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SUMMARY

The harmonic forced response of structures involving several non-coplanar rectangular flat shells is
investigated using the Wave Finite Element method. Such flatshells are connected along parallel edges
where external excitation sources as well as mechanical impedances are likely to occur. Also, they can be
connected to one or several coupling elements whose shapes and dynamics can be complex. The dynamic
behavior of the connected shells is described by means of numerical wave modes traveling towards and away
from the coupling interfaces. Also, the coupling elements are modeled using the conventional finite element
method. A finite element mesh tying procedure between shellshaving incompatible meshes is considered
which uses Lagrange Multipliers for expressing the coupling conditions in wave-based form. A global wave-
based matrix formulation is proposed for computing the amplitudes of the wave modes traveling along the
shells. The resulting displacement solutions are obtainedusing a wave mode expansion procedure. The
accuracy of the wave-based matrix formulation is highlighted in comparison with the conventional finite
element method through three test cases of variable complexities. The relevance of the method for saving
large CPU times is emphasized. Its efficiency is also highlighted in comparison with the component mode
synthesis technique.

KEY WORDS: wave finite elements; rectangular shells; component mode synthesis.

1. INTRODUCTION

The necessity to reduce the CPU times involved by the conventional Finite Element (FE) method
appears crucial in many applications to describe the low- and mid- frequency (LF and MF) forced
response of structures. The Wave Finite Element (WFE) method constitutes an efficient alternative to
address this task. The method is confined to the study of waveguides whose FE models are periodic
[1], i.e., which are composed of identical substructures. These waveguides can be connected either
directly or by means of coupling elements whose local dynamics can be complex [2]. In many cases,
elastic waveguides with uniform cross-sections are dealt with. Within the WFE framework, the
kinematic and mechanical fields of such structures are assessed in terms of numerical wave modes
traveling in positive and negative directions. For each waveguide, the wave modes are computed by
considering the mass and stiffness matrices of one single FEsubstructure (see above). The number
of those wave modes is generally very small compared to the number of DOFs required by a full FE
model when the whole waveguide is meshed. This results in matrix formulations of small sizes
for expressing the forced response of structures [3]. Proposing a general procedure that makes
the WFE method applicable to the study of complex structuresinvolving an arbitrary number of
waveguides, connected either directly or by means of complex coupling elements, is the motivation
behind the proposed study. The case of rectangular flat shells which are connected along parallel
edges involving arbitrary excitation sources and mechanical impedances, or which are connected
with coupling elements, is specifically dealt with. Those coupled elastic systems seem to constitute
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a reasonable approximation for describing many industrialstructures, e.g., those encountered in the
automotive sector (see Figure1).

The WFE method belongs to the class of deterministic wave-based approaches which can
be used to assess the MF behavior of shell and plate-like structures. Among these approaches
are the analytic Trefftz techniques like the Wave Based Method (WBM) [4] and the Variational
Theory of Complex Rays (VTCR) [5] which make use of propagative plane waves (as well as
evanescent waves) to describe the dynamic behavior of bounded domains. The study of rectangular
flat shell assemblies has been particularly addressed by theWBM in ref. [6]. In this framework,
the wave amplitudes are computed by considering a variational formulation over the boundaries
(including coupling interfaces) of the shells. Otherwise,enrichments techniques such as the Partition
of Unity Method (PUM) [7] and the Discontinuous Enrichment Method (DEM) [8] are other
approaches which consider analytic wave functions as well as conventional Lagrange polynomials
as interpolation functions of finite elements; these techniques have been proved to be efficient to
improve the convergence of FE models over the MF range. The feature of these analytic wave-
based approaches is that they can theoretically be applied to structures having arbitrary shapes and
boundary conditions, contrary to the WFE method where rectangular flat shells are considered (even
though these shells can be connected, as explained above). Also, these analytic approaches are not
subject to the discretization errors of the conventional FEmethod as exact wave solutions of the
local governing equations of structures are considered. Thus they are less susceptible to numerical
dispersion than the WFE method. As another drawback of the WFE method, when compared for
instance with the WBM or the VTCR, is the requirement that theboundary conditions are to be
periodic (or uniform) along the direction of waveguides andthat the excitation sources are to be
considered at the ends of waveguides. However, these aforementioned analytic approaches have to
face several drawbacks in the sense that a large number of plane waves is usually required to achieve
their convergence (the issue lies in the description of the boundary conditions) while ill-conditioned
full matrix systems are involved. In contrast, the WFE method appears as an efficient means to
address these issues. The fact that the WFE method uses a relatively small number of wave modes
– which travel along one direction and which reflect the cross-section dynamics of waveguides –
yields the sizes of the related matrix formulations (and thus the CPU times) to be usually small
compared to those involved by the analytic approaches. The other feature of the WFE method is
that it involves well-conditioned matrix formulations, asdiscussed below.

It is important to understand that the WFE method is in theoryas accurate as the conventional FE
method to describe the dynamic behavior of structures involving waveguides. This is true provided
that the same FE models are used for both approaches (i.e., periodic meshes for the waveguides). The
advantage of the WFE method is that it enables the CPU times tobe largely decreased compared to
the FE method. From this point of view, the WFE method constitutes an interesting alternative to the
usual model reduction strategies like the Component Mode Synthesis / Craig-Bampton (CMS/CB)
method [9] where fixed interface modes are involved to describe the behavior of waveguides. The
drawback of the CMS/CB method is that a large number of fixed interface modes can be required to
reach its convergence. This is explained because the boundary and coupling conditions at the ends
of waveguides can be complex, but also because the lengths ofwaveguides can be large (meaning
that a large number of fixed interface modes can be required todescribe the spatial dynamics). Such
issues are not involved within the WFE framework due to the fact that the wave bases are full, i.e.,
basis truncation errors are not involved. Also, the sizes ofthe wave bases do not depend on the
lengths of waveguides.

Several works have been made to compute the forced response of single or coupled straight
waveguides by means of the WFE method. A spectral element-based strategy that uses WFE wave
modes for calculating the dynamic stiffness matrices of bounded waveguides has been proposed
in ref. [10]. This procedure has been validated to describe the harmonic forced response of simply
supported Kirchhoff Love plates excited by one punctual force. More recently, a WFE approach has
been proposed which uses the reflection/transmission coefficients of the wave modes at waveguide
boundaries [3]. The interesting feature of this approach is that it is based on the computation of the
wave amplitudes, instead of explicitly considering the displacements/rotations and forces/moments.
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This yields simple and well-conditioned matrix formulations to be considered to describe the LF
and MF forced responses, which is explained because the variations of wave amplitudes along
waveguides are governed by means of diagonal matrices∗. This strategy has been successfully used
to describe the forced response of several kinds of straightwaveguides (beam-like structures, plates,
multi-layered systems) whose left and right limits are subject to Neumann and Dirichlet conditions;
also, it has been used to describe the dynamic behavior of elastic systems involving two beam-like
structures connected to an elastic junction (namely, a coupling element) undergoing local resonances
[2]. In ref. [2], a model reduction technique based on the CMS/CB method hasbeen proposed to
describe the dynamic behavior of the coupling element in terms of a few fixed interface modes. Other
WFE strategies which use the same idea (i.e., computation ofthe wave amplitudes by consideration
of the wave reflections/transmissions at waveguide boundaries) have been proposed in refs. [11, 12].
In ref. [11], a procedure has been proposed to assess the dynamic behavior of single waveguides
excited by one punctual force. The procedure consists in splitting any waveguide into two sub-
waveguides and considering the reflection/transmission ofthe wave modes at the location of the
punctual force. This last works has been extended in ref. [13] to describe the dynamic behavior of
infinite excited plates subject to fluid loading.

