=2"?.
Remember that 6 is a Brjuno number. It follows (see [Brj] or [Yo] for example)
that there is a constant cp > 0 depending only on 8 such that g, has a Siegel disk
containing D(0, cppyp). Indeed, according to Theorem on page 21 in [Yo], there is a
constant ¢ > 0 such that for all Brjuno number 6, any univalent map f : D(0,1) — C
which fixes 0 with derivative e>™ has a Siegel disk containing D(0, ce=B®)), where
B(0) is the Brjuno function.

10The fact that gn : $n(V)) — D* is continuous and univalent is not completely obvious; see
the Proposition on page 33 in [Yo] for details.
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b) Denote by B,, the half-strip
B,={Ze€C; 0<Re(Z)<1and Im(Z) >Im(P,)}
and consider the map H,, : B, — U,, defined by
H,(Z)=(1-X) - (X, +iY)+ X - F,(X,, +1iY)

where Z = X+iY, (X,Y) € [0, 1]x [Im(P,), +00[. The map H, sends each segment
[iY,iY 4 1] to the segment [X,, + Y, F,(X,, 4+ iY)]. An elementary computation
shows that H,, is a 5/4-quasiconformal homeomorphism between B, and U,
Since H,(iY +1) = F, (Hn(zY)), the quasiconformal homeomorphism H,, : B, —
U, induces a homeomorphism between the half cylinder H/Z and the Riemann
surface V,,. This homeomorphism is clearly quasiconformal on the image of B,, in
H/Z, i.e., outside a straight line. It is therefore quasiconformal in the whole half

cylinder (R-analytic curves are removable for quasiconformal homeomorphisms).
Let R,, be the rectangle

R,:={Z€C; 0<Re(Z) <1and Im(P)) < Im(Z) <Im(Z,)}.
Note that H, (R,) C U] and observe that
Ay = ¢n Oln o Hn(Rn)

is an annulus contained in ¢, (V},) that surrounds 0 and ¢,.

] ]
Im(Zy)
R, Z~Z+1
Im(P},)
Im(P,) B, o H/Z

The image of R,, in H/Z is an annulus of modulus

1
M, :=1m(Z,) —Im(P)) > 1n(r1) — Ta(r3) — — — +o00.
10 n—+oc
HFor a proof that Hy is 5/4-quasiconformal homeomorphism, see for example [ABC] section
3.2 or [Sh2] section 2.5.
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Note that H,, induces a 5/4-quasiconformal homeomorphism between this annulus
and A,,. It follows that

4
modulus(A4,) > =M, — +oo.
5 n—+oo

Since A,, separates 0 and ¢, from oo and a point of modulus p, in 9¢,(V),), the
claim follows: as n — +00, |¢,] = o(pn).

Step 4. Controlling the orbit of Z,,.
We know that the orbit of (,, under iteration of g,, is infinite. Thus, we have a

sequence

CheV, Iuclev I 2ev, I
Now, for each ¢ > 0, we have

¢t =¢no1,(25) forsome Zzt el
Moreover, by definition of g,,, there exists an integer j, such that
ZN = Fyt o Gu(Zy) and V) €[04 Fl o Gn(Z)) € Hy(rs).

In other words, ¢! € V! 2 ¢!+ € V!, corresponds to

Gy, Fp Fh Frn

ZEeU! = e H, () = - € Hy(rp) = - =% ZEH e il

Thus, for n sufficiently large, any point Z,, € H, (1) has an infinite orbit remaining
in H,,(r2) along a well chosen composition of F,, and G,,. This completes the proof
of Prop. 10. O

Proof of Prop. 7’, continued. Remember that 0 < 1/A < p < p’ < 1. Choose
r1=p <re < p'. By Prop. 10, for n sufficiently large, any point Z € H,,(p) has an
infinite orbit remaining in H,(r2) under a well chosen composition of F;, and G,,.
This means that any point z € X, (p) has an infinite orbit remaining in X, (r2)
under a well chosen composition of f;% and fal»=t By Cor. 2, if n is sufficiently
large, we know that any point in X, (r2) C D(0,ry) has its first g, iterates in
D(0,p'). This shows that any point z € X, (p) has an infinite orbit remaining in
D(0, p’') under iteration of f,,, as required.
In other words,

©dn—1

- € Hy(r2) Sn, e H, (r2) correspondsto - € X, (rs) e Xn(r2)

and

- € Hy(r2) Loy e H,,(r2) corresponds to - € X, (ry) I ¢ Xn(r2).

Moreover, for n sufficiently large,

Odpn —1 foqn
n

<€ X,(ra) f"—> € X,(re) and - € X, (r2) == - € X, (r2)

decompose as

L€ Xp(rs) C D(0,72) 2% - € D0, p) 5 - I e D0, ) I € X (ra).

This completes the proof of Prop. 7°. (|
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1.5. The control of the post-critical set.
Definition 5. We denote by O the Hausdorff semi-distance:
I(X,Y) = sup d(z,Y).
rzeX

Definition 6. We denote by PC(P,,) the post-critical set of Py:

eQzﬂ'a

2

PC(Py,) := U Pt (wy)  with we = —
E>1
This section is devoted to the proof of the following proposition. Remember that
Sy is the set of irrational numbers of bounded type whose continued fractions have
entries greater than or equal to N.

Proposition 11. There exists N such that as o/ € Sy — a € Sy, we have
G(PC(Par),Za) — 0,
with Ay, being the Siegel disk of P,,.
The corollary we will use later is the following.

Corollary 4. Let (o) be the sequence defined in Prop. 8. If n is large enough, the
post-critical set of Py, 1is contained in the d-neighborhood of the Siegel disk of Py.

The proof of Prop. 11 will rely on some (almost) classical results on Fatou coor-
dinates and perturbed Fatou coordinates. We refer the reader to appendix A and
to [Sh2] for more details. The proof will also rely on results of Inou and Shishikura
[IS] that we will now recall.

1.5.1. The class of Inou and Shishikura. Consider the cubic polynomial
P(2) = z(1 + 2)%
This polynomial has a multiple fixed point at 0, a critical point at —1/3 which is
mapped to the critical value at —4/27, and a second critical point at —1 which is
mapped to 0. We set
R:=¢' and v:=—4/2T.
Let U be the open set defined by
U := P 1(D(0,|v|R)) \ (]—00,-1]UB),

where B is the connected component of P~*(D(0, |v|/R)) which contains —1.

Consider the following class of maps (Inou and Shishikura use the notation F3’

in [IS]):
. . 1. . ¢ : U — Uy isomorphism such that
ISO.—{f—Pogo : Uy — C with £(0) = 0 and '(0) = 1 .
Remark. The set ZS is identified with the space of univalent maps in U fixing 0
with derivative 1, which is compact. A sequence of univalent maps (p, : U — C)
satisfying ¢, (0) = 0 and ¢} (0) = 1 converges uniformly to ¢ : U — C on every
compact subset of U, if and only if the sequence (f, = P o ¢, ') converges to

f=Pop ! on every compact subset of Us = ¢(U).

A map f € IS, fixes 0 with multiplier 1. The map f : Uy — D(O, |v|R) is
surjective. It is not a proper map. Inou and Shishikura call it a partial covering.
The map f has a critical point wy := ¢;(—1/3) which depends on f and a critical
value v := —4/27 which does not depend on f.
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FIGURE 9. A schematic representation of the set U. We colored
gray the set of points in U whose image by P is contained in the
lower half-plane.

1.5.2. Fatou coordinates. Near z = 0, elements f € 7Sy have an expansion of the
form

f(2) =z +cp22 + O(2%).
The following result of Inou and Shishikura is an immediate consequence of the
Koebe Distortion Theorem.

Result of Inou-Shishikura (Main theorem 1 part a). The set {c; ; f € ZSo} is
a compact subset of C*.

In particular, for all f € 7Sy, ¢y # 0 and f has a multiple fixed point of
multiplicity 2 at 0. If we make the change of variables
1
z=1(w) = —Cf—w,
we find F(w) = w+ 14 o(1) near infinity. To lighten notation, we will write f and
F for pairs of functions related as above; wy := ¢¢(—1/3) and wp := T;l(Wf) will
denote their critical points.
Lemma 6. There exists Ry such that for all f € Z.Sg
o I is defined and univalent in a neighborhood of C\ D(0, Ry) and
e for allw e C\ D(0, Ry),
1 1
|F(w) —w—1] < 1 and |F'(w) — 1] < 1
Proof. This follows from the compactness of Z5). O
If Ry > \/iRo, the regions
0 := {w € C; Re(w) > Ry — [Im(w)|}
and
QP :={w € C; Re(w) < —Ry + [Im(w)|}
are contained in C\ D(0, Ry).
Then, for all f € Z.Sy,

F(Q*) c Q™ and F(Q"P) D> QP



QUADRATIC JULIA SETS WITH POSITIVE AREA. 25

- ~
\
\
/
0 <
\
I
Q1rep,f/
~ -~

FIGURE 10. Right: the sets Q% and Q™P. Left: the set Q. s
and Qep, s for a map f with ¢y = 1. The sets Q" and Q44,5 are
shaded. The boundaries of the sets 7P and (p 5 are dashed.

In addition, there are univalent maps ®3t* : Q*** — C (attracting Fatou coordinate
for F') and &3P : Q™P — C (repelling Fatou coordinate for F') such that
PP o F(w) = ®%*(w)+1 and PpPo F(w) = ®RrP(w) +1

when both sides of the equations are defined. The maps ®3'* and =¥ are unique up

to an additive constant. In addition, as w € Q**NQ™P tends to infinity, Pt — PP
tends to a constant.

Result of Inou-Shishikura (Main theorem 1 part a). For all f € ISy, the critical
point wy is attracted to 0.

The following lemma easily follows, using the compactness of the class Z.5.
Lemma 7. There exists k such that for all f € IS¢ we have F°*(wp) € Q2.

