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Approximation of singularly perturbed linear hyperbolic systems

Ying TANG, Christophe PRIEUR and Antoine GIRARD

Abstract— This paper is concerned with systems modelled by
linear singularly perturbed partial differential equations. More
precisely a class of linear systems of conservation laws with
a small perturbation parameter is investigated. By setting the
perturbation parameter to zero, the full system leads to two
subsystems, the reduced system standing for the slow dynamics
and the boundary-layer system representing the fast dynamics.
The exponential stability for both subsystems are obtained by
the stability of the overall system of conservation laws. However,
the stability of the two subsystems does not imply the stability of
the full system. The approximation of the solution for the overall
system by the solution for the reduced system is validated via
Lyapunov techniques.

I. INTRODUCTION

The singular perturbation techniques occurred at the be-

ginning of the 20th century. The interests in this method

arose from many physical problems exhibiting both fast and

slow dynamics. For example, DC-motor model and Voltage

regulator in [15]. From late 1980s, the singularly perturbed

partial differential equations (PDEs) have been considered in

research works. This kind of systems is interesting for analy-

sis since it describes numerous phenomenon in various fields,

for instance, fluid dynamics, chemical-reactor, aerodynamics

etc. (see [13]).

The model of fluid transport through a constant cross

section tube from [2] provides the first motivation for this

work. This model contains two time scales for propagation

speed, which can be described by a singularly perturbed sys-

tem of conservation laws. The decomposition of a singularly

perturbed system into lower order subsystems, namely the

reduced system and the boundary-layer system, provides a

powerful tool for stability analysis in [11], [3], [10] and [4].

In this paper, we consider a class of linear systems of

conservation laws with a small perturbation parameter ǫ. By

setting ǫ = 0, two subsystems, the reduced and boundary-

layer systems, are computed. The exponential stability for

singularly perturbed system of conservation laws implies

both subsystems are exponentially stable. On the other hand

the converse does not hold. The stability analysis for hy-

perbolic systems of conservation laws has been considered

by many researchers. For instance, a stability criterion for

linear hyperbolic systems by characteristics method has been

given in [16] and the stability condition considered in [12]
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relies on the frequency domain. In [6], stability condition for

the quasilinear systems of conservation laws is introduced

by Lyapunov method. In this paper, it will be studied a

Tikhonov like theorem for linear hyperbolic systems, the

solutions of the full system can be approximated by that

of the reduced system. The Tikhonov Theorem has been

studied in many works for standard singular perturbation

systems (ODEs) (e.g. [1], [20]). [14] shows the Tikhonov

theorem based on the exponential stability criterion of both

the reduced and boundary-layer systems. Moreover, to the

best of our knowledge, this is the first paper dealing with

singularly perturbed hyperbolic systems.

The paper is organized as follows. Section II introduces

the linear singularly perturbed system of conservation laws.

In Section III, the stability of both subsystems is presented.

Precisely, the exponential stability of the full system of

conservation laws implies that each of the two subsystems is

stable. However, a counter-example is given to show that the

stability of the two subsystems does not guarantee the stabil-

ity of the full system. Section IV shows the approximation of

solutions for the full system by that of the reduced system.

In Section V, a numerical example is studied to illustrate

the results. Finally, concluding remarks end the paper. Due

to space limitation, some proofs are omitted.

Notation. Given a matrix A, A−1 and AT represent the

inverse and the transpose matrix of A respectively. For a

symmetric matrix B, λmin(B) is the minimum eigenvalue

of the matrix B. The symbol ⋆ in partitioned symmetric

matrices stands for the symmetric block. For a positive

integer n, In is the identity matrix in R
n×n. | | denotes

the usual Euclidean norm in R
n and ‖ ‖ is associated to the

matrix norm. ‖ ‖L2 denotes the associate norm in L2(0, 1)

space, defined by ‖ξ‖L2 =
(

∫ 1

0
|ξ|2dx

)
1

2

for all functions

ξ ∈ L2(0, 1). Similarly, the associate norm in H2(0, 1) space

is denoted by ‖ ‖H2 , defined for all functions ψ ∈ H2(0, 1),

by ‖ψ‖H2 =
(

∫ 1

0
|ψ|2 + |ψx|

2 + |ψxx|
2dx

)
1

2

.