To summarize, the WFE method appears as an efficient means to describe the forced responses
of elastic waveguides. The method enables these forced responses to be computed by means of
small-sized and well-conditioned matrix formulations. Sofar, the method has been mostly applied
to single waveguides involving Neumann and Dirichlet boundary conditions, or coupled structures
involving two waveguides. It seems that a general procedurethat makes the WFE method applicable
to an arbitrary number of waveguides, connected either directly or by means of one or several
coupling elements of arbitrary shapes, has not been investigated yet. Also, proposing a WFE
procedure which takes into account arbitrary excitation sources and mechanical impedances at
waveguide interfaces appears as another open challenge, never investigated previously. Such issues
are addressed within the present study considering the problem of several non-coplanar rectangular
flat shells connected either directly, along parallel edgesinvolving arbitrary excitation sources and
mechanical impedances, or by means of coupling elements. Ifone restricts the proposed approach
to the case of two coplanar shells connected along one edge involving one punctual force, this
yields the plate problem already investigated in refs. [11, 10]. In a more general view, the proposed
approach aims at investigating the dynamic behavior of complex structures such as those depicted
in Figure1.

The rest of the paper is organized as follows. In Section 2, the basics of the WFE method are
recalled regarding the description of wave modes travelingalong structures. Numerical experiments
are made to highlight the wave modes traveling along rectangular flat shells. Also, the wave-based
coupling conditions between several shells connected to one elastic coupling element are recalled in
accordance with past studies [14, 15]. In Section 3, the wave-based coupling conditions between
two connected non-coplanar rectangular flat shells are derived. The procedure enables external
excitation sources as well as mechanical impedances to be taken into account over the coupling
interface. Also, a tying formulation based on Lagrange Multipliers is proposed which addresses the
issue of shells having incompatible FE meshes. In Section 4,the strategy for computing the forced
response of structures involving several connected shellsand coupling elements is investigated. A
wave-based matrix formulation is proposed for computing the amplitudes of the wave modes in
each shell. In Section 5, numerical experiments are made to highlight the accuracy of the WFE
strategy. The forced response of structures is investigated considering the following test cases: (1)
three non-coplanar shells, with a punctual force, whose coupling conditions involve lineic densities
of translational and rotational springs (Figure9); (2) two sets of two non-coplanar shells, with
translational springs subject to vertical displacements,connected to one coupling element having
a non-uniform curvature (Figure12); (3) six non-coplanar shells, with punctual forces, connected
to one cylinder having a conical head (Figure17). The relevance of the WFE method, in terms of
accuracy and CPU time savings, is emphasized in comparison with reference solutions issued from

∗Clearly, the components of these diagonal matrices are the propagation parameters.
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the FE method. Also, a comparison with the conventional CMS/CB method (test case 2) is carried
out to highlight further on the efficiency of the WFE method.

Figure 1. Structures involving several connected rectangular flat shells subject to punctual force (F0), springs
(K, K′) with imposed displacements (q0, q′

0), lineic density of translational and rotational springs (kt, k′t,
kr): (a) structure involving three shells when one shell has one edge clamped; (b) structure involving four

shells when two shells are connected to one coupling element.

2. WFE METHOD

2.1. Wave propagation along rectangular flat shells

The WFE method aims at numerically describing the waves traveling along periodic structures [1].
Such structures are called periodic in the sense that they can be described by means of identical
substructures which are connected along a main axisx, referred to as the direction of propagation.
Rectangular flat shells which are meshed periodically alongtheir lengthx belong to that class of
structures. In the present study, these shells are supposedto be elastic, dissipative (considering a
loss factorη) and subject to harmonic disturbance under frequencyω/2π (ω being the pulsation).
The basic assumptions, for those thin elastic structures, is that both bending and in-plane motions
that include drilling degrees of freedom [16], are taken into account. In this framework, these
structures are meshed by means of 2D triangular flat shell elements with three nodes and six degrees
of freedom (DOFs) per node (i.e., three displacements and three rotations) that incorporate both
bending actions [17] as well as membrane actions with drilling DOFs [18]. A rectangular flat shell
with a periodic FE mesh is shown in Figure2. The related FE substructures have the same length
d while their left and right boundaries (i.e., the edges coincident with thez−direction) contain the
same number of DOFs, namelyn.

The WFE method requires the mass and stiffness matrices of any FE substructure to be known;
it uses a state vector representation [19] for linking the kinematic/mechanical fields between the
left (or right) boundaries of two adjacent substructuresk andk − 1. In the frequency domain, this
relationship is expressed in terms of a2n× 2n symplectic matrixS as [3]

u(k) = Su(k−1), (1)

where u = [qT ± FT ]T , q and F being the n× 1 vectors of displacements/rotations and
forces/moments, respectively. The sign ahead ofF in u results from the convention made for
expressing the forces on the left or right boundaries of the substructures: in the present study,
the convention−F (resp.F) is used to denote the left (resp. right) substructure boundaries. In
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Figure 2. Finite element model of a rectangular flat shell andrepresentative substructure of lengthd (the
sought waves are those traveling in thex−direction).

Eq. (1), the matrixS is constructed from the condensed dynamic stiffness matrixof any of these
substructures with regard to its left and right boundaries (cf. [14] for further details).

The wave modes refer to the eigenvalues and eigenvectors ofS which are denoted as{µj}j
and{Φj}j, respectively. It must be noticed thatS is expressed from the dynamic stiffness matrix
of a substructure (see above), meaning that the wave modes depend on the frequency. According
to Bloch’s theorem [20], the eigenvalues{µj}j can be expressed as{e−iβjd}j, where{βj}j have
the meaning of wave numbers. Also, the eigenvectors{Φj}j , also known as wave shapes, relate the
spatial distributions of the kinematic and mechanical fields over the width of the shell (z−direction).
The fact thatS is symplectic (see above) yields the wave modes{(µj ,Φj )}j to be split inton
incident andn reflected wave modes, i.e.,n waves traveling towards andn waves traveling away
from the right (or left) boundary of the shell. These incident and reflected wave modes are denoted as
{(µinc

j ,Φinc
j )}j and{(µref

j ,Φref
j )}j ; they are usually defined so that|µinc

j | < 1 and|µref
j | > 1 ∀j. †.

Otherwise, the vectors of displacements/rotationsq and forces/moments±F, over any substructure
boundaryk (i.e., either a coupling interface between two consecutivesubstructuresk − 1 andk, or
a limiting edge of the shell), can be expanded as [3]

q(k) = Φinc
q Qinc(k) +Φref

q Qref(k) , ±F(k) = Φinc
F Qinc(k) +Φref

F Qref(k), (2)

where Φinc
q , Φref

q , Φinc
F and Φref

F are square n× n matrices constituted from the
displacement/rotation and force/moment components of theincident and reflected wave shapes;
also,Qinc(k) andQref(k) aren× 1 vectors of wave amplitudes, whose variation along the shellis
governed as [3]

Qinc(k) = µQinc(k−1) , Qref(k) = µ
−1Qref(k−1), (3)

whereµ is a n× n matrix defined asµ = diag{µinc
j }j, such that||µ||2 < 1 (||.||2 being the

2−norm)‡.