Proof. By contradiction, suppose that there is a sequence (f,,) € ZS, such that for
k <n we have F°F(wr,) ¢ Q*'. By compactness of ZSy we may assume that the
sequence F,, converges to Fi. But since fo, € .S, the orbit of the critical point
wy.. converges to 0, so for some k we have F3F(wp_) € Q. But

F¥(wr,) = lim F*(wp,)
n— o0
and this is a contradiction. O

Since the maps @3 and ®'-* are only defined up to an additive constant, we
can normalize %' so that
PR (FF(wp)) = k.
Then, we can normalize " so that
PP (w) — PRP(w) - 0 when Im(w)— 400 with w € QN Q™P.
Coming back to the z-coordinate, we define
Qatt,f = Tf(Qatt) and Qrep,f =Tf (QreP)

and we set

1

(I)att,f = (I)%tt o 7‘; and q)rep,f = (I)rFep ° 7_;1.
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The univalent maps @ate, 7 : Qate,f — Cand Prep, ¢ 1 Qrep,; — C are called attracting
and repelling Fatou coordinates for f. Note that our normalization of the attracting
coordinates is given by

q)att,f (fOk(Wf)) = k‘
The following result of Inou and Shishikura asserts that the attracting Fatou

coordinate can be extended univalently up to the critical point of f. It easily
follows from [IS] Prop. 5.6.

Result of Inou-Shishikura (see figure 11). For all f € ISy, there exists an
attracting petal Pay,y and an extension of the Fatou coordinate, that we will still
denote ®at, 5 2 Past,y — C, such that

v € P, 1,

q)attj(v) =1,

@ i1, 5 s univalent on Pay,y and

Patr,f(Patt,f) = {w ; Re(w) > 0}.

Pt f

Patt f

FIGURE 11. Left: the attracting petal Pags, r of some map f € ZSo;
the critical point is wy, the critical value v and 0 is a fixed
point. Right: its image by ®.,r; we divided the right half plane
10, +00[xR into vertical strips of width 1 of alternating color, high-
lighted the real axis in red, and put a black dot at the point z = 1.
On the left, we pulled this coloring back by P®agt, f.

Definition 7 (see figure 12). For f € ISy, we set:
Vi = {z € Past,f ; Im(@att,f(z)) >0and0< Re(@att,f(z)) < 2}
and
Wyii= {2 € Pany ; =2 <Im(Pas,f(2)) <2 and 0 < Re(Pa,f(2)) < 2}.

We now come to the key result of Inou and Shishikura. The result stated below
easily follows from [IS] Prop. 5.7 and 5.8 and section 5.M. Our domain Vf_’c Uw, k
below corresponds in [IS] to the interior of

— —f —1 — — —
D_k; U D—k U D—k U D_k_l,_l U D—k-‘rl U D—k+1'
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FIGURE 12. On the right, we divided 0, 2[x] — 2, +-00[ into 3 re-
gions of different colors. We subdivided each by a vertical line
through z = 1. These 6 pieces were then pulled back on the left by
D44, £, for the same parabolic f € Z.S( as in figure 11. The set V;
is the union of the green and red regions. The set W is the union
of the red and yellow regions.

The set Wy k¥ itself corresponds to the interior of
— —1 — —
ka; U D*k/‘ U D7k+1 U D*k/‘+1'
Result of Inou-Shishikura (see figure 13). For all f € TSy and all k > 0,

e the unique connected component fok of f’k(Vf) which contains 0 in its

closure is relatively compact in Uy (the domain of f) and f°F : Vf_k -V
is an tsomorphism and
e the unique connected component W;k of f‘k(Wf) which intersects fok 18
relatively compact in Uy and for W;k — Wy is a covering of degree 2
ramified above v.
In addition, if k is large enough, then Vf_k U Wf_]C C Qrep, f-
The following lemma asserts that if k is large enough, then for all map f € Z.9),

the set Vf_k U Wf_]C is contained in a repelling petal of f, i.e. the preimage of a left
half-plane by ®ycp, f.

Lemma 8 (see figure 14). There is an Rg > 0 such that for all f € TSy, the set
D rep, £ (Qrep, £) contains the half-plane {w € C ; Re w < —Ry}. There is an integer
ko > 0 such that for all k > ko, we have

Vf_k U I/Vf_]C C {z € Qrep,f ; Re(cbmp,f(z)) < ng}.
Remark. Of course, Ry can be replaced by any R3 > Rj, replacing if necessary

ko by ki := ko + | Rs — Ra| + 1.

Proof. For all f € TSy, ®5(Qhep,s) contains a left half-plane. The existence of R
follows from the compactness of Z.5.
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Qrep

FIGURE 13. Left: among the successive preimages of V; and Wy
by f, those that compose the sets Vf_k, Wy * are shown. The
colors are preserved by f. Right: preimage of the left part by 7p.
We hatched Wr U Vp and W U Ve T,

fok

FIGURE 14. If k is large enough, Vf_’C Uw, ¥ is contained in the
repelling petal Prep, f-

By Inou and Shishikura’s result, we know that for all f € Z.S( there is an
integer k > 0 such that W, ¥ is relatively compact in Qrep,s- 1t follows from the
compactness of 7Sy that there is an integer k; > 0 and a constant M, such that
for all f € ZSo, W; ¥ C Quep, s and

sup  Re(Prep,p(w)) < M.
'wEWf_k1

Set ko := k1 + M + |Rz2] + 3. Then,

sup  Re(®Prep,p(w)) < —Ra — 2.
'wEWf_kO
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We will show that we then automatically have

(2) kao C Quep,s and  sup  Re(Prep,f(w)) < —Ro.
wGV;kU

It will follow immediately that
VEk > ko and Yw € VP UWF, Re(®rep,p(w)) < —Ra,

which will conclude the proof of the lemma.
In order to get (2), we fix f € TSy and consider k > ko large enough so that
fok C Qyep, s (this is possible thanks to Inou and Shishikura). Note that

sup Re(®Pep,f(w)) < —Ra — 2 — k + k.
w€W7

Denote by g : Vf — Vf the inverse branch of f° : V b Vf Set
B:={weC; 0<Re(w) <2and0< Im(w)}.
Note that B = ®,4; ¢(V}). Consider the map ¥ : B — C defined by
W i= B0 g0y .

Since ¥ commutes with translation by 1, so that ¥(w) — w is 1-periodic, the max-
imum modulus principle yields

sup Re(¥(w) —w) = sup Re(¥(w)—w).

weB wel0,2]
Note that
ge q)att f([O, 2]) - Wf_k
and thus
sup Re(\I/(w) — w) < —Ry —2—k+ k.
we(0,2]
Hence,

sup Re(®Prep,f(w)) = sup Re(¥(w)) < —Ra — k + k.
wGfok weB

It now follows that
sup Re(Brep s (1)) < ~ R
T ko
wEVf

This completes the proof of (2) and of lemma 8. O

1.5.3. Perturbed Fatou coordinates. For o € R, we denote by ZS, the set of maps
of the form z — f(e?™2) with f € ZSo. If A is a subset of R, we denote by ZS 4
the set
ZSa:= ] IS
acA

Note that
_1 U — Uy isomorphism such that
ISa{fPO(p Uf*)CWIth cp(O)—Oai’cld(P() —2iT }

and

TSy = {f —Poypt: U; — C with p:U—= Uy 1som0rphlsm such that } .

¢(0) =0 and |¢'(0)| =1
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The map f depends on ¢ in a one-to-one way. Thus we get a one-to-one correspon-
dence between ZSg and the set of univalent maps on U fixing 0 with derivative of
modulus 1. We put the compact-open topology on this set of univalent maps. This
induces a topology on ZSg.

Remark. A sequence (f, = Poy; ! € ZSg) converges to f = Pop~! € ISy if and
only if the sequence (f,) converges to f on every compact subset of Uy = ¢(U).

If f € ZS)0,1], we denote by ay € [0, 1] the rotation number of f at 0, i.e. the
real number ay € [0, 1] such that

f/ (0) _ €2i7raf .

Lemma 9. There exist eg € ]0,1[ and r > 0 such that for all f € TS|y, the
map [ has two fixed points in D(0,r) (counting multiplicities), one at z = 0 the
other one denoted by oy. The map o : LS|, — D(0,7) defined by f + oy is
continuous.

Proof. According to Inou and Shishikura, maps f € ZS( have a double fixed point
at 0. By compactness of ZSy, there is an ' > 0 such that maps f € ZSy have
only 2 fixed points in D(0,7). Choose r € ]0,7'[. By Rouché’s theorem and by
compactness of ISy, there is an g9 > 0 such that maps f € ZS|y.,[ have exactly
two fixed points in D(0,r). The result follows easily. O

The following results are consequences of results in [Sh2], the compactness of the
class Sy and the results of the previous paragraph.

FIGURE 15. The perturbed petal Py whose image by the per-
turbed Fatou coordinate @y is the strip {0 < Re(w) < 1/ay—R3}.

Proposition 12 (see figure 15). There are constants K > 0, e1 > 0 and R3 > Rs
with 1/e1 — Rg > 1, such that for all f € IS)o.,[ the following holds.

(1) There is a Jordan domain Py C Uy (a perturbed petal) containing v,
bounded by two arcs joining 0 to oy and there is a branch of argument
defined on Py such that

sup arg(z) — inf arg(z) < K.
2€P; z€Py

(2) There is a univalent map @5 : Py — C (a perturbed Fatou coordinate) such
that

o (I)f(v) =1,
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o O;(Py)={weC; 0<Re(w) <1/ay— Rs},

o Im(®s(2)) — +o0 as w — 0 and Im(®¢(z)) — —oco as w — o5 and

o when z € Py and Re(®f(z)) < 1/ay — Ry — 1, then f(z) € Py and
Drof(z)=Pp(z) + 1.

For f € ISy, we set
Prep.f = {z € Qrep. f 3 Re(tl)repyf(z)) < ng}.
(3) If (fn) is a sequence of maps in ISy .,[ converging to a map fo € LSy,
then

o any compact K C Py, s contained in Py, for n large enough and

the sequence (®y,) converges to ®qu 5, uniformly on K, and

o any compact K C Prep f, is contained in Py, for n large enough and
the sequence (g, —

a;n) converges to ®rep ¢, uniformly on K.