II. LINEAR SINGULARLY PERTURBED SYSTEMS OF

CONSERVATION LAWS

Firstly, let us consider the following linear singularly

perturbed system of conservation laws:

yt(x, t) + Λ1yx(x, t) = 0, (1a)

ǫzt(x, t) + Λ2zx(x, t) = 0, (1b)

where x ∈ [0, 1], t ∈ [0,+∞), y : [0, 1] × [0,+∞) → R
n,

z : [0, 1]× [0,+∞) → R
m, Λ1 is a positive diagonal matrix

in R
n×n, Λ2 is a positive diagonal matrix in R

m×m, the



perturbation parameter ǫ is a small positive value.

Moreover, we consider the following boundary conditions:
(

y(0, t)
z(0, t)

)

= G

(

y(1, t)
z(1, t)

)

, t ∈ [0,+∞), (2)

where G =

(

G11 G12

G21 G22

)

is a constant matrix in

R
(n+m)×(n+m) with the matrices G11 in R

n×n, G12 in

R
n×m, G21 in R

m×n and G22 in R
m×m.

Given two functions y0 : [0, 1] → R
n and z0 : [0, 1] → R

m,

the initial conditions are:
(

y(x, 0)
z(x, 0)

)

=

(

y0(x)
z0(x)

)

, x ∈ [0, 1]. (3)

Remark 2.1: Let us recall the existence of the solutions

to the Cauchy problem (1)-(3). According to Section 2.1 in

[5], for all

(

y0

z0

)

∈ L2(0, 1), there exists a unique solution
(

y

z

)

∈ C0([0,+∞), L2(0, 1)) for the Cauchy problem (1)-

(3). By Proposition 2.1 in [6], for every

(

y0

z0

)

∈ H2(0, 1)

satisfying the following compatibility conditions:
(

y0(0)
z0(0)

)

= G

(

y0(1)
z0(1)

)

, (4)

(

Λ1y
0
x(0)

Λ2z
0
x(0)

)

= G

(

Λ1y
0
x(1)

Λ2z
0
x(1)

)

, (5)

the Cauchy problem (1)-(3) has a unique maximal classical

solution

(

y

z

)

∈ C0([0,+∞), H2(0, 1)). ◦

Adapting the approach in [17] and [14] to the infinite dimen-

sional case, let us compute the two subsystems, reduced and

boundary-layer systems, for system (1)-(2). Setting ǫ = 0 in

system (1) yields

yt(x, t) + Λ1yx(x, t) = 0, (6a)

zx(x, t) = 0. (6b)

Substituting (6b) into the boundary conditions (2) yields

y(0, t) = (G11 +G12(Im −G22)
−1G21)y(1, t),

z(., t) = (Im −G22)
−1G21y(1, t).

(7)

Then, the reduced system is defined as

ȳt(x, t) + Λ1ȳx(x, t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (8)

with the boundary condition

ȳ(0, t) = Grȳ(1, t), t ∈ [0,+∞), (9)

where Gr = G11+G12(Im−G22)
−1G21, whereas the initial

condition is given as

ȳ(x, 0) = y0(x), x ∈ [0, 1]. (10)

To define the boundary-layer system, let first perform the

change of variable

z̄ = z − (Im −G22)
−1G21y(1, t). (11)