Numerical results
The wave modes of an aluminum rectangular shell are computedover a frequency band

†Such a consideration follows from the fact thatS is a symplectic matrix – i.e., its eigenvalues come in pairs as (µ, 1/µ)
[19] – while it is assumed that the shell is damped.
‡The fact that||µ||2 < 1 is readily proved since|µinc

j
| < 1 ∀j.
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[10 Hz, 300 Hz]. The characteristics of the structure are: densityρ = 2700 kg.m−3, Young’s
modulusE = 70× 109 Pa, Poisson’s ratioν = 0.3, loss factorη = 0.01, width (z−direction)Lz =
1 m and thickness (y−direction)h = 5× 10−3 m. Within the WFE framework, the sought waves are
those traveling along the length of the shell, namely thex−direction. The wave modes are computed
by considering the FE model of a substructure of lengthd = 0.05 m with 21 nodes uniformly spread
on its width, as shown in Figure2 (here, the distance between two consecutive nodes is0.05 m).
The choice of this length0.05 m between two consecutive nodes follows from the well known rule
that consists in discretizing the wavelengths at least by means of8 finite elements. To this end, one
focuses on the wavelength of the bending wave traveling in aninfinite equivalent Reissner-Mindlin
plate, which is known analytically, at the maximum frequency considered (i.e.,300 Hz). Actually,
it is assumed that this wavelength represents a minimum value regarding all the modes traveling
along the shell. In other words, the fact to discretize this analytic wavelength at least by8 elements
yields the same conclusion regarding the other wavelengths. The FE model of the substructure is
performed using the COMSOL MultiphysicsR© software. It is worth recalling that each triangular
element incorporates both bending actions (with a shear correction factorκ = 5/6) and membrane
actions with drilling DOFs.

The fact that the left boundary (as well as the right boundary) containsn = 21× 6 = 126 DOFs
means that a same number of incident/reflected wave modes areto be computed. This is achieved
by means of MATLABR© using the procedure proposed in ref. [19] that consists in solving a
generalized eigenproblem for the displacements/rotations only. The procedure requires one to get
the mass and stiffness matrices of the substructure (and ultimately, the dynamic stiffness matrix
condensed over the left and right boundaries) which is done by means of COMSOL MultiphysicsR©.
The wave modes are computed at581 discrete frequencies{fk}k uniformly spread on the frequency
band[10 Hz, 300 Hz], considering an identical frequency step∆f . Part of these wave modes are
highlighted in Figure3 regarding the dispersion curves – i.e., the real and imaginary parts of the
wave numbers – over the frequency band. To track any wave moder over the frequency domain, a
correlation criterion among the wave shapes at two consecutive discrete frequenciesfk andfk +∆f
is proposed as

max
s

{
|(Φqs)

H
fk+∆f (Φqr)fk |

||(Φqs)fk+∆f ||2||(Φqr)fk ||2
+

|(ΦFs)
H
fk+∆f(ΦFr)fk |

||(ΦFs)fk+∆f ||2||(ΦFr)fk ||2

}
, (4)

where the superscriptH denotes the conjugate transpose;Φqr andΦFr (resp.Φqs andΦFs) represent
the vectors of the displacement/rotation components and the force/moment components of the wave
shapeΦr (resp.Φs), respectively. Clearly, once a wave mode has been numberedasr at the discrete
frequencyfk, the proposed criterion enables one to select among all the wave modes computed at
the subsequent discrete frequencyfk +∆f the one which matches the best (from the point of view
of the displacement/rotation components as well as the force/moment components) this wave mode
r at the discrete frequencyfk. Thus the procedure consists in renumbering the selected wave mode
asr for the discrete frequencyfk +∆f , and so on. In other words, this criterion yields the wave
modes to be clearly identified over the frequency domain (seeref. [3] for further discussions).

The wave modes can be classified as propagating (i.e., the imaginary parts of the wave numbers
are close to zero), evanescent (i.e., the real parts of the wave numbers are close to zero) or complex
(i.e., the real and imaginary parts of the wave numbers are ofthe same order). For the sake of clarity,
the complex wave modes are not shown in Figure3. The wave shapes are generally disparate, as
seen in Figure4 where nine modes are considered at10Hz (the arrow indicates the direction of wave
propagation). Wave shapes (a), (b), (c) and (d) highlight the conventional longitudinal, flexural (in
thez− andy−directions) and torsional modes. Other wave shapes represent high order modes, part
of them becoming propagating at certain frequencies (see Figure3). It is worth emphasizing that the
wave shapes are subject to changes as the frequency increases, as seen in Figure5 at300 Hz.
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Figure 3. Several dispersion curves for the wave modes traveling along the rectangular flat shell depicted in
Figure2: (——) wave modes whose shapes are depicted in Figures4 and5.
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Figure 4. Several wave shapes (real parts of the displacement components) at 10 Hz.

2.2. Wave-based coupling conditions between several shells connected to one coupling element

The issue of several waveguides connected to one elastic coupling element has been treated in depth
in the literature (see for instance refs. [14, 21, 2]). The related wave-based coupling conditions
are recalled here for the sake of clarity. A kind of problem which is addressed within this topic
is depicted in Figure6, considering several flat shells having different orientations{(xi, yi, zi)}i,
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Figure 5. Several wave shapes (real parts of the displacement components) at 300 Hz.

connected to one coupling element of arbitrary shape. Within the WFE framework, the dynamic
behavior of the shells is described by means of wave modes (seeSection2.1) while the local
dynamics of the coupling element are assessed using the standard FE method. The procedure uses a
mesh tying formulation that connects each shell with the coupling element. Lagrange Multipliers are
invoked to address incompatible meshes between the shells and the coupling element. Here, these
Lagrange Multipliers are discretized with respect to the FEmesh of the coupling element [14].

Figure 6. Several non-coplanar flat shells connected to one coupling element having an arbitrary shape.

For the sake of clarity, the present study will be restrictedto the consideration of coupling
elements which are free from excitation sources (the case ofcoupling elements undergoing imposed
forces and prescribed displacements has been treated in depth in ref. [21] and may be considered
without difficulty). According to ref. [14], the wave-based coupling conditions between a set ofR
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rectangular flat shells connected to one coupling element are expressed as



Qref
1
...

Qref
R


 = C

c




Qinc
1
...

Qinc
R


 , (5)

whereQinc
i andQref

i denote the vectors of wave amplitudes at the coupling interface, regarding
incident/reflected wave modes traveling along each shelli (i = 1, . . . , R). The matrix Cc is
expressed as

C
c = −(Aref)−1Ainc, (6)

where [14]

Aref = TT
D

∗TΨref
q +Ψref

F , Ainc = TT
D

∗TΨinc
q +Ψinc

F . (7)

Here,D∗ is the dynamic stiffness matrix of the coupling element condensed on the interface DOFs;
T is a block diagonal matrix with block components{Bc

i }i which reflect the use of Lagrange
Multipliers to describe the coupling conditions between the shells and the coupling element; also,
Ψinc

q , Ψref
q , Ψinc

F andΨref
F are square matrices of same size expressed as

Ψinc
q =




Lc
1(Φ

inc
q )1 · · · 0

...
.. .

...
0 · · · Lc

R(Φ
inc
q )R


 , Ψref

q =




Lc
1(Φ

ref
q )1 · · · 0

...
. ..

...
0 · · · Lc

R(Φ
ref
q )R


 , (8)

Ψinc
F =




Lc
1(Φ

inc
F )1 · · · 0

...
.. .

...
0 · · · Lc

R(Φ
inc
F )R


 , Ψref

F =




Lc
1(Φ

ref
F )1 · · · 0

...
. ..

...
0 · · · Lc

R(Φ
ref
F )R


 ,

where, for each shelli (i = 1, . . . , R), Lc
i is a squareni × ni matrix (ni being the number of DOFs

contained over the left/right boundary of the shell) which expresses the displacements/rotations
and forces/moments of the shell in the coordinate system of the coupling element(xc, yc, zc) (see
Figure6) [2].

Remark
When deriving Eq. (5), the shells are assumed to be connected to the coupling element over their
right boundaries: in other words, the local frame axisxi of each shelli is assumed to point towards
the coupling element (see Figure6). Considering the left boundaries of some shells does not bring
additional difficulties, however.