Proof. Thanks to the compactness of the class ZSy, it is enough to show that if (f,,)
is a sequence of maps in Z.S)g ;| converging to a map fo € ZSo, there is a number
R3 > Rs such that properties (1), (2) and (3) hold.

So, assume f,, is such a sequence, and for simplicity, write «,,, o,, ...instead of
Qf, 5 Of s v

Let 7, : C — P\ {0,0,} be the universal covering given by
On

Tn(’LU) = 1 — e~ 2imanw

so that

Tn(w) — 0 and 7,(w) —  on.
Im(w)—+o0 Im(w)——o0

Denote by T}, : C — C the translation
1
T, :w—w——.
o
Recall that fo(2) = 2 + cpz? + O(23) with ¢y # 0, and
1
T0 (Z) = _CO_Z
The following observations follow from [Sh2]. We let Ry and R; be the constants
introduced in paragraph 1.5.2.

(1) The sequence (7,) converges to 7y uniformly on every compact subset of

(2) If n is sufficiently large, there is a map F, : D,, — C, defined and univalent
in
D, :=C\ | D(k/owm, Ro)
kEZ

which satisfies

i anTn = Tp 0 Fp,

e F,(w) —wis 1/ay-periodic (or equivalently, F,, o T,, = Tp, o F},),

o Fp(w) —w — 1 as Im(w) — +o0.

Remark. This lift F;, of f,, may be defined by

o 1 fu(z) —on oz . B
F(w) =w+ Siran log < [0 = Un) with 2z = 7, (w).
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As n tends to +oo, the sequence (F,) converges to Fy uniformly on every
compact subset of C\ D(0, Ry).
The set

= {w € C; Re(w) > Ry — |Im(w)| and Re(w) < ain — Ry + |Im(w)|}

is contained in D,, (see figure 16).

FIGURE 16. The domain D,, (grey) is the complement of a union
of disks and the hourglass " (drak grey) is contained in D,

Remember that for all w € C\ D(0, Ry),
1 ) 1
|[Fo(w) —w—1| < 1 and | Fj(w) — 1| < T

It follows from the convergence of (F),) to Fy that if n is sufficiently large,
then for all w € Q7

1 1
|Fo(w) —w—1] < 1 and |F)(w) - 1| < e

Increasing n if necessary, we may assume that 1/a;,, > 2Ry +2. Then, there
is a univalent map ®™ : Q" — C, called a perturbed Fatou coordinate for
F,,, such that

O" o F(w) = F(w) + 1
when w € Q™ and F,(w) € Q™. This map is unique up to post-composition
with a translation.
Remember that there is a k such that f$¥(wo) € Qate, with wp the critical
point of fo. For n large enough, fo¥(w,,) is in 7,,(Q"), with w,, the critical
point of f,. There is a point w, € Q" such that

__ pok : —1 ok
Tn(wp) = [ (w,) with  w, WS To (f5*(wo))-
We can normalize ®" by ®"(wy,) = k. Then,

(I)n @Stt

n—-+oo
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uniformly on every compact subset of Q. Due to the normalization
Pt (w) — PP (w) — 0 as Im(w) — 400 with w € Q¥ N QP we have

Tnoq)"oT,;1 — PP

n—-+oo

uniformly on every compact subset of {2"P.

Coming back to the z-coordinate is not immediate. Indeed, the map 7, is not
injective on 2" and we cannot define a Fatou coordinate for f, on 7,(2™). We will
instead restrict to a subset P" C Q™ whose image by ®" is a vertical strip and on
which 7, is injective. The precise statement is the following. The proof is given in

appendix A. It is a consequence of results in [Sh2], but is not stated there.

Lemma 10 (see figure 17). If K > 0 and R > Ry are sufficiently large, then for n

large enough:
o O™(Q™) contains the vertical strip
U":={weC; R<Re(w) <1/a,— R}

and
e 7, is injective on P" := (®")"L(U™).
e there is a branch of argument defined on T,(P™) such that

sup arg(z)— inf arg(z) < K.
27, (P7) 2E€Tn (P™)

UTL

R 1 _ RS

an

FIGURE 17. The map 7, is injective on P" := (®")~1(U™).

Let M > R be an integer. Note that
{w € C; Re(w) > M} C Patt,0(Qatt,0)
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and

{’LU eC 5 Re(’LU) < —M} C q)rep,O(Qrep,O)'
Set

P = {z € Qatt.0 ; Re(@att’o(zz)) > M} U {z € Qrep.o ; Re(@rep,o(z)) < —M}
and
Pl =1, ({weP"; M <Re(®"(w)) < 1/an — M}).
For any r > 0, if n is sufficiently large so that o, € D(0,r), then points with large

(positive or negative) imaginary part are mapped by 7, into D(0,r). It therefore

follows from point (7) above that P}, — P} as n — +oc.
Set

Po = Patt,O U {Z € Qrep,O 5 Re(@rep,o(z)) < *2M}'
Note that Py is compactly contained in the domain of f§™ and that f§* : Py — P}

0
is an isomorphism. In addition, for n sufficiently large, f°™ does not have any

critical value in P;,.

It follows from Rouché’s theorem that for n large enough, the connected compo-
nent P, of f,7M(P!) which contains 0 in its boundary is relatively compact in the
domain of f,,, and foM : P,, — P! is an isomorphism. The perturbed Fatou coordi-
nate ®" : P* — C induces a perturbed Fatou coordinate ®,, := ®" o7, ! : P/ — C.

This extends analytically to a perturbed Fatou coordinates ®,, : P,, — C defined
by

®,(2) := ®"(w) — M where w € P™ is chosen so that 7,(w) = foM(2) € P..

—Jn

[ ]
NOSANAANANNSANNNNNNANNN

FI1GURE 18. Definition of the perturbed Fatou coordinate ®,,. The
perturbed petal P, is grey and the set P/, is hatched.
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In a simply connected neighborhood of P}, the function f$™(z)/z does not
vanish (and extends by 1 at z = 0). It follows that for n large enough, there are
branches of argument of 2™ (2)/z which are uniformly bounded on P,,. It is now
easy to check that Proposition 12 holds for the maps f, with n large enough. O

1.5.4. Renormalization. Recall that for maps f € Z.S( we defined sets Vi C Pass, ¢
and Wy C Pag, ;. We claimed (see lemma 8) that for k > 0 there are components
Vf_k and Wf_ k properly mapped by f°F respectively to V¢ with degree 1 and Wy
with degree 2. In addition, there is an integer kg > 0 such that

Vf €IS,  ViRUW ™ C Prepy

We will now generalize this to maps f € IS with ¢ sufficiently small. If
J € LS)0,e,[, We set

V= {z€Ps; Im(Pys(2)) >0 and 0 < Re(®f(z)) < 2}
and
Wy:={zePs; —2<Im(Ps(z)) <2 and 0 < Re(Py(2)) < 2}.
Proposition 13 (see figure 19). There is a number €2 > 0 and an integer ky > 1
such that for all f € ISy, and for all integer k € [1, k],
(1) the unique connected component Vf_k of f=%(V}) which contains 0 in its

closure is relatively compact in Uy (the domain of f) and f°F fok -V
is an isomorphism,

(2) the unique connected component Wf_k of f~*(Wy) which intersects Vf_k is
relatively compact in Uy and f°F : Wf_]C — Wy is a covering of degree 2
ramified above v.

—k —k
(3) Vi UW ™ C {2 € Py 2<Re(P4(2)) < 57 — Rz — 5}

F1Gure 19. If k is large enough, Vf_k U Wf_]C is contained in the
perturbed petal Py.
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Proof. Set ky := ko + 7. By compactness of Z.Sg, there is an €52 > 0 such that for
all f € ZS)o,c,, properties (1) and (2) hold for all integers k € [1, k1], and further,

I/Vf_k1 is contained in {z € Py ; 4 < Re(®y(2)) < a—lf — Ry —T}.
To see that kal is a subset of {z € Py ; 2 < Re(®f(2)) < a—lf — Ry — 5}, we
proceed as in the proof of lemma 8. O

We now come to the definition of the renormalization of maps f € ZSjg ,[-

Result of Inou-Shishikura (Main theorem 3 and section 5.M). If f € ZS) [,
the map
DpofoFod, (VM UW ) = @ (VEUWY)
projects via w —%62”“’ to a map R(f) € LS _1/a,-
Definition 8. The map R(f) is called the renormalization of f.

The polynomial P, does not belong to the class ZS,. However, according to
[IS], the construction we described also works for polynomials P, with o > 0
sufficiently close to 0. In other words, if o > 0 is sufficiently close to 0, there are
perturbed petals and perturbed Fatou coordinates, and there is a renormalization
R(Py) which belongs to ZS_; /,. In the sequel, e2 > 0 is chosen sufficiently small
so that for « € )0, e2[, a map f which either is a polynomial P,, or belongs to Z.S,,
has a renormalization R(f) € ZS_/q.

1.5.5. Renormalization tower. Assume 1/N < 9. Denote by Irrat>y the set:
LIrrat>y = {a = [ag,a1,a92,...] ER\Q; a > N for all k > 1}.
Assume a = [ag,a1,as,...] € Irrat>n. For j > 0, set

Qj = [05 Aj+1; A542; - - ]

1 1
OéjJrl = — = | —|.
Qj Qj

The requirement « € Irrat>y translates into
V7, aj €]0,1/N].

Denote by p;/g; the approximants to ag given by the continued fraction algorithm.
Now, if either fo = P, or fy € ZS, we can define inductively an infinite sequence
of renormalizations, also called a renormalization tower, by

fit1:=s0R(fj)os™,
the conjugacy by s: z — Z being introduced so that
f/(O) — e2i7raj.

J

Note that for all j > 1,

It will be convenient to define

Exp: C — C*
W —2;“75(62”“’).
For 57 > 0, we define
¢j = Expo®y, : Py, — C.
The map ¢; goes from the j-th level of the renormalization tower to the next level.
We now want to relate the dynamics of maps at different levels of the renormal-

ization tower. For this purpose, we will use the following lemma.
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Lemma 11. There is a constant K > 0 such that for all f € ISjo.,[, there is
an inverse branch of Exp which is defined on Py and takes its values in the strip
{weC; 0<Re(w) < K}.