This shifts the equilibrium of z to the origin. Let us use a

new time variable τ = t
ǫ
. In the τ time scale, y(1, t) in (11)

is considered as a fixed parameter with respect to time. Then,

the boundary-layer system is defined as

z̄τ (x, τ) + Λ2z̄x(x, τ) = 0, x ∈ [0, 1], τ ∈ [0,+∞),
(12)

with the boundary condition:

z̄(0, τ) = G22z̄(1, τ), τ ∈ [0,+∞), (13)

whereas the initial condition is given as

z̄(x, 0) = z0(x)− (Im −G22)
−1G21y

0(1), x ∈ [0, 1]. (14)

III. STABILITY OF REDUCED AND BOUNDARY-LAYER

SYSTEMS

In this section, we will show how the stability of the

singularly perturbed system of conservation laws (1)-(2) is

related to the stability of the two subsystems, the reduced

system (8)-(9) and the boundary-layer system (12)-(13).

Let us recall the following definition introduced in [6]:

Definition 3.1: For all matrices G ∈ R
(n+m)×(n+m),

ρ1(G) = inf{‖∆G∆−1‖,∆ ∈ D(n+m),+}, (15)

where D(n+m),+ denotes the set of diagonal positive matrix

in R
(n+m)×(n+m).

The following definition is adopted for the exponential

stability of the linear singularly perturbed system of conser-

vation laws (1)-(2) in L2-norm.

Definition 3.2: The linear system of conservation laws

(1)-(2) is exponentially stable to the origin in L2-norm if

there exist γ1 > 0 and C1 > 0, such that for every
(

y0

z0

)

∈ L2(0, 1), the solution to the system (1)-(2) satisfies

∥

∥

∥

∥

(

y(., t)
z(., t)

)
∥

∥

∥

∥

L2

6 C1e
−γ1t

∥

∥

∥

∥

(

y0

z0

)
∥

∥

∥

∥

L2

, t ∈ [0,+∞).

Similarly the exponential stability of the linear system of

conservation laws (1)-(2) in H2-norm is defined as follows

Definition 3.3: The linear system of conservation laws

(1)-(2) is exponentially stable to the origin in H2-norm

if there exist γ2 > 0 and C2 > 0, such that for every
(

y0

z0

)

∈ H2(0, 1) satisfying the compatibility conditions (4)-

(5), the solution to the system (1)-(2) satisfies
∥

∥

∥

∥

(

y(., t)
z(., t)

)
∥

∥

∥

∥

H2

6 C2e
−γ2t

∥

∥

∥

∥

(

y0

z0

)
∥

∥

∥

∥

H2

, t ∈ [0,+∞).

In a similar way, we can define the exponential stability in

L2-norm and H2-norm for the reduced and boundary-layer

systems.

Let recall the following result for quasilinear hyperbolic

system:

Theorem 1 ([6] and [7]): If ρ1(G) < 1 (resp. ρ1(Gr) <
1, ρ1(G22) < 1), then the linear system (1)-(2) (resp. the

reduced system (8)-(9), the boundary-layer system (12)-(13))

is exponentially stable to the origin in L2-norm and H2-

norm.



With the above theorem, we are ready to give a proposition

which is about the stability of the reduced and the boundary-

layer systems.

Proposition 3.4: If ρ1(G) < 1, then the reduced system

(8)-(9) and the boundary-layer system (12)-(13) are expo-

nentially stable to the origin in L2-norm and H2-norm.

The stability criterion ρ1(G) < 1 is thus a sufficient

condition for stability of the reduced system (8)-(9) and

the boundary-layer system (12)-(13). On the contrary, the

stability of the two subsystems does not guarantee the

stability of the overall system (1)-(2). To see this, let us

consider the following counter-example.

Counter-example:

Let Λ1 = Λ2 = 1 in (1) with n = m = 1. The boundary

condition of the singularly perturbed system in (2) is chosen

as G11 = 2.5, G12 = −1, G21 = 1, G22 = 0.5. The

boundary condition of the reduced system in (9) is computed

as Gr = 0.5. Considering ∆ = 1 and (15), it holds

ρ1(Gr) < 1. By Theorem 1 the reduced system (8)-(9) is

exponentially stable in L2-norm and H2-norm. The boundary

condition of the boundary-layer system in (13) is G22 = 0.5.