3. WAVE-BASED COUPLING CONDITIONS BETWEEN TWO CONNECTED SHELLS

3.1. Mesh tying formulation

Two structures involving one or several sets of rectangularflat shells, connected along parallel
edges, are depicted in Figure1. Within the WFE framework, the shells are meshed periodically
in terms of identical FE substructures (see Section2.1). The related FE models are illustrated
in Figure 7 regarding two connected shellsi and i+ 1. These shells are described by means of
two local reference framesRi = (xi, yi, z) andRi+1 = (xi+1, yi+1, z) whose orientations in the
global reference frame – namely,R = (x, y, z) – are expressed around thez−direction in terms
of two anglesαi andαi+1. The coupling interface – namely,Γ – represents the right boundary
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of shell i as well as the left boundary of shelli+ 1. In the present study, it is supposed that
the displacement/rotation field of the shells are continuous acrossΓ . Also, it is supposed that
punctual and lineic excitation sources (forces/moments),as well as mechanical impedances (e.g.,
translational or rotational stiffnesses), are likely to occur overΓ .

Figure 7. Two coupled shellsi and i+ 1 having different FE meshes and different orientationsαi and
αi+1 (around thez−direction), connected along one common interfaceΓ involving excitation sources (e.g.,

punctual forceF0) and mechanical impedances.

The substructures used to describe the two shells are enabled to have different lengthsdi and
di+1, as well as different FE discretizations. This yields different numbers of DOFsni andni+1

to describe the boundaries of shellsi andi+ 1. Here, it is assumed without loss of generality that
shell i exhibits the finest mesh compared to shelli+ 1 (see Figure7). The issue is to transcribe
the coupling conditions within the FE framework by considering incompatible meshes across the
coupling interfaceΓ . Lagrange Multipliers are used to treat this issue. In this framework, a Lagrange
Multiplier field is defined onΓ which is discretized using the trace of the mesh of either shell i or
shell i+ 1. In the present study, it is proposed to choose the finest mesh(shell i), the motivation
behind this choice being that the spatial behavior of shelli can be correctly mapped on shelli+ 1
by means of a sufficient number of constraints. It is worth pointing out that the consideration of
the coarser mesh (shelli+ 1), instead of the finest mesh, would have been problematic regarding
zero-energy modes§. Considering such a discretization for the Lagrange Multiplier field yields the
continuity of the displacement/rotation field acrossΓ to be expressed in the global reference frame
R as

Biq
Γ
i − Bi+1q

Γ
i+1 = 0, (9)

where qΓ
i and qΓ

i+1 denote the vectors of displacements/rotations, resp. for shell i and shell
i+ 1, expressed onΓ ; also,Bi andBi+1 are real matrices of the formsBi =

∫
Γ
NT

p
N

q
Γ
i
dS and

Bi+1 =
∫
Γ
NT

p
N

q
Γ
i+1

dS (the superscriptT denoting the matrix transpose);Np is the matrix of
interpolation functions which discretize the Lagrange Multiplier field onΓ ; N

q
Γ
i

andN
q
Γ
i+1

are
the matrices of interpolation functions which discretize the displacement/rotation fields of shellsi
andi+ 1 onΓ , respectively (see ref. [14] for further details). If one assumes thatN

q
Γ
i

andNp are
equal yields the matrixBi to be square positive definite and thus invertible. According to Eq. (9),

§Such an issue occurs considering for instance the case of a highly oscillating spatial behavior of sidei with zero
displacement points coincident with the DOFs of sidei+ 1, yielding a null displacement solution of shelli+ 1.
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this yieldsqΓ
i to be uniquely determined from the knowledge ofqΓ

i+1 as

qΓ
i = BqΓ

i+1, (10)

whereB = B−1
i Bi+1. Also, the vectors of forces/moments expressed onΓ are linked as

FΓ
i+1 = BT (−FΓ

i + Fex − iωZqΓ
i ), (11)

A justification on how Eq. (11) has been derived can be found in ref. [14]. Here,FΓ
i andFΓ

i+1 are
the vectors of forces/moments expressed onΓ , resp. for shelli and shelli+ 1; also,Fex is a vector
of excitation sources defined onΓ with respect to the mesh of shelli; ω is the pulsation; finally,Z
is an impedance matrix defined with respect to the mesh of shell i, which reflects punctual or lineic
springs (or masses, . . . ) onΓ . The fact that those springs can be excited by imposed displacements,
instead of being clamped on one of their ends, can be taken into account without difficulty by
expressing the vectorFex in a suitable way. To summarize, the coupling conditions between two
non-coplanar rectangular flat shellsi andi+ 1 are expressed by means of Eqs. (10) and (11). It is
worth emphasizing that these relations are expressed in theglobal reference frameR = (x, y, z).
Expressing these relations in the local reference framesRi = (xi, yi, z) andRi+1 = (xi+1, yi+1, z)
of the shells enables the vectors of displacements/rotations and forces/moments to be expressed in
terms of wave modes, as explained in Section2 (Eq. (2)). Such a procedure is considered here for
expressing the coupling conditions in wave-based form. Forthis purpose, it is proposed to introduce
two rotation matricesLi andLi+1, defined as

(qΓ
i )Ri

= Liq
Γ
i , (FΓ

i )Ri
= LiF

Γ
i , (12)

(qΓ
i+1)Ri+1

= Li+1q
Γ
i+1 , (FΓ

i+1)Ri+1
= Li+1F

Γ
i+1. (13)

The matricesLi andLi+1 are constructed from the direction cosines of the local framesRi and
Ri+1, respectively, in the global frameR. These matrices are real and orthogonal, i.e.,LT

i Li =
LiLT

i = I andLT
i+1Li+1 = Li+1LT

i+1 = I. Introducing Eqs. (12) and (13) in Eqs. (10) and (11)
while invoking the aforementioned orthogonality properties ofLi andLi+1 enables the coupling
conditions to be expressed as

(qΓ
i )Ri

=
(
LiBLT

i+1

)
(qΓ

i+1)Ri+1
, (14)

and

(FΓ
i+1)Ri+1

= −
(
LiBLT

i+1

)T [
(FΓ

i )Ri
+
(
LiiωZLT

i

)
(qΓ

i )Ri

]
+
(
BLT

i+1

)T
Fex. (15)

Eqs. (14) and (15) express the coupling conditions between the two shells, where the vectors of
displacements/rotations and forces/moments are expressed in the local reference framesRi and
Ri+1. Expanding these vectors in terms of the wave modes of the twoshells yields the wave-based
form of the coupling conditions. The procedure is detailed hereafter.

3.2. Wave-based coupling conditions

The wave mode expansion of the vectors of displacements/rotations and forces/moments follows
from Eq. (2), where the superscriptsinc andref denote the wave modes which travel towards
and away from theright boundaryof any shell (see Figure2). Regarding for instance shelli,
the matrices of incident/reflected wave modes are written as(Φinc)i = [(Φinc

q )Ti (Φ
inc
F )Ti ]

T and

(Φref)i = [(Φref
q )Ti (Φ

ref
F )Ti ], while the related vectors of wave amplitudes are denoted asQ

inc(k)
i

andQref(k)
i . Should theleft boundaryof the shell (instead of its right boundary) be considered as

a reference, the matrices of incident/reflected wave modes are denoted as(Φinc⋆)i and(Φref⋆)i,
while the vectors of wave amplitudes are denoted asQ

inc⋆(k)
i andQ

ref⋆(k)
i . These matrices and
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vectors are simply expressed as

(Φinc⋆)i = (Φref)i , (Φref⋆)i = (Φinc)i , Q
inc⋆(k)
i = Q

ref(k)
i , Q

ref⋆(k)
i = Q

inc(k)
i .

(16)

Such a convention involving the right or left boundary of theshell is introduced here as a means to
clarify and simplify the subsequent developments made in the paper. The convention is highlighted
in Figure8.

Figure 8. WFE-based description of the coupled shells depicted in Figure7.