Proof. This is an immediate consequence of Prop. 12 part (1). O

From now on, we assume that N is sufficiently large so that
1 1
3 — < d ——Rs>K.
(3) N €2 an N 3
Then, according to lemma 11, for all j > 1, there is an inverse branch v; of ¢;_1
defined on the perturbed petal Py, with values in Py, _, (there are several possible
choices, we choose any one).

FIGURE 20. The branch ;1 maps Py, , univalently into Py, .

The map
V=1 01go0...0%;
is then defined and univalent on Py, with values in the dynamical plane of the
polynomial fj.
Remember that

@y, (Py,) ={weC; 0<Re(w) <1/a; — Rs3}.
Define P; C Py, and P; C Py, by
Pj:={z€ Py, ; 0 <Re(Py,(w)) <1/aj — R3—1}
and
Pj:={z€ Py ; 1 <Re(Py,(w)) <1/aj — R3}.
Note that f; maps P; to P; isomorphically. Set

Q= V;(P;) and Qj:=W;(P)).
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Proposition 14. The map ¥; conjugates f; : P; — P} to Q- Q.

In other words, we have the following commutative diagram:

ogq;

f() J
Q; CV;(Py,) — Q, C ¥;(Py,)

Pj C Pfj 4>fj PJ/ C Pfj.

Proof. We must show that if z; € P; and 2 := f;(z;) € Pj, then the points
zo := W;(z;) and 2 := W;(z}) are related by
20 = fo ™ (z0)-

Let us first show that there is an integer k such that z) = f5¥(z0). Our proof is
based on the following lemma.
Lemma 12. Assume £ > 0, w € Uy,,, and w' = fe1(w). Let z € Py, and
z' € Py, be such that

Expo®y,(2) =w and Expo®y,(2)=w'

Then, there is an integer k > 1 such that 2" = f§¥(z).

Proof. Let z; € Py, be the unique point such that
Re(®y,(21)) €10,1] and Expo @y, (2]) =w'.

By definition of the renormalization fy41, there is a point z; € Vf;kl Uwy, 1 such
that

Expo®y,(21) =w and f;kl (21) = 21.
We then have

@y, (21) = Dy, (2) +m1  and @y, (Z/> = dy, (Zi) + mll
with m; € Z and m} € N. If my > 0, we have
z1=f;"(z) and 2 = f;m/l(zi).
Since k1 > 0, we then have
2 = fR(z) with k:=k 4+mi+m)|>1.

If m; <0, then z = f;” ™ (2]). However, for m < —my, we have f{™(z1) € Py,,
and so, k1 > —my + 1. Thus, we can write

2= f;"(z) with mg:=k +mq > 1.
In that case,

2 = fk(2) with k:=my+m)>1. O

It follows by decreasing induction on ¢ from j to 0 that for all z; € P;, there is
an integer k > 1 such that
2 = f5*(20)-
We will now show that we have a common integer k, valid for all points z; € P;.

Lemma 13. There is an integer kg > 1 such that for all point z; € P;, we have

2 = f5*(20).
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Proof. We will use the connectivity of P;. For k > 1, set
O :={z€Pj; f¥(¥;(z)) is defined}
This is an open set. Set

Xp={2€0n; f*(¥,(2) = ¥;(f;(2))}-

Note that for every component O of Oy, either X N O = O, or X}, is discrete
in O, in particular countable. Indeed, X} is the set of zeroes of the holomorphic
function f§* o ¥; — ;o0 f;: Op — C.

Since

P = J X«
k>1

there is a smallest integer kg > 1 such that X, is not countable. Then, there is a
component O of O, such that on O, we have f3* o ¥; = ¥ o f;.
Since O is a component of Oy, , we have

80073j C(C\Oko.
It follows that
GOﬂPj CXlU...XkO_l

since the remaining X}’s are contained in Ok,. So, 90 N P; is countable. This is
only possible if 90 NP; = () since in any neighborhood of a point z € C\ O,,
there are uncountably many points in C\ O,. As a consequence, O = P;, which
concludes the proof of the lemma. O

We must now show that ko = ¢;. Let L; C P; be the curve defined by
Lj:={z €Pj; Re(Py,(z)) =1}.
Set L’ := f;(L;), i.e. the curve
Ly :={z € Pj ; Re(®y,(2)) =2}.

Those curves both have an end point at z = 0. They both have tangents at
z = 0. Since the linear part of f; at z = 0 is the rotation of angle a;, the angle
between L; and L} at z = 0 is ;. It follows that the curves W;(L;) and W;(L})
have tangents at z = 0 and the angle between those curves is agay - - - a;. So, the

linear part of fg ko at z = 0 is the rotation of angle agay ---aj . It follows that
k/’o = qj- O
Set

D=V M uw M D=V Uy,
Cj = \Ifj(Dj) and CJI = \I/](D;)

Note that f;kl maps D; to D).

Proposition 15. The map ¥; conjugates the map f;’kl D — D; to the map
foo(kﬂ]jJFQj—I) L C; = CJ/'-
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In other words, we have the following commutative diagram:

o(k1gqj+aj—1)

Cj C W,(Py,) = ' C ;(Py,)

/
D] CPf] T).DJ Cpfj
J

Proof. The proof is similar to the one of Prop. 14. (]

1.5.6. Neighborhoods of the postcritical set. We can now see that the post-critical
set of maps f € ZS, with o € Irrat> v is infinite.

Proposition 16 (Inou-Shishikura Cor. 4.2). For all € Irrat>n and all f € TS,
the postcritical set of f is infinite.

Proof. For j > 1, the map f;’kl : Wf;kl — Wy, is a ramified covering of degree 2,
ramified above v. Denote by w; the critical point of this ramified covering. Set
wo := ¥, (wj). According to Prop. 15, we can iterate fy at least k1g; + gj—1 times
at wg, wo is a critical point of fg(qujﬂj’l) and its critical value is ¥;(v). In
particular, ¥;(v) is a point of the postcritical set of fo.

Note that v € P;. According to Prop. 14, we can iterate fo at least ¢; times
at ¥;(v). This shows that we can iterate fy at least ¢; times at v. Since j > 1 is
arbitrary, the postcritical set of fj is infinite. (I

For every a € Irrat>ny, we are going to define a sequence (U;) of open sets
containing the post-critical set of P,. We still use the notations of the previous
paragraph. In particular, for j > 1, the j-th renormalization of f, := P, has a
perturbed petal Py, , a perturbed Fatou coordinate

@4, : Py, = {weC; 0<Re(w) <1/a; — Rs}.
The set
Dy =V M uwh c Py,
is mapped by f;’kl to
D) :={z€ Py, ; 0<Re(®y,(2)) <2and Im(Py,(2)) > —2}.

There is a map V¥;, univalent on Py,, with values in the dynamical plane of P,,
conjugating f;kl : Dj — D’ to pykraitai—1) Cj — C} with

Cj:=V;(D;j) and Cj:=V;(D}).
Definition 9. For a € Irrat>y and j > 1 we set

qj+1+Lq;
Uil .= |J PHCy)
k=0
where £ :=k; — |R3| —4 € N.
Figure 21 shows the open set U;(«) for an a of bounded type.

Proposition 17. For all o € Trrat>n and all j > 1, the post-critical set PC(P,)
is contained in Uj(c).



QUADRATIC JULIA SETS WITH POSITIVE AREA. 41

Ficure 21. If f € 7S, with a € Irrat> n, the set Ui (f) contains
the postcritical set PC(f). If v is of bounded type, this post-critical
set is dense in the boundary of the Siegel disk of f.

Proof. We will show that for all j > 1, there is a point zp € C; which is a precritical
point of P,,, and a sequence of positive integers with ¢; < to < t3 < ... such that
e for all m > ]., tit1 — tm < qgj+1 + (kl — LRgJ — 4)(]] and
. Paotm (20) S Cj.
The proof follows immediately.

Denote by wj41 the critical point of fj11. According to Prop. 16 the orbit of
wjy1 under iteration of f;; is infinite. In particular, for all m > 0, f;ﬂ (wj41) isin
the domain Uy, , of fj;+1. Remember that the map ¢; := Expo ®y, : D; — Uy, ,
is surjective. So, for all m > 0, we can find a point w,, € D; such that

$i(wm) = [ (Wir)-
Set

Zm = Vj(wn) € Cj.
Then, z is a precritical point of P, and according to lemma 12, there is an increas-
ing sequence (t,,) such that z,, = P2'"(2g). It is therefore enough to show that for
alm>1,t41 —ty < qj+1 + (kl - \_R3J — 4)(]j.

Note that for m > 0, w,, € D;, w,, = f;kl (wpm) € Dj. By definition of the
renormalization f;11, we have

i (wh,) = fre1(65(wm)) = FTT (Wia1) = 65 (W)
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In addition, since w;, € D} and wy,+1 € Dj,

0 < Re(®y, (w),)) <2 and 2 < Re(Py, (wmt1)) < 5 — Rz — 5.
j

Thus, @y, (Wmy1) — Py, (wy,) is a positive integer £,
Wmt1 = f;ém (W),
and since aj11 = [1/a;],
[ < 821 — |Rs) 4.
Set z;, := ¥;(w!,). According to Prop. 14 and 15, we have

m
2y = PGt G0 (z,) and  zppn = Pomi(z),).
Thus,
tmt1 =t = k145 + gj—1 + Limqy < (841 + k1 — [R3] —4)q; + ¢j—1.
The result now follows immediately from ¢;11 = aj419; + ¢j—1. O
We will now assume that o € Sy, i.e. a € Irrat>y is a bounded type irrational
number (the coefficients of the continued fraction are bounded). We will use the

additional hypothesis that a has bounded type in order to obtain the following
result.

Proposition 18. For all a € Sy, for all e > 0, if j is large enough, the set U;j(c)
is contained in the e-neighborhood of the Siegel disk A, .

Proof. Consider the renormalization tower associated to fy := P, and let us keep
the notations we have introduced so far. Set

o(air1+~4

DY = e (D).