Considering the same ∆ = 1 and (15), it holds ρ1(G22) < 1.

The boundary-layer system (12)-(13) is exponentially stable

in L2-norm and H2-norm according to Theorem 1. Now

let us check the stability condition ρ1(G) < 1, which is

equivalent to find a diagonal positive matrix ∆ such that the

following condition is satisfied

GT∆2G < ∆2. (16)

There is no loss of generality to consider ∆ =

(

1 0
0 b

)

.

Straightforward computation shows that there is no such

matrix ∆ which satisfies the condition (16), thus ρ1(G) > 1.

Note that, Proposition 3.7 in [6] implies that ρ1(G) < 1 is a

necessary and sufficient condition for stability of linear hy-

perbolic systems with dimension 1 to 5. As this example is a

linear singularly perturbed system of two conservation laws,

it is not exponentially stable neither in L2-norm nor in H2-

norm, although the reduced and boundary-layer systems are

both exponentially stable. ◦

IV. APPROXIMATION THEOREM FOR LINEAR

SINGULARLY PERTURBED SYSTEM OF CONSERVATION

LAWS

In this section, we present how solutions to the linear

singularly perturbed system of conservation laws (1)-(2) can

be approximated by solutions to the reduced system (8)-(9).

It is based on the stability condition we considered in the

previous section.

Theorem 2: Consider the linear system of conservation

laws (1)-(2). Assume that the boundary conditions G satisfy

ρ1(G) < 1, then, for all initial conditions y ∈ H2(0, 1)
satisfying the compatibility conditions y0(0) = Gry

0(1),
Λ1y

0
x(0) = GrΛ1y

0
x(1), and z ∈ L2(0, 1), there exist positive

values ǫ∗, C, C
′

and ω such that for all 0 < ǫ < ǫ∗ and for

all t > 0,

‖y(., t)− ȳ(., t)‖2L2 6 Cǫe−ωt, (17)

∫

∞

0

‖z(., t)− (Im −G22)
−1G21ȳ(1, t)‖

2
L2dt 6 C

′

ǫ. (18)

Sketch of proof: First, let us perform the change of

variables: η(x, t) = y(x, t) − ȳ(x, t), δ(x, t) = z(x, t) −
(Im − G22)

−1G21ȳ(1, t). In the new variables (η, δ), the

system is written as

ηt + Λ1ηx = 0, (19a)

ǫδt + Λ2δx = ǫ(Im −G22)
−1G21Λ1ȳx(1, t), (19b)

with the boundary conditions

(

η(0, t)
δ(0, t)

)

= G

(

η(1, t)
δ(1, t)

)

. (20)

We consider the following Lyapunov function candidate for

system (19)-(20)

Vǫ(η, δ) =

∫ 1

0

e−µx(ηTQη + ǫδTPδ)dx, (21)

with µ > 0, Q a diagonal positive matrix in R
n×n and P

a diagonal positive matrix in R
m×m. After computing the

time derivative of Vǫ(η, δ) along (19)-(20) and integrating

by parts, we obtain

V̇ǫ(η, δ) 6 BC − αVǫ(η, δ) + ǫ2β|ȳx(1, t)|
2, (22)

where BC is the boundary term and α, β are positive

constants. Since ρ1(G) < 1, there exists a positive diagonal

matrix ∆ such that ‖∆G∆−1‖ < 1, thus the boundary term

BC is always non positive. Due to Proposition 3.4, ρ1(G) <
1 implies the reduced system (8)-(9) is exponentially stable

in H2-norm. It is deduced from (22)

Vǫ(η, δ) 6 e−αtVǫ(η
0, δ0) + ǫ2γe−αt‖ȳ0‖2H2 , (23)

where γ is a positive constant value. Note that there exist

positive values a, b, a′ and b′ such that

a‖η‖2L2 + ǫb‖δ‖2L2 6 Vǫ(η, δ) 6 a′‖η‖2L2 + ǫb′‖δ‖2L2 . (24)

Choosing the initial condition y0 = ȳ0 (i.e. η0 = 0) yields

‖η(., t)‖2L2 6 ǫC1e
−αt‖δ0‖2L2 + ǫ2C2e

−αt‖ȳ0‖2H2 , (25)

C1 and C2 are given positive values. Thus (17) is proved.