Invoking the aforementioned convention yields the wave mode expansion to be written for both
shellsi andi+ 1 as

(qΓ
i )Ri

= (Φinc
q )iQ

inc
i + (Φref

q )iQ
ref
i ,

(FΓ
i )Ri

= (Φinc
F )iQ

inc
i + (Φref

F )iQ
ref
i , (17)

and

(qΓ
i+1)Ri+1

= (Φinc⋆
q )i+1Q

inc⋆
i+1 + (Φref⋆

q )i+1Q
ref⋆
i+1 ,

−(FΓ
i+1)Ri+1

= (Φinc⋆
F )i+1Q

inc⋆
i+1 + (Φref⋆

F )i+1Q
ref⋆
i+1 , (18)

where (qΓ
i )Ri

and (qΓ
i+1)Ri+1

(resp. (FΓ
i )Ri

and (FΓ
i+1)Ri+1

) are the vectors of displace-
ments/rotations (resp forces/moments) introduced in Section 3.1. The minus sign ahead of
(FΓ

i+1)Ri+1
in Eq. (18) follows from the convention mentioned below Eq. (1). Also,Qinc

i andQref
i

(resp.Qinc⋆
i+1 andQref⋆

i+1 ) denote the vectors of wave amplitudes for shelli (resp. shelli+ 1) at the
coupling interfaceΓ . Introducing Eqs. (17) and (18) in Eqs. (14) and (15) leads to the following
matrix system (see Appendix A for further details):

Aref

[
Qref

i

Qref⋆
i+1

]
= −Ainc

[
Qinc

i

Qinc⋆
i+1

]
+

[
0

−(Φref⋆
F )−1

i+1

(
BLT

i+1

)T
Fex

]
, (19)
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whereAref andAinc are two(ni + ni+1)× (ni + ni+1)
¶ matrices expressed as

Aref =




Ini
−(Φref

q )−1
i

(
LiBLT

i+1

)
(Φref⋆

q )i+1

−(Φref⋆
F )−1

i+1

(
LiBLT

i+1

)T

×
[
(Φref

F )i +
(
LiiωZLT

i

)
(Φref

q )i
] Ini+1


 , (20)

and

Ainc =




(Φref
q )−1

i (Φinc
q )i −(Φref

q )−1
i

(
LiBLT

i+1

)
(Φinc⋆

q )i+1

−(Φref⋆
F )−1

i+1

(
LiBLT

i+1

)T

×
[
(Φinc

F )i +
(
LiiωZLT

i

)
(Φinc

q )i
] (Φref⋆

F )−1
i+1(Φ

inc⋆
F )i+1


 . (21)

In Eqs. (19-21), (Φref
q )−1

i and(Φref⋆
F )−1

i+1 are the inverses of the matrices(Φref
q )i and(Φref⋆

F )i+1,
respectively. The existence of such inverses results from the fact that(Φref

q )i and(Φref⋆
F )i+1 are

full column rank (a proof of this statement is given in ref. [3]). Invoking these inverses results in
a better numerical conditioning of the matrixAref. In fact, this circumvents the numerical issue
involved when the matrix is partitioned into displacement/rotation and force/moment components
[3]. Also, each reflected or incident wave modeΦr = [ΦT

qrΦ
T
Fr]

T is normalized with respect to its
euclidean norm(ΦH

qrΦqr +ΦH
FrΦFr)

1/2 to improve further on the conditioning ofAref. According
to Eq. (20), Aref is formulated in such a way it involves identity matrices as diagonal block terms.
It is invertible provided thatdet(Ini+1

−Aref
21 Aref

12 ) 6= 0 (Aref
21 and Aref

12 being the bottom left
and top right off-diagonal block terms of the matrix). Such an assumption appears to be satisfied
provided that the matrixIm{Aref

21 Aref
12 } is full rank (whereIm denotes the imaginary part). This

question can be viewed as proving thatAref
21 and Aref

12 are full rank (it is assumed that these
conditions are sufficient to prove thatIm{Aref

21 Aref
12 } is full rank, taking into account that the

matrices are complex). Regarding for instanceAref
12 , this requires one to verify that (i) a non-zero

matrix (Φref⋆
q )i+1 cannot lead to(LiBLT

i+1)(Φ
ref⋆
q )i+1 = 0, i.e., null(LiBLT

i+1) = {0}, and (ii)
ran(LiBLT

i+1) cannot intersect the null space of(Φref
q )−1

i . Condition (i) is readily verified since
LiBLT

i+1 is full column rank; this is proved taking into account that the Lagrange Multiplier field is
discretized with regard to the finest mesh (sidei); this would have failed otherwise (see comments at
the beginning of Section3.1). Also, condition (ii) is verified because(Φref

q )−1
i is full rank (the proof

is given in ref. [3]), i.e., null((Φref
q )−1

i ) = {0}. The proof thatAref
21 is full rank can be achieved

on the same way as above, provided that the matrix[(Φref
F )i +

(
LiiωZLT

i

)
(Φref

q )i] is full rank
[3]. This seems to be verified in general, taking into account that (Φref

F )i and(Φref
q )i are full rank

matrices, except maybe in some very particular cases (e.g.,when
(
LiiωZLT

i

)
(Φref

q )i = −(Φref
F )i)

which will be not considered here.
Thus, taking into account that the matrixAref is invertible yields the solution of Eq. (19) to be

expressed as

[
Qref

i

Qref⋆
i+1

]
= C

[
Qinc

i

Qinc⋆
i+1

]
+ F, (22)

where

C = −(Aref)−1Ainc , F = (Aref)−1

[
0

−(Φref⋆
F )−1

i+1

(
BLT

i+1

)T
Fex

]
. (23)

Eq. (22) expresses the wave-based coupling conditions between shells i and i+ 1. Here, C
is a square(ni + ni+1)× (ni + ni+1) matrix whose components are to be understood as the

¶ni andni+1 are the numbers of DOFs contained over the left/right boundaries of shellsi andi+ 1, respectively.
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reflection/transmission coefficients of the wave modes (considering both shellsi andi+ 1) at the
coupling interfaceΓ ; otherwise,F is a (ni + ni+1)× 1 vector that plays the role of excitation
sources.

Remark: case when shelli + 1 has the finest mesh
In this case, the matrixB is defined asB = B−1

i+1Bi. It can be shown without difficulty that the
relationships (22) and (23) still hold provided thatAref andAinc are expressed as

Aref =




Ini

−(Φref
F )−1

i

(
Li+1BLT

i

)T

×
[
(Φref⋆

F )i+1 −
(
Li+1iωZLT

i+1

)
(Φref⋆

q )i+1

]

−(Φref⋆
q )−1

i+1

(
Li+1BLT

i

)
(Φref

q )i Ini+1


 ,

(24)

Ainc =




(Φref
F )−1

i (Φinc
F )i

−(Φref
F )−1

i

(
Li+1BLT

i

)T

×
[
(Φinc⋆

F )i+1 −
(
Li+1iωZLT

i+1

)
(Φinc⋆

q )i+1

]

−(Φref⋆
q )−1

i+1

(
Li+1BLT

i

)
(Φinc

q )i (Φref⋆
q )−1

i+1(Φ
inc⋆
q )i+1


 .

(25)

Also, the vector of excitation sourcesF is to be expressed as

F = (Aref)−1

[
0

(Φref
F )−1

i

(
BLT

i

)T
Fex

]
. (26)

4. FORCED RESPONSE COMPUTATION

4.1. Preliminary comments and conventions

The harmonic forced response of structures involving several rectangular flat shells and coupling
elements is investigated. Within the WFE framework, the computation of the forced response
requires a set of wave-based coupling and boundary conditions to be expressed over the left/right
boundaries of the shells. This yields a global wave-based matrix formulation to be considered which
provides the wave amplitudes, and ultimately the kinematicand mechanical fields, for each shell.
This strategy is depicted in the rest of the section.