Define )
N]‘ =aj41 — LRgJ —1<— —Rs.
;
Note that
D} ={zeC; Nj —3 <Re(®y,(z)) < N; —1 and Im(w) > —2}.
In particular, DY C Py,. Set
Cy = ;(DY).

According to Prop. 14 and 15,

€y = Pyl ) (C),
Lemma 14. There exists M such that for all j > 1, the disk D(O, |v|e’2’rM) is
contained in the Siegel disk of f;.

Proof. Let B(c; ) be the Brjuno sum defined by Yoccoz as
1

Qj+k

—+o0
B(Oéj) = Z Qe Oy k—1 10g
k=0

Since « is of bounded type, there is a constant B such that for all j > 1, B(a;) < B.
The map f; has a univalent inverse branch g; : D(O, |’U|) — C fixing 0 with

derivative e 2" . According to a theorem of Yoccoz [Yo], there is a constant
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C', which does not depend on j, such that the Siegel disk of g; contains the disk
centered at 0 with radius

|,U|e—27r(B(ozj)+C) > |’U|€_2F(B+C).

The lemma is proved with M := B + C. (|

Let us now show that for any € > 0, for j large enough, Cj’-’ is contained in the
e-neighborhood of A,. Denote by D7 ¥ the set of points in DY which are mapped
by ¢; = Exp o ®;, in D(O, |v|e’2“M) and set D;-’b = Dj\ D;’u. In addition, set

# # b b
C{*:=v;(Dj") and Cf" :=W;(D}’).
Points in D (0, [v[e=2™*) have an infinite orbit under iteration of fj;1. It follows

that points in D;-’ * have an infinite orbit under iteration of f;. Thus, the orbit of

points in C/ * remains in Uj(a), thus is bounded. As a consequence, C/ 4 (which is
open) is contained in the Fatou set of P,, and since it contains 0 in its boundary,
Cj’-’ti is contained in the Siegel disk of P,.

So, in order to show that Cj’-’ is contained in the e-neighborhood of A, it is

enough to show that C? ’ is contained in the e-neighborhood of A,,. Note that D ’
is the image of the rectangle

{fweC; Nj—3<Re(w) <N;—1and —2<Im(w) < M}
by the map <I>J7jl which is univalent on the strip
{weC; 0<Re(w) <1/a; — Rs}.

Since
1 <Nj—3<Nj < 1/aj—R3,

the modulus of the annulus Py, \ D;-’ > is bounded from below independently of j.
It follows from Koebe’s distortion lemma that there is a constant K such that

diam(CJ’»’b) < K -d(z,7))
where

2= V0@ (N; —3) and 2} := ;007 (N; —2).

According to Prop. 14,

zj = PyNi=¥9 (w,) and 2 = P (z;).
The boundary of A, is a Jordan curve, and P, : 0A, — 0A, is conjugate to the
rotation of angle & on R/Z. Tt follows that

di M<K P2 (2) — z|.
fam(C}") < Zrenaana’ 0493 (z) z‘

Without loss of generality, we may assume that M > 2. If z € U;(«), then there
is a k < gj+1 + £g; such that P2¥(z) € C?. Then,
e cither P2*(2) € C]’/‘i in which case z € A,,
e or P°k(2) € cy ” in which case 2 belongs to the connected component Oj_k
of P;k(Cj’-’b) intersecting A,,.
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In the second case, O;k contains two points z;k and z§_k which are in the boundary

of A, and which are respectively mapped to z; and 2} by Pk, We have 2R =

J
Py (z;k)
Note that since « is of bounded type, there is a constant A such that

Vi>1l g1 +4Lg < A-gj.

According to lemma 15 below, there is a constant K’ such that for all j > 1 and
all k S dj+1 + &Ij

1 —k

diam(0; %) < K’ |2/ 7" — 27*| < K'- max |P3%(2) — z|.

Zz€E0A,

So, we see that

d(z,A,) < max(K, K') - Po%(z) — 2| —s 0.
Zes[}lj;()a) (z ) < max( ) ZIET%BK(J 095 (z) z’j_>+oo

This completes the proof of Prop. 18. (|

Assume « € R\ Q is of bounded type. If z € A, we set
rj(z) = [Pa¥(z) - 2|.

Lemma 15. For all o € R\ Q of bounded type, all A > 1 and all K > 1, there
exists a K' such that the following holds. If j > 1, if k < A-q;, if z0 € 0A,,
if zi = P"(20) and if O is the connected component of Py*(D(zi, K - 7(z1)))
containing zo, then

dlam(O) < K/ * Ty (Zo)

Proof. The constants M and m which will be introduced in the proof depend on
a, A and K, but they do not depend on j, k or z.
Set

D= D(zk,K . rj(zk)) and D := D(zk,QK . rj(zk)).

Since 0A,, is a quasicircle and since P, : A, — 0A, is conjugate to the rotation
of angle o on R/Z, the number of critical values of PS* in D is bounded by a
constant M which only depends on «, A and K.

Let O (respectively O) be the connected component of P;k(D) (respectively
Pa’k(ﬁ)) containing z. The degree of P2k : O — D is bounded by 2.

On the one hand, it easily follows from the Grétzsch inequality that the modulus
of the annulus O\ O is bounded from below by log 2/(272M) (see for example [ShT]
lemma 2.1).

On the other hand, it follows from Schwarz’s lemma that the hyperbolic distance
in O between z and Py% (z0) is greater than the hyperbolic distance in D between
21, and Py¥ (zk), i-e. a constant m which only depends on a, A and K.

Lemma 15 now follows easily from the Koebe distortion lemma. (|

Note that for each fixed j, the set U;(a) depends continuously on « as long
as the first 7 + 1 approximants remain unchanged. Hence, given a € Sy and
d >0, if o/ € Irrat>y is sufficiently close to « (in particular, the first j entries
of the continued fractions of a and o’ coincide), then U;(a’) is contained in the
§-neighborhood of U (). This completes the proof of Prop. 11.
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1.6. Lebesgue density near the boundary of a Siegel disk.

Definition 10. If « is a Brjuno number and if § > 0, we denote by A the Siegel
disk of P, and by K (§) the set of points whose orbit under iteration of P, remains
at distance less than § from A.

Our proof will be based on the following theorem of Curtis T. McMullen [McM].

Theorem 4 (McMullen). Assume « is a bounded type irrational and § > 0. Then,
every point z € A is a Lebesgue density point of K(0).

FIGURE 22. If a = (v/5—1)/2, the critical point of P, is a Lebesgue
density point of the set of points whose orbit remain in D(0, 1).
Left: the set of points whose orbit remains in D(0,1). Right: a
zoom near the critical point.

Corollary 5. Assume « is a bounded type irrational and § > 0. Then
d:=d(z,0A) -0 withz¢ A = densp(,,q)(C\ K(5)) — 0.

Proof. We proceed by contradiction. Assume we can find a sequence (z;) such that
o d; :=d(z;,0A) - 0 and
e pj :=densp(., 4,)(C\ K(8)) /4 0.
Extracting a subsequence if necessary, we may assume that the sequence (z;) con-
verges to a point z9p € OA and that limp; = p > 0.
Set n := p/5 and for ¢ > 1, set

Xi = {w € 0A ‘ (VT < ]-/'L) denSD(um') (C \ K((S)) < 77}

The sets X; are closed. By McMullen’s Theo. 4, |J X; = OA. By Baire category,
one of these sets X; contains an open subset W of OA. Then, for all sequence of
points w; € W and all sequence of real number r; converging to 0, we have

(4) lim sup dens p(q, ;) (C \ K(5)) <n= P
j—+o0 ' 5
We claim that there is a map g defined and univalent in a neighborhood U of
Z0, such that

b g(ZO) =wp € Wa
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e g(K(6)NU) =K(6)Ng(U) and

e g(OANU)=0ANg().
Indeed, if zg is not precritical, we can find an integer & > 0 such that f°¥(z) € W
and we let g be the restriction of f°F to a sufficiently small neighborhood of z.
If zg is precritical, we can find a point wy € W and an integer k£ > 0 such that
f°*(wp) = 2o and we let g coincide the restriction of the branch of f~* sending zg
to wp, to a sufficiently small neighborhood of zp.

Let z; € OA be such that |z; — 27| = d;. Then, 2; — 20. Let j be sufficiently

J Jj—+o0

large so that 2% € U and set w; := g(2}). On the one hand, wj —> wp. Thus,

—+00

w; € W for j large enough. On the other hand,

densD(Z;Vde)((C\K(é)) densDZ d; ((C\K( )

and so
lim inf densD(z 2d; )(C \ K (6 ))

Jj—+o0

rlklb

Since g is holomorphic at zy,

hmmfdensD(w] ) (C\K(9)) > g with ;= ‘g’(wo)’ -2d; — 0.

j—rFoo

This contradicts (4). O

1.7. The proof. We will now prove Prop. 3. We let IV be sufficiently large so
that the conclusions of Prop. 11 and Cor. 4 apply. Assume « € Sy and choose a
sequence (A,,) such that

/A, n_>—+>00 400 and %/log A, n—>—+>oo 1.
Set

= [ag, a1, ..., an, An, NyNON, ..

Note that since « is of bounded type, the Julia set J, has zero Lebesgue measure
(see [P]). Prop. 6 then easily implies that

1
liminf area(K,,, ) > iarea(KQ).

Everything relies on our ability to promote the coefficient 1/2 to the coefficient 1.
Let us first give an overall idea of the strategy of the proof. Denote by K (resp.
K,) the filled-in Julia set of P, (resp. P,,) and by A (resp. A,) its Siegel disk.
The idea of the proof is the following. For all S > 1, one can find a nested
sequence of toll belts (Ws)1<s<s

W, :={z€C|26 <d(z,A) <8} with 8541 <,
surrounding the Siegel disk A such that for n large enough the following holds.
e The orbit under iteration of P, of any point in A\ K, must pass through
all the toll belts.
e Thanks to Corollary 4, the toll belts surround the Siegel disk A,,.
e Thanks to Corollary 5 and Proposition 6, under the iterates of P, , at least

1/2 — ¢ of points in the toll belt W1 will be captured by the Siegel disk
A, without being able to enter the toll belt W.
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e Since the toll belts surround the Siegel disk A,,, they are free of the post-
critical set of P,,. This gives us Koebe control of points passing through
the belt, implying that at most 1/2+ ¢ of points in A that manage to reach
W41 under iteration of P,, will manage to reach Wi.