Next, we rewrite (22) as follows

V̇ǫ(η, δ) 6 −ρ‖δ(., t)‖2L2 + ǫ2ι‖ȳ0‖2H2 , (26)

for suitable positive values ρ and ι. Performing the time

integration of both sides of (26), using lim
t→+∞

Vǫ(η, δ) = 0,

according to (24) and choosing initial condition y0 = ȳ0, we

get

∫

∞

0

‖δ(., t)‖2L2dt 6 ǫC3‖δ
0‖2L2 + ǫ2C4‖ȳ

0‖2H2 , (27)

where C3 and C4 are given positive constants. Thus (18)

holds.



V. NUMERICAL EXAMPLE

In this section, we use a numerical example to illustrate

the results that we get in the previous sections.

Let us consider a singularly perturbed system of two

conservations laws (1) with Λ1 = Λ2 = 1, and the boundary

conditions G =

(

0.5 0.5
−0.5 −0.2

)

in (2).

Use a two-step variant of the Lax-Wendroff method which

is presented in [19] and the solver on Matlab in [18] to

discretize the system. More precisely, we divide the space

domain [0, 1] into 100 intervals of identical length, and 10
as final time. We choose a time-step that satisfies the CFL

condition for the stability and select the following initial

functions:

y(x, 0) = 1− cos(6πx),

z(x, 0) = sin(5πx),

for all x ∈ [0, 1]. Choosing ǫ = 0.003, Figure 1 shows

that the solution of the reduced system ȳ converges to the

origin as time increases which as expected from Proposition

3.4. Figures 2a and 2b give the time evolutions of η and δ

which are the error between y of the full system and ȳ of the

reduced system, and the error between z and its equilibrium

respectively. They decrease to 0 as time increases.

0

0.5

1 0
2.5

5
7.5

10

−2

−1

0

1

2

t

ȳ Component

x

ȳ

Fig. 1: Time evolution of the solution ȳ of the reduced system
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(a) Time evolution of η
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5
7.5
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−0.02

−0.01

0
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0.02

t

Value of δ

x

δ

(b) Time evolution of δ

Fig. 2: Time evolutions of η and δ

TABLE I: Estimations of ‖η‖2
L2 and

∫
10

0
||δ||2

L2dt for different ǫ

ǫ 0.001 0.002 0.003
||η(., t = 1)||2

L2
4.7× 10−6 1.8× 10−5 4.2× 10−5

∫
10

0
||δ||2

L2
dt 6.9× 10−6 2.8× 10−5 6.2× 10−5

Table I gives estimations of square of L2-norm of η and of

the time integral of square of L2-norm of δ with the different

values of ǫ. It indicates that these two values are near to zero

and decrease as ǫ decreases, as expected from Theorem 2.

VI. CONCLUSION

In this paper, a linear singularly perturbed system of

conservation laws has been studied. The stability condition

for the whole singularly perturbed system ρ1(G) < 1 implies

the two subsystems are exponentially stable. However, a

counter-example has been given to show that the stability

of the two subsystems does not guarantee the stability of

the full system. A Tikhonov like theorem has been given

under the stability condition ρ1(G) < 1. The solution of the

linear singularly perturbed system of conservation laws can

be approximated by the solution of the reduced system.

This work leaves many open questions. It is natural to

extend this work to systems with source terms. Another

interesting point is to consider some physical applications,

like open channels as considered in [9] and gas flow through

pipelines in [8] or [2].
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