As opening remarks of this study, it is worth emphasizing thatany shell i is supposed to
be composed from an integral numberNi of identical substructures. This yields the number of
substructure boundaries (i.e., the coupling interfaces between the substructures as well as the
two limiting edges) involved along the shell to beNi + 1. As a convention, the substructures
are numbered from the left to the right boundary of the shell.Also, the following notations are
introduced:

Qinc
i = Q

inc(Ni+1)
i , Qref

i = Q
ref(Ni+1)
i , Qinc⋆

i = Q
inc⋆(1)
i , Qref⋆

i = Q
ref⋆(1)
i , (27)

where{Qinc
i ,Qref

i } are the vectors of wave amplitudes expressed at the right boundary of the shell
(i.e., considering the substructure boundaryNi + 1), while {Qinc⋆

i ,Qref⋆
i } are the vectors of wave

amplitudes expressed at the left boundary (i.e., considering the substructure boundary1).
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4.2. Wave-based description of the global structure

The wave-based coupling conditions between two shellsi and i+ 1, connected along a common
interfaceΓi i+1, have been derived in Section3. They are expressed by Eq. (22), where the matrixC
and the vectorF are to be formulated using either Eqs. (20-21) and (23) (case when shelli has the
finest mesh), or Eqs. (24-26) (case when shelli+ 1 has the finest mesh). The wave-based coupling
conditions (22) are to be expressed for each interfaceΓi i+1 considered. In block matrix form, this
yields

[
Qref

i

Qref⋆
i+1

]
=

[
Cii Cii+1

C⋆
i+1i C⋆

i+1i+1

] [
Qinc

i

Qinc⋆
i+1

]
+

[
Fi

F⋆
i+1

]
, (28)

whereCii andC⋆
i+1i+1 are squareni × ni andni+1 × ni+1 matrices whose components denote

the reflection coefficients of the wave modes, respectively for shellsi andi+ 1; Cii+1 andC⋆
i+1i

are rectangularni × ni+1 and ni+1 × ni matrices whose components denote the transmission
coefficients among the wave modes of the two shells; also,Fi andF⋆

i+1 areni × 1 andni+1 × 1
vectors of excitation sources (resp. for shellsi andi+ 1).

The wave-based coupling conditions between several shellsconnected to one coupling element
have been derived in Section2.2 (Eq. (5)). In the general case when several coupling elements are
dealt with, the strategy consists in numbering astsr (r = 1, . . . , Rs) a given shell connected to one
coupling elements (s = 1, . . . , S). In block matrix form, this yields




Qref
ts1
...

Qref
tsRs


 =




Cc
ts1ts1 · · · Cc

ts1tsRs

...
.. .

...
C

c
tsRsts1

· · · C
c
tsRs tsRs







Qinc
ts1
...

Qinc
tsRs


 . (29)

When deriving this equation, the shells are implicitly assumed to be connected to the coupling
element over their right boundaries. Considering their left boundaries does not bring difficulties, as
mentioned below Eq. (8).

Apart from the coupling conditions, the left and right boundaries of any shelli may
involve imposed forces/moments as well as imposed displacements/rotations, rather than
coupling conditions, which also need to be considered. The related wave-based boundary
conditions are expressed in Appendix B, considering imposed forces/moments and imposed
displacements/rotations, as well as mechanical impedances. These boundary conditions are deduced
from Eq. (11), taking into account thatFΓ

i+1 = 0. The resulting expressions, expressed at the left
boundary and the right boundary of the shell, are

Qref⋆
i = C

⋆
iiQ

inc⋆
i + F

⋆
i , Qref

i = CiiQ
inc
i + Fi, (30)

whereC⋆
ii andCii are squareni × ni matrices expressing the reflection coefficients, whileF⋆

i and
Fi stand for the vectors of excitation sources (cf. Appendix B).

As a final comment, according to Eqs. (3) and (27), the vectors of wave amplitudes (expressed at
the left and right boundaries of any shelli) are linked as

Qinc
i = µ

Ni

i Qref⋆
i , Qinc⋆

i = µ
Ni

i Qref
i , (31)

whereµi is the diagonal matrix of the wave mode parameters{(µinc
j )i}j , which is such that

||µi||2 < 1 (cf. Section2.1).

4.3. Matrix formulation

Considering the set of equations mentioned in Section4.2, a global matrix formulation can be
expressed which enables the computation of the wave amplitudes for each shell. To this aim, it is
proposed to number as1, 2, . . . all the rectangular flat shells involved to describe the whole structure.
Two consecutive shells are numbered asi andi+ 1. Also, it is proposed to denote as
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• (O1)L (resp.(O1)R) the set of integers which correspond to shells that are connected to other
shells over their left (resp. right) boundaries,

• O2 the set of integers which correspond to shells that are connected to coupling elements,
• (O3)L (resp.(O3)R) the set of integers which correspond to shells whose left (resp. right)

boundaries do not involve coupling conditions.

Regarding the coupling elements, the setO2 can be partitioned asO2 = ∪sOs
2, wheres (s =

1, . . . , S) relates any coupling element number. As a result, according to Eq. (31), Eqs. (28-30)
yield the following system of equations:

Qref⋆
i = C

⋆
ii µ

Ni

i Qref
i + C

⋆
ii−1 µ

Ni−1

i−1 Qref⋆
i−1 + F

⋆
i ∀i ∈ (O1)L, (32)

Qref
i = Cii µ

Ni

i Qref⋆
i + Cii+1 µ

Ni+1

i+1 Qref
i+1 + Fi ∀i ∈ (O1)R, (33)

Qref
tsr =

Rs∑

q=1

C
c
tsrtsqµ

Ntsq

tsq Qref⋆
tsq ∀tsr ∈ Os

2 r = 1, . . . , Rs s = 1, . . . , S, (34)

Qref⋆
i = C

⋆
iiµ

Ni

i Qref
i + F

⋆
i ∀i ∈ (O3)L, (35)

Qref
i = Ciiµ

Ni

i Qref⋆
i + Fi ∀i ∈ (O3)R. (36)

Invoking the aforementioned equations yields a matrix formulation of the formAQ = F, whereQ
andF are given by

Q =




Qref⋆
1

Qref
1

Qref⋆
2
...


 , F =




F⋆
1

F1

F⋆
2
...


 . (37)

Here,A andF are, respectively, a2
∑

i ni × 2
∑

i ni matrix and a2
∑

i ni × 1 vector whose exact
expressions depend on the kind of structures investigated.These will be specified in the next section
considering different test cases. The solution of the matrix formulation provides the wave amplitudes
asQ = A−1F (this is true provided thatA is invertible). The matrix formulation is to be computed
at every discrete frequency considered within the frequency band studied. The determination of the
vectors of displacements/rotationsq(k)

i and forces/momentsF(k)
i at any substructure boundaryk

(k = 1, . . . , Ni + 1) along any shelli follows from Eq. (2), where the vectorsQinc(k)
i andQref(k)

i

are to be expressed as (cf. Eqs. (3) and (27)):

Q
inc(k)
i = µ

k−1
i Qref⋆

i , Q
ref(k)
i = µ

Ni−(k−1)
i Qref

i k = 1, . . . , Ni + 1. (38)

Again, it is important to understand that the solution provided by the WFE method – i.e., by solving
the aforementioned matrix systemAQ = F and using the wave mode expansion (2) – gives in theory
exactly the same result as the conventional FE method (see Section 1). This is true provided that
both FE and WFE approaches are based on the same FE model for the whole structure, i.e., with
periodic meshes for the shells. Should the related FE meshesbe different, FE and WFE solutions
may be slightly different.
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Remark: CPU times
The WFE method requires a matrixA (see above) of size2

∑
i ni × 2

∑
i ni (2

∑
i ni being the

total number of DOFs involved over the left and right boundaries of the shells) to be inverted at
several discrete frequencies for computing the forced response of structures. In case when coupling
elements are considered, it also requires the dynamic stiffness matrices of these elements to be
condensed on their interfaces DOFs at each discrete frequency: such a procedure is achieved by
inverting particular block components of these matrices [2]. In comparison, the classic FE method
requires a dynamic stiffness matrix with a larger size – i.e., which includes all the DOFs of the
shells and eventual coupling elements – to be inverted at eachfrequency. Taking into account
that the number of DOFs used to describe the shells is usuallymuch greater compared to those
contained over their left and right boundaries, this yieldsthe size of FE-based matrices to be
considerably large compared to those involved by the WFE method. Considering that the number of
matrix inversions is usually large (i.e., many discrete frequencies can be considered for expressing
the dynamic behavior of the structure), this yields the CPU times involved by the WFE method to
be very small compared to those of FE.