As a consequence, at most (1/2+¢)° points in A can have an orbit under iteration
of P,, that passes through all the belts and we are done by choosing S large enough.

There are minor boundary effects which complicate slightly the argument and we
proceed as follows. For § > 0, set

V(e) = {zeC]|d(z,A) <4},
K@) = {zeV(©)|(Vk=>0)P(z)eV()} and
Kn(8) = {z€V(6) | (Vk>0) P(z) e V(5)}.

Define p,, : 0, +00[ — [0,1] by
pn(8) := densa (C\ K, (9)).

Lemma 16. For all § > 0, there exist &' > 0 (with 6’ < §) and a sequence (¢n, > 0)
converging to 0, such that

3
pn((s) < an((sl) + Cn-12
This lemma enables us to complete the proof of Prop. 3 as follows. We set

p(0) :=limsup p,(6) (< 1).
n——+00

Then, for all § > 0, there is a ' > 0 such that p(5) < 3p(8’). Since p is bounded
from above by 1, this implies that p identically vanishes. In other words
(5) (V6 > 0) densa(Kn(6)) — 1.

n—-+o0o

Since K, () C K, we deduce that densa(K,) — 1. We know that

n—-+o0o
e P, converges locally uniformly to P,,
e the orbit under iteration of P, of any point in K \ 0K eventually lands in
A and

12The coefficient % could have been replaced by any A > %
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o PLYK,) = K,.
It follows that densg\px(Kn) — 1. Since the Julia set 0K has Lebesgue

n—-+oo
measure zero, this implies that liminf area(K,,) > area(K). This completes the

proof of Prop. 3 modulo Lemma 16.

PrROOF OF LEMMA 16. Let us sum up what we obtained in sections 1.4, 1.5 and
1.6.
1
(A) For all open set U C A and all § > 0, lim_‘i_nf densy (Kn(8)) > 3
n—-+00
immediate consequence of Prop. 6 in section 1.4.
(B) For all 0 > 0, if n is sufficiently large, the post-critical set of P, is contained
in V(). This is just a restatement of Cor. 4 in section 1.5.
(C) For all n > 0 and all § > 0, there exists d; > 0 such that if ¢’ < ¢ and if
z € V(80')\V(28"), then densp . 5y (C\K(6)) < n. This is an easy consequence
of Cor. 5 in section 1.6.

. This is an

Step 1. By Koebe distortion theorem, there exists a constant x such that for all
map ¢ : D := D(a,r) — C which extends univalently to D(a,3r/2), we have

sup|¢’'| < kinf|¢'].
D D
We choose 1 > 0 such that
1
2
8Tr N < 1
Step 2. Fix § > 0. We claim that there exists ¢’ > 0 such that:
(i) 96’ < § and (2 + 3K) -0’ < §,13

(ii) if d(z, A) < 28, then d(Pa(z),A) < 85 and
(i) if z € V(86") \ V(2¢"), then densp(, ) (C\ K(6)) < n.
Indeed, it is well-known and easy to check that for a € R, PC’Y‘ <4on K,. Asa
consequence, if 8’ > 0 is sufficiently small, then ‘PC’Y’ < 4 on V(20"). Tt follows that
(ii) holds for ¢’ > 0 sufficiently small. Claim (iii) follows from the aforementioned
point (C).

From now on, we assume that 4’ is chosen so that the above claims hold and we
set

W=V (8§)\ V(28").
Step 3. Set
vii={ze K@) | P(z) € A}.

The set of points in K(J) whose orbits do not intersect A, is contained in the Julia
set of P,. This set has zero Lebesgue measure. Thus, K (&) and | JY* coincide up
to a set of zero Lebesgue measure. The sequence (Y*)y> is increasing. From now
on, we assume that £ is sufficiently large so that

(Vw € W) densp(y,sn(C\Y*) <n.

Step 4. Assume ¢ is univalent on D(w,3d’/2) with w € W, r is the radius of
the largest disk centered at ¢(w) and contained in ¢(D(w,d’)) and Q is a square

13T hose requirements will be used in step 9.
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contained in ¢(D(w, ")) with side length at least r/+/8. Set D := D(w,d’"). Then,
r > infp |¢'| - 6" and thus,

6/)2
> inf|¢'|? - (—.
area(Q) > inf |o'| 3

In addition, sup |¢'| < mi%f |¢’| and so,
D

area(¢(D \ YZ)) < Slj:l)p O/ - m@')" <
areal@  © wl[F P/ -

8TKN < ~.

densq (C\ ¢(Y")) < 1

As a consequence,

densg (¢(Y")) > T
Step 5. If X C C is a measurable set, we use the notation m|x for the Lebesgue
measure on X, extended by 0 outside X. If U C C is an open set, (X,,) is a sequence
of measurable subsets of C and A € [0, 1], we say that

liminfm|x, > A-m|y
n—-+oo

if for all non empty open set U’ relatively compact in U, we have

lim inf densy (X,,) > A1
n—-+o0o
Assume f : V — U is a holomorphic map, nowhere locally constant, and (f,
Vi, — C) is a sequence of holomorphic maps such that

e every compact subset of V is eventually contained in V,, and

e the sequence (f,) converges uniformly to f on every compact subset of V.
Then,

hm1nfm|x >XA-mly = liminfm|1 )= A-mly.
n—-+ n—+oo
Step 6. Set

Y: = {ze V()| (Vj<t) P (z) € V(6) and Paof (z) € A}

On the one hand, if z € Y,/ and P’ (z) € K, (6), then z € K,(6). On the other
hand, every compact subset of Y is eventually contained in Y,* and the sequence
(P;f) converges uniformly to PS¢ on every compact subset of Y¢. By the afore-
mentioned point (A), we have

li fm]| >1 |
Ml mlic. @ = gmla.

So, according to step 5,

1
lim inf m )y = zm
fim inf 5y > Sy

Step 7. Assume ¢,, is univalent on D(wn,35’/2) with w,, € W, r, is the radius
of the largest disk centered at ¢, (w,) and contained in ¢, (D(wn, o )) and @, is a
square contained in ¢, (D(wn, o' )) with side length at least ,,/v/8. Then,

hmlnf densg, (qbn (Kn(é))) > g

n—-+

14Equivalently, for all non empty open set U’ C C with finite area, liminf densy/ (Xn) >
n—-—+oo
A - densy/ (U).
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Indeed, assume A is a limit value of the sequence

densg, (¢n (Kn(9))).
Post-composing the maps ¢, with affine maps and extracting a subsequence if
necessary, we may assume that (w,) converges to w € W, (¢,) converges locally
uniformly to ¢ : D(w,36'/2) — C, r,, converges to the radius r of the largest disk
centered at ¢(w) and contained in ¢(D(w,d’)) and Q, converges to a square Q
with side length at least 7/1/8. According to steps 5 and 6,

.. 1
Egirgmwn(m(a)) > §m|¢(w)_

According to step 4, it follows that
1 ‘ 3
A> §densQ(¢(Y )) > 3

Step 8. From now on, we assume that n is sufficiently large, so that:
(i) A\ K,(0) C X,, C A\ K,(0") with

Xn={z€A| (k) P(z) e W}

(this is possible by step 2);
(ii) sp < ¢ with
Sp 1= sugd(z, K, ("))
ze
(this is possible since s,, — 0 in order for the aforementioned point (A) to

n—-+o0o
hold);
(iii) the post-critical set of P, is contained in V'(4’/2) (this is possible by the
aforementioned point (B));
(iv) if ¢ is univalent on D(w, 38’ /2) with w € W, if r is the radius of the largest disk
centered at ¢(w) and contained in (b(D(w, 5’)) and if @) is a square contained

in ¢(D(w,d8")) with side length at least r/+/8, then

densg ((b(Kn(cS))) > %

(this is easily follows from step 7 by contradiction).
Step 9. Assume zg € X,,. Then, we have

PCY

Pa Pa Pa
20€ Xp V5 21 €V(20) ¥ W 21 €V(20) W 2 e W

for some integer k > 0. Since the post-critical set of P,, is contained in V(¢'/2),
for j < k there exists a univalent map ¢; : D := D(z, ") — C such that

e ¢; is the inverse branch of P3*~7 which maps zj to z; and

o ¢, extends univalently to D(zy,3d'/2).
In particular,

| < kinf |¢)].
sup 5| < rinf |6|

Let D(z;,7;) be the largest disk centered at z; and contained in ¢;(D) and D(z;, R;)
be the smallest disk centered at z; and containing ¢;(D). Note that D is contained
in C\ V(¢') and so, for j < k —1, D(z;,r;) C ¢;(D) C C\ K,(8'). On the one
hand, d(z;, A) < 26" and on the other hand, every point of A is at distance at most
S, from a point of K, (¢"). It follows that

R; < krj < k- (sp+248").
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If wy € ¢o(D) and w; := P (wp), then for j <k —1,
d(w;, A) < d(wj,z;) +d(z;, A) < k- (sp +28)+28 < (2+43k)-8 <6
and for j =k,
d(wi, A) < d(wg, z;) + d(zx, A) < 96" < 6.
In other words, wo, wi, ..., wy all belong to V(4). As a consequence,
b0 (Kn(d)) C Kn(9).

Step 10. Continuing with the notations of step 9, we denote by @, the largest
douadic square containing zo and contained in D(zg, ). On the one hand, since
zo € A and since ¢o(D) C C\ K, ('), we have rg < s, and so

on C D(ZOa TO) C V(Sn) \Kn((sl)

On the other hand, @, has an edge of length greater than 7/2v/2 and so, according
to step 8 point (iv),

densgq., (K, (9)) >

P

As a consequence
3

densq, (C\ K,(8)) < 1

Given two douadic squares @ and @', either QN Q' =0, or Q C Q' or Q' C Q.
It follows that

area(A\Kn(é)) < Zarea< U Qz)

ze€X,

< Sarea(V(sa) \ Kul0))
< Zarea(A \ K (8) + Zarea(V(sn) \A)
_ Zarea(A \ Ko (8) + cn - area(A)
with
o, i darea(V(sn) \ &)

4 area(A)

Step 11. Since s,, — 0 and since the boundary of A has zero Lebesgue measure,

area(V(s,)\ A) — 0.

n—-+o0o

Thus,

densa (C\ K, (9)) < ZdensA((C\Kn((S')) +c¢n, with ¢, — 0.

n—-+oo

This completes the proof of Lemma 16. O
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2. THE LINEARIZABLE CASE

In order to find a quadratic polynomial with a linearizable fixed point and a
Julia set of positive area, we need to modify the argument.

Definition 11. If « is a Brjuno number, we denote by A, the Siegel disk of P,
and by 1o its conformal radius. For p < ro, we denote by A,(p) the invariant
sub-disk with conformal radius p and by L. (p) the set of points in K, whose orbits
do not intersect Ay (p).

FIGURE 23. Two sets L (p) and Ly (p), with o a well-chosen
perturbation of a as in Prop. 19. This proposition asserts that
if @ and o are chosen carefully enough, the loss of measure from
Lo(p) to Lo(p) is small. We colored white the basin of infinity,
the invariant subdisks A, (p) and A,/ (p) and their preimages; we
colored light grey the remaining parts of the Siegel disks and their
preimages; we colored dark grey the pixels where the preimages
are too small to be drawn.

Proposition 19. There exists a set S of bounded type irrationals such that for all
a€S, allp<p <ry and all e >0, there exists o € S with

o |0/ —a] <e¢,

e max(p, (1 —€)p') <re < (1+¢)p and

e arca(La (p)) = (1 —e)area(La(p)).

Proof. We let N be sufficiently large so that the conclusions of Prop. 11 and Cor. 4
apply. We will work with & = Sy. Assume a € Sy and choose a sequence (4,,)
such that ,
lim %/A4, =-=.
n—-+4oo /

Set

ap = [ag, a1, .., an, Ay, NN, NS L.
This guaranties that r,, ST o' (see [ABC)).

Let A be the Siegel disk of P,. Let us use the notations V(4), K () and K, (0)
introduced in section 1.7. With an abuse of notations, set A(p) := A,(p) and
An(p) :=Aq, (p). Set

A'(p) = Py (Alp) \ Alp).
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Then, A(p) and A’(p) are symmetric with respect to the critical point of P,. The
orbit under iteration of P, of a point z ¢ A(p) lands in A(p) if and only if it passes
through A’(p). We have a similar property for

AL (p) = Po, (Bn(p)) \ An(p)-
We have proved — see equation (5) — that
(V6 > 0) densa(K,n(5)) — 1.

n—-+o0o

The sequence of compact sets (A, (p)) converges to A(p) for the Hausdorff topology
on compact subsets of C, because limr,, > p. It immediately follows that for all
6 >0,

dens\x(,) (Kn(0)\ An(p)) —> 1.

n—-+oo

Choose ¢ sufficiently small so that V(§) does not intersect Z/(p). Then, for n

large enough V'(4) does not intersect Z;L (p). In that case, the orbit under iteration
of P,, of a point in K,(J) \ A,(p) cannot pass through A/ (p) and so,

Kn(0) \ An(p) C La, (p)-
Thus,
dens\x(,) (La,(p)) — 1.

n—-+o0o
The points of L,(p) whose orbits do not intersect A \ A(p) are contained in the
union of the Julia set J, and the countably many preimages of OA(p). Thus, they
form a set of zero Lebesgue measure. It follows that

area(La,, (p)) N area(La(p)).
O

Proof of Theo. 2. We start with ag € S and set pg := 74,- We then choose
p €10, po[ and two sequences of real numbers ¢, in (0, 1) and p,, in (0, pp) such that
[I(1 —&,) > 0 and p, N\, p > 0. We can construct inductively a Cauchy sequence
(o, € 8) such that for all n > 1,

e 7o, € (pn,pn—1) and

e area(Lq, (p)) > (1 —&,)area(La,_,(p)).
Let a be the limit of the sequence (o). The conformal radius of a fixed Siegel
disk depends upper semi-continuously on the polynomial (a limit of linearizations
linearizes the limit). So, r, > limr,, = p. Also, by choosing «,, sufficiently close
to ay,—1 at each step, we can guaranty that r, < p, in which case r, = p.

In addition, the sequence of pointed domains (Aan (p),O) converges for the
Carathéodory topology to (A,,0). In particular, every compact subset of A, is
contained in A, (p) for n large enough. Similarly, every compact subset of C\ K,
is contained in C\ K, for n large enough. It follows that

limsup La,, (p) == ﬂ U La,(p) C La(p).

m n>m

Since 1o = p, Ao(p) = Ay and Ly (p) = Jo. Thus, limsup Ly, (p) C J, and
area(Jo) > area(limsup Lq, (p)) > area(Lq,(p)) - H(l —&,) > 0.
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3. THE INFINITELY RENORMALIZABLE CASE

In order to find an infinitely renormalizable quadratic polynomial with a Julia
set of positive area, we need a modification based on Sgrensen’s construction of an
infinitely renormalizable quadratic polynomial with a non-locally connected Julia
set.

Proposition 20. There exists a set S of bounded type irrationals such that for all
a €S and all € > 0, there exists o/ € C\ R with

o |0/ —a <e¢,

e P, has a periodic Siegel disk with period > 1 and rotation number in S

and
o area(K, ) > (1 —e)area(K,).

FIGURE 24. Two filled-in Julia sets K, and K./, with o/ a well-
chosen perturbation of «a as in Prop. 20. This proposition asserts
that if @ and o’ are chosen carefully enough, P, has a periodic
Siegel disk and the loss of measure from K, to K, is small. Left:
we hatched the fixed Siegel disk. Right: we hatched the cycle of
Siegel disks.

Proof. We can choose § = Sy with N large enough (in order to be able to apply
Inou and Shishikura techniques). The proof essentially goes as in the Cremer case

Given o € S, we let pi/qx be its approximants, and we consider the functions
of explosion xy, given by Prop. 4. If o/ belongs to the disk centered at py /g with

radius 1/q}, the set
Cr(a') = xi { N ap — pk/‘lk}
is a cycle of P,. Tts multiplier is 2™ (") with ), : D(py/qr,1/¢}) — C a non-
constant holomorphic function which vanishes at py/qx.
We consider a sequence () converging to « so that

o limsup %/ |, — pn/¢n| =0 and

n—-+o0o

e 0, (ap) :=[An, N,N,N,...] with

lim “%/A, =+0c0 and lim %/logA, =1.

n—-+oo n—-+oo
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We control the shape of the cycle of Siegel disk as in the Cremer case. For all
p < 1 and all n sufficiently large, the cycle of Siegel disks contains the y,, (Yn(p))
with
P — len|

an ’
For this purpose, we work in the coordinate given by x,, and compare the dynamics
of the conjugated map to the flow of a vector field.

We control the post-critical set of P,, via Inou-Shishikura’s techniques.

We then control the loss of area as in the Cremer case. O

2 —En .
Yo (p) := {z €C; ——=¢ D(O,sn)} with s, :=

z4n

Definition 12. For ¢ € C, we denote by Q. the quadratic polynomial Q. : z —
22 4+ c. With an abuse of notations, we denote by K. its filled-in Julia set and by
Je its Julia set. We denote by M the Mandelbrot set, i.e. the set of parameters c
for which K. is connected.

The previous proposition can be restated as follows.

Proposition 21. Assume P. has a fized Siegel disk with rotation number in S.
Then, for all € > 0, there exists ¢’ such that
o | —c|] <e¢,
e P. has a periodic Siegel disk with period > 1 and rotation number in S and
o area(K.) > (1 —e)area(K,).

In fact, such a ¢ is on the boundary of the main cardioid of M and the proof we
proposed yields a ¢ which is on the boundary of a satellite component of the main
cardioid of M.

Using the theory of quadratic-like maps introduced by Douady and Hubbard
[DH2], we can transfer this statement to perturbations of quadratic polynomials
having periodic Siegel disks. We will use the notions of renormalization and tuning
(see for example [Hal).

If 0 is periodic of period p under iteration of Q.,, then ¢y is the center of a
hyperbolic component 2 of the Mandelbrot set. This component 2 has a root: the
parameter ¢; € 0f) such that @., has an indifferent cycle with multiplier 1. In
addition, there exist

e a compact set M’ C M such that M’ C OM,
e a simply connected neighborhood A of M’ \ {¢1},
e a continuous map x : AU{c¢;} = C and
e two families of open sets (U})aea and (Ux)xea,
such that
o (fa=QF: Uy —Uy), ¢ is an analytic family of quadratic-like maps
for all A € A, fy is hybrid conjugate to Qy(x),
the Julia set of f) is connected if and only if A € M’ and
X : M’ — M is a homeomorphism (sending ¢o to 0 and ¢; to 1/4).
We denote by cg L - : M — M’ the homeomorphism (x|a) ™. We say that ¢y L ¢
is co is tuned by ¢ and that (f) := QY : Uy — UA)AeA is a Mandelbrot-like family
centered at cg.

Proposition 22. Assume 0 is periodic under iteration of Q., andc € M — c € M
with area(K. ) — area(K.). Then

area(Key1 o) — area(Key1c)-
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Proof. Let p be the period of 0 under iteration of )., and let (f,\ =QY: U —
U,\) rea PE A Mandelbrot-like family centered at cg.