4.4. Numerical conditioning

The wave-based matrix formulation involved by Eqs. (32-36) is expressed asAQ = F whose
solution isQ = A

−1
F. The matrix formulation is well-conditioned provided thatthe condition

number ofA is small enough. This feature is highlighted as follows. ThematrixA involves identity
matrices as diagonal block terms, while its off-diagonal block terms are of the form−CµN (N
denoting the number of substructures in shells). The feature of this matrix form is that||µ||2 < 1
(see below Eq. (3)), meaning thatA tends to the identity matrix whenN increases. In other words,
the matrix is likely to be inverted without difficulty when a sufficient number of substructures are
dealt with. The second feature is the use ofµ

N in −CµN which results in a filtering effect for
high order wave modes – i.e., those for which the parameters{µj}j are close-to-zero – that do
not contribute for expressing the forced response of the structure. Those non-contributing modes
may be understood as spurious solutions of the WFE method which can be sources of numerical
problems. The fact that such modes can be filtered through theconsideration of matrix terms of the
form −CµN in A is explained as follows. Let us assume that the matricesC andµ are partitioned
as

C =

[
C̃ E1
E2 Ĉ

]
, µ =

[
µ̃ 0

0 µ̂

]
, (39)

where the matricesE1 andE2, as well as the matrix̂µ, have close-to zero components. Here,µ̂ relates
the diagonal matrix of the wave parameters associated to theaforementioned spurious modes, while
E1 andE2 reflect coupling matrices for linking those spurious modes to the other wave modes.
The fact thatE1 andE2 have close-to-zero components is explained since the spurious modes are
decoupled from the modes which contribute for expressing the forced response of the structure (this
is understood since the spurious modes do not contribute to the forced response, by definition). As
a result, right multiplying the matrixC by µ

N gives

Cµ
N =

[
C̃µ̃ E1µ̂
E2µ̃ Ĉµ̂

]
≈

[
C̃µ̃ 0

0 0

]
. (40)

Here, it is assumed that the matrix̂Cµ̂ can be neglected compared toC̃µ̃, because the matrix̂µ
has close-to zero components (see above). To summarize, thestrategy consisting in expressing the
matrix formulationAQ = F by means of Eqs. (32-36) yields the influence of high order spurious
wave modes to be considerably lowered when computing the forced responses. This makes the
proposed matrix formulation relatively well-conditioned.
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5. NUMERICAL EXPERIMENTS

5.1. Introduction

The relevance of the WFE strategy, as proposed in the last section, is discussed there for computing
the forced response of different kinds of structures, namely:

1. Three connected shells, with a punctual force, subject tolineic densities of translational and
rotational springs (see Figure9).

2. Two sets of two connected shells, with translational springs subject to vertical displacements,
connected to one coupling element having a non-uniform curvature (see Figure12). This kind
of structure may be understood as coarsely representing a part of a train structure.

3. Six shells, with punctual forces, connected to one cylindrical structure having a conical head
(see Figure17). This kind of structure may be understood as coarsely representing an aircraft
structure.

The first test case (Figure9) is quite simple. Its investigation aims at validating the strategy
depicted in Section3 which describes the wave-based coupling conditions between a set of non-
coplanar shells that exhibit lineic impedances and punctual forces over their coupling interfaces.
The other test cases (Figures12 and17) appear more complex as they involve coupling elements
whose shapes are not as simple as rectangular flat shells. Their investigation aims at validating the
strategy depicted in Section4 which mixes wave-based coupling conditions, between connected
shells and between shells and coupling elements, in a whole matrix formulation.

For each test case, the frequency response function (say, the quadratic velocity‖) is computed
at some measurement point using the WFE strategy described in Section4. In this framework, the
flat shells are meshed periodically (see Section2.1) while incompatible meshes can be considered
over the coupling interfaces (see Sections3 and2.2). The criterion for meshing these shells is to
discretize the wavelength of the bending wave traveling in an infinite equivalent Reissner-Mindlin
plate at least by means of8 elements at the maximum frequency considered (see Section2.1).

Within the WFE framework, a matrix formulation of the formAQ = F is considered (see Section
4.3) which is solved using MATLABR©. As a preliminary step, the mass/stiffness matrices of several
FE substructures and coupling elements are to be obtained. This is done by means of COMSOL
MultiphysicsR©. The mass/stiffness matrices of the substructures are usedto compute the wave
modes (see Section2.1), while the mass/stiffness matrices of the coupling elements are used to
compute the matrices{Cc

ij} mentioned in Section2.2and Eq. (34).
For each test case, the WFE solution is compared with a reference FE solution provided by

COMSOL MultiphysicsR© when the whole structure is finely meshed using 2D shell elements of
arbitrary shapes. Considering the reference solution, theFE meshes are supposed to be compatible
across the coupling interfaces. Regarding test cases 2 and 3, a Component Mode Synthesis /
Craig-Bampton (CMS/CB) procedure is investigated within the WFE framework which uses a few
fixed interface modes of the coupling elements to compute thematrices{Cc

ij} [2]. The relevance of
this CMS-based WFE procedure, in terms of accuracy and CPU time saving, is discussed compared
to the FE method. Additional experiments are carried out regarding the test case 2 to compare the
WFE method with the conventional CMS/CB method when all the shells, as well as the coupling
element, are modeled in terms of fixed interface modes.

5.2. Test case 1: three connected shells with lineic densities of translational and rotational
springs, and a punctual force

The frequency response of a structure whose FE model is depicted in Figure9 is investigated
using the WFE method over a frequency band[10 Hz, 300 Hz]. The global structure is composed

‖Here, the quadratic velocity is defined as the norm of the velocity vector.
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of three rectangular shells of same width1 m (z−direction) while their respective lengths are0.9 m,√
2× 0.6 m and0.7 m. Both shells1 and3 are oriented along the horizontal direction, while shell

2 is rotated from an angleα = 45o around thez−direction. Both shells1 and 3 are made of
aluminum material whose characteristics are given in Section 2.1 (it is worth recalling that their
thickness is5× 10−3 m). In contrast, shell2 is made of steel material (densityρ = 7800 kg.m−3,
Young’s modulusE = 210× 109 Pa, Poisson’s ratioν = 0.3, loss factorη = 0.01) with a thickness
10× 10−3 m. Shell1 is subject to a transverse punctual force (vectorF0) of magnitude10 N at
location(x = 0.4 m, z = 0.3 m). Shells1 and2 are coupled over a common interface with a uniform
lineic density of translational springskt = 107 N.m−2 acting in they−direction. Also, shells2 and
3 are coupled over a common interface which is supposed to be free from external excitation sources
and mechanical impedances. Apart from the coupling conditions, the left edge of shell1 is subject
to a uniform lineic density of rotational springskr = 5× 103 N acting in thez−direction, while
the right edge of shell3 is clamped. The reference FE model of the structure, as provided by
COMSOL MultiphysicsR© using 2D triangular shell elements of arbitrary shapes, is depicted in
Figure9. Regarding this reference FE model, the shell meshes are compatible across the coupling
interfaces; also, the maximum element size is0.04 m, which leads to17, 304 DOFs. This yields
the wavelengths to be described at least by means of10 elements (14 elements for shell2) at the
maximum frequency considered (i.e.,300 Hz), which is completely satisfactory from the point of
view of numerical dispersion.