Let ¢ : Ugyrer — C be hybrid conjugacies. As ¢ — ¢, the modulus of the
annulus Ug, | \UICU o 1s bounded from below. So, the ¢ can be chosen to have
a uniformly bounded quasiconformal dilatation. It follows that if ¢ e M — ce M
with area(K.) — area(K,), we have

area (¢, (K.)) — area (o2 ' (Ke)) -

It follows easily that area(K,, ) — area(K,, ) since almost every point in K., | .
has an orbit terminating in ¢, ! (K.). O

Proof of Theo. 3. If P, has a periodic Siegel disk then c is on the boundary of a
hyperbolic component with center cg. We denote by €2, this hyperbolic component
and we set M. :=c¢y L M.
We will denote by S the image of S by the map o + €2™® /2 — 4™ /4 Then,
c € S if and only if P, has a fixed Siegel disk with rotation number in S. Moreover,
P, has a periodic Siegel disk with rotation number in § if and only if c=¢o L s
with ¢o the center of the hyperbolic component containing ¢ in its boundary and
s€ES.
It follows from Prop. 21 and 22 that if Q). has a periodic Siegel disk with rotation
number in S, then for all € > 0, we can find ¢/ € M. \ Q. such that
o | —c| <e¢,
e P. has a periodic Siegel disk with rotation number in S and
o area(K.) > (1 —¢)area(K,).
Let us choose a parameter ¢y € S and a sequence of real number ¢, in (0, 1) such
that [[(1 —e,) > 0. We can construct inductively a sequence (c,) such that

e (c,) is a Cauchy sequence that converges to a parameter c,
e ()., has a periodic Siegel disk with rotation number in S,
o forn>1,¢,€ M. ,\Q , and

Cn—1

o area(K.,) > (1 —e,)area(K,, ,).
Then, P. is infinitely renormalizable (it is in the intersection of the nested copies
M.,). Thus, J. = K. =lim K, . Finally,

area(J.) = area(K.) > area(K,) - H(l —ep) > 0.

APPENDIX A. PARABOLIC IMPLOSION AND PERTURBED PETALS

The notations used in this appendix are those of section 1.5.3. We postponed
the proof of the following lemma to this appendix.

Lemma 17. If R > 0 and K > 0 are sufficiently large, then for n large enough:
(1) ®™(2™) contains the vertical strip
U":={weC; R<Re(w) <1/a,— R},

(2) T, is injective on P" := (®")"1({U™) and
(8) there is a branch of argument defined on 7,(P™) such that

sup arg(z) — inf arg(z) < K.
2ETn (PM) 2E€Tn (P™)
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Proof. As in [Sh2], the argument consists in comparing the Fatou coordinate ®" to
the Fatou coordinate U™ of the time one map of the vector field (,, defined on D,,
by
d d
n — Gn - = Fn - -5 -
o = Gl = (Fu) - w) -
1
In other words, set w,, := e and let U™ : Q,, — C be defined by
Qn
w du

U™ (w) :<I>"(wn)+/ Folw) =’

Wn

Claim 1. Increasing R; if necessary, there is a constant C' > 0 such that for all n
sufficiently large
sup |®"(w) — U™ (w)| < C.

weN™

Proof of Claim 1. According to Prop. 2.6.2 in [Sh2], there are constants R and C
such that for all sufficiently large n and for all w € Q™ with d(w,dQ") > R, we

have

@)~ (0 ()] < € (G + 1Faw) - 1]

We will first show that we can get rid of ‘Fé(w) - 1‘. Set

Gn(w) :=F/(w) —1 and Sy(w):= (%)2

sin(may,

Those functions are 1/, periodic. On the one hand, as n — +o0,

e the functions G,, are uniformly bounded by 1/4 on 9Q™ and

e the sequence (S,) converges uniformly to w +— 1/w? on 9Q", and thus, the

functions S,, are uniformly bounded away from 0 on 0Q2™.

As a consequence, the functions G, /S,, are uniformly bounded on 9Q™. On the
other hand, as Im(w) — o0, Gp,(w) — 0. Thus, in (C/O%Z, G, has removable
singularities at +ioo and vanishes at those points. Since in C/ C%Z, Sy has simple
zeros at +ioco, the function G, /S, has removable singularities at +ioco in (C/O%Z.
It follows that from the maximum modulus principle that there is a constant Cy
such that for all sufficiently large n and all w € Q", we have

2
Ty,

}F’rlz(w) - 1} <Ci

sin(may,w)
Note that there is a constant Cy > 0 such that
Ywe C, dw,Z)< Cg‘SiH(?T’LU)‘.
d(w,Z)

|sin(mw)
compact. It follows that for all w € Q7

Indeed, the quotient extends continuously to (C/Z) U {£ioco} which is

> 2% a)? C3m?

~ d(apw,Z)? — d(w, 00m)2"

Ty,

sin(ra,w)
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Thus, there is a constant C” such that for all sufficiently large n and for all w € Q"
with d(w, Q™) > R, we have
C/
(I)n ! _ \I]n / < -
(@) () = (9 ()] < 5

Taking R > 1 and replacing Ry by R; + v/2R, this can be rewritten as: there is a
constant C' such that for all sufficiently large n and for all w € Q"

Cl
(1+ d(w, 90m))*

Let us now assume n is sufficiently large, so that

(@) (w) — (¥")(w)] <

1
Xn:2—_R1>O

n

1
Then, w, := e belongs to Q". Fix w := w, + = + iy € Q". Note that

|7 < X, +|y| and  d(w,dQ") > V2(X, + |y| — |z]).
It follows that

I
|27 (w) — T ()| g/ Cldul _
(W ywa, Fiy]U[wn, +iy,w) (1 + d(u, GQ"))

+0o0 C'ds Xn+lyl C'dt
<[ o+ :
0 (1+V2(X,+5s)) 0 (1+V2(Xn + |yl = 1))
<2C".
This completes the proof of Claim 1. (]

Claim 2. The map U™ is univalent on ", ¥"(Q") contains the vertical strip
V" :={weC; Re(¥"(Ry)) < Re(w) < Re(¥"(1/a,, — R1))}
and 7, is injective on Q" := (¥™)~1(V™).
Proof of Claim 2. Note that U™ is a straightening map for the vector field (,:
d
UG = —.
()G = =

Since F,(w) —w € D(1,1/4) on Q", the trajectories of the vector field ¢, are
curves which enter Q™ through its left boundary and exit Q" through the right
boundary. In particular, no trajectory is periodic. Since two distinct trajectories
cannot intersect, the map U” is injective.

Observe that for w € 9Q",

arg((U") (w)) = —arg(F,(w)—w) € |—arcsin(1/4), arcsin(1/4)[ C |—n/12,7/12].
Integrating (U™)'(w) along 9Q™, we conclude that

2 4
% <arg(V"(w) — ¥"(Ry)) < %

on the left boundary of Q™ and that

—g < arg(V"(w) — ¥"(1/ay, — Ry)) < %
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on the right boundary of Q™. This proves that ¥ (Q™) contains the vertical strip
vr.

Assume by contradiction that 7, is not injective on V™. Then, there is an integer
k € Z\{0} and a point w € V™ such that w+k/ay, is in V™. Note that V™ is a union
of trajectories for the rotated vector field i¢,. As w runs along those trajectories,
the imaginary part of w increases from —ioco to +ioco. In particular, every trajectory
intersects R. Since for all w € D,,, we have i(,(w) = i(,(w + 1/ay,), the trajectory
for i(,, passing through w + k/c, is obtained from the trajectory passing through
w by translation by k/a,. This is not possible since the intersection of those
trajectories with R is contained in Q" NR = |Ry,1/ay, — Ry[. This completes the
proof of Claim 2. O

Let us now come to the proof of parts (1) and (2) of lemma 17. Assume n is

sufficiently large, so that

sup |@"(w) — U™(w)| < C.

weN"
Then, ®"(Q") contains the vertical strip

{weC; Re(¥"(Ry)) + C < Re(w) < Re(¥"(1/on — R1)) — C}.
Note that
\I/n(Rl) = q)n(Rl) + 0(1) = O(l)
and
U™(1/an — R1) = 0" (1/an — R1) + O(1) = 1/ay, + O(1).
Thus, if R is large enough and if n is sufficiently large, then ®"(Q™) contains the
vertical strip
U":={weC; R<Re(w) <1/ay — R}.

Since 7, is injective on Q, this proves parts (1) and (2) of lemma 17.

Let us now come to the proof of part (3) of lemma 17. Note that 7, sends
the segment ]0,1/a,[ to the perpendicular bisector of the segment [0,0,]. The
map T, sends the lower half-plane H™ := {w € C; Im(w) < 0} in the half-plane
{z € C; |z| > |z — o,|}. This takes care of 7,(P" N H").

The map 7, is a universal covering from the upper half-plane

H* := {w e C; Im(w) > 0}

to the punctured half-plane {z € C ; 0 < |2| < |z — 0y|}, with covering trans-
formation group generated by the translation T;, : w — w + 1/c,. It sends the
lines

2k+1
Lk:{wEC;Re(w) 2(; }, keZ

to the segment |0, 0,[. It is therefore enough to show that there is a constant M
such that for n large enough, P* NH™ is contained in the vertical strip

M M
{we(C; ——<Re(w)<—}.
Qn Qn
For all w € P™, we have
1
R < Re(®"(w)) < — — R.

_an
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It is therefore enough to show that

sup |7 (1) — w| = O (i)

weQrNH+ Qp

or equivalently that

sup [0 (w) — w| = O <i> |

weNrNH+ Qp

1
Note that ————— — 1 is periodic of period 1/a,, bounded by 1/3 in Q™ and
Fp(w) —w

tends to 0 as Im(w) tends to +oo. It follows from the maximum modulus principle
that

1 1 . '
— 1 < = - 3 f 29Ty W . 20Ty W < C —27ranIm(w)
‘Fn(w) —w ‘ 3 (wea(lfIzlan+) |€ |) |6 | >~ e
for some constant C' which does not depend on n. If w:= R+ z + iy € Q" N HT,
then [z] <y +1/ay. So
sup |0 (w) — w| < |U"(R) — R
weQ»NH+

||

y

+ sup / Ce 2mantqy 4 Ce 2many gt
y>0 0 0

|z|<y+1/an

1— e—27ro¢ny 5
O (F g b e+ 1))+ O()

2mo,

E(i+§+1)+(9(1)

oy \ 2T 21

o)

This completes the proof of part (3) of lemma 17. O

IN
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