Figure 9. FE model of a structure involving three non-coplanar flat shells with lineic densities of translational
and rotational springs (kt andkr), a punctual force (F0) and a clamped edge.

Within the WFE framework, the shells are meshed periodically, as depicted in Figure10. Also,
the first shell is to be split into two sub-shells1 and 2 of respective lengths0.4 m and0.5 m,
whose common interfaceΓ12 involves the punctual force (F0). The need to split this shell appears
as a requirement of the WFE procedure since excitation sources can only be considered on the
left or right boundaries of waveguides. In this framework, the other shells are numbered as shell
3 and shell4. Shells1, 2 and 4 are discretized by means of identical substructures (see Figure
10) of lengthd = 0.05 m and containing21 nodes (i.e.,126 DOFs) uniformly spread on each left
or right boundary. In this case, shells1, 2 and4 are respectively composed ofN1 = 8, N2 = 10
andN4 = 14 substructures. In contrast, shell3 is composed ofN3 = 12 substructures of length
d3 =

√
2× 0.05 m, which are discretized by means of15 nodes (i.e.,90 DOFs) over each left or

right boundary (see Figure10). The FE discretization of each shell is chosen so that the rule of
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8 elements per wavelength is satisfied at300 Hz (see Section2.1). The FE meshes turn out to be
incompatible acrossΓ23 andΓ34, i.e., between shells2 and 3 and between shells3 and 4. The
need to consider different meshes is explained since shell3 exhibits a bending rigidity which is
high compared to other shells, meaning that it can be discretized using a coarser mesh with a view
to reducing CPU times. To address these incompatible meshes, two Lagrange Multipliers fields
are respectively introduced onΓ23 andΓ34. These Lagrange Multipliers fields are discretized with
respect to the sides with the finest meshes (see Section3.1), using the same interpolation functions
as the corresponding shells. In the present case, these sides appear linked to shells2 and4. Also,
the lineic densities of springs (interfaceΓ23 and left edge of shell1) are discretized in the same way
as shell2 and shell1, respectively. As a result, the impedance matrices turn outto be of the form
k
∫
NT

qΓNqΓ dS (NqΓ being the matrix of interpolation functions used to discretize the displacement
fields of the shells over their left or right boundary). Over the shell boundaries, the displacement
fields are supposed to be discretized by means of linear interpolation functions, which in the present
case are chosen as Lagrange polynomials.

Figure 10. WFE-based description of the structure depictedin Figure9, involving four shells.

Within the WFE framework, the forced response of the whole structure is computed by solving a
wave-based matrix formulation of the formAQ = F (see Section4.3), which in the present case is
based on Eqs. (32-33) (coupling conditions between shells) and Eqs. (35-36) (boundary conditions
over the left edge of shell1 and right edge of shell4). The matrix formulation is expressed as
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,

(41)

where the expressions of matricesCij , C⋆
ij (i, j = 1, . . . , 4) and vectorsF1 andF⋆

2 follow from
Section 3 and Appendix B. Also, the vectorsF1 and F⋆

2 relate the punctual force (F0) on
Γ12. Solving this matrix formulation while invoking the wave mode expansion (2) provides the
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displacements/rotations, as well as the internal forces/moments, at any location within the shells.
Particularly, the quadratic velocity of shell1, at the location(x = 0.3 m, z = 0.3 m), is computed
over the frequency band[10 Hz, 300 Hz] using581 discrete frequencies with identical frequency
steps0.5 Hz. The WFE solution is compared with the reference FE solution when the full FE
model depicted in Figure9 is solved. The results are shown in Figure11(a). Also, the relative errors
between the FE and WFE solutions are computed. Here, both thenorms of the real and imaginary
parts of the velocity vector, averaged over15 frequency bands of same width∗∗, are investigated
(see Figure11(b)). In other words, the magnitude as well as the phase of thevelocity vector are
highlighted. It is shown that the WFE solution perfectly agrees with the reference FE solution,
even at high frequencies when the frequency response function is rather complex. Here, the relative
errors are less than10% over the whole frequency band. This particularly means thatthe WFE-based
matrix formulation (41) can be used without difficulty even when lineic impedances are dealt with,
without introducing numerical ill-conditioned problems (e.g., spurious resonances, among others).
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Figure 11. (a) Frequency response function of the structuredepicted in Figure9: (——) FE reference
solution; (• • •) WFE solution. (b) Relative errors of the velocity vector: (—•—) real part; (- - o - -) imaginary

part.

CPU times and numerical conditioning
The accuracy of the WFE method has been emphasized above compared to the classic FE method.
Its efficiency compared the FE method lies in the fact that theCPU times are considerably reduced.
In fact, the WFE method requires a matrixA of size2

∑
i ni × 2

∑
i ni (= 684× 684 in the present

case) to be inverted at each discrete frequency considered (i.e., 581 frequencies). In contrast, the
FE method requires a matrix of size17, 304× 17, 304 to be inverted at the same frequencies. Here,
it takes almost980 s to compute the forced response of the structure with the WFEmethod (with
MATLAB R©) against6, 560 s with FE (with COMSOL MultiphysicsR©), considering a FE model
with an element size0.05 m – i.e., which is comparable with the WFE model regarding shells 1,
2 and4 – using an IntelR© CoreTM 2 Duo processor. It must be noticed that even if the CPU times
required to calculate the wave modes are taken into account –i.e.,890 s to compute the wave modes
of shells1, 2 and4 (here, these shells involve identical substructures, meaning that they exhibit the
same wave modes) and330 s to compute the wave modes of shell3 –, the global computational cost
of the WFE method remains relatively small, i.e.,66% less than FE. It must also be noticed that the
wave modes are to be computed once and for all, regardless of the kind of boundary and coupling
conditions considered over the left or right edges of the shells. This interesting feature of the WFE
method enables the forced response of the global structure to be computed many times with very

∗∗The objective behind this averaging process is to lower the influence of slight shifts among the resonance frequencies
(between the WFE and FE solutions) which are sources of high errors although they are of minor importance
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small CPU times (i.e., without the need to re-compute the wave modes) to investigate different kinds
of boundary and coupling conditions (parametric analysis).

Otherwise, the well-conditioning of WFE matrix formulations has been emphasized in Section
4.4. The WFE solution can be claimed to be less sensitive to smallrounding errors of input data
provided that the condition number ofA (see Eq. (41)) – κ(A) = ||A||2||A−1||2 – is small enough.
In the present case,κ(A) < 106 over the whole frequency band which is completely satisfactory
from the point of view of m-digit floating point arithmetics,i.e., the relative error for expressing
the structure behavior is expressed as10α−m, where10−m is the machine precision (m = 32 for
many softwares) whileκ(A) ≤ 10α (α < 6 in the present case). It is worth emphasizing that the
fact thatκ(A) is small, although due to the particular form of the matrixA (see Section4.4), is also
explained because the structure is damped: considering no damping will have as effect to make
A singular at the resonance frequencies of the structure, leading to infinite responses (which is of
course unrealistic).

5.3. Test case 2: two sets of two connected shells, with translational springs subject to vertical
displacements, connected to one coupling element having a non-uniform curvature

The forced response of the structure depicted in Figure12 is investigated using the WFE method
over a frequency band[1 Hz, 100 Hz]. Such a structure might be viewed as coarsely representing
a part of a train structure. It is composed of four rectangular flat shells of same width2 m
(z−direction), i.e., two vertically oriented shells of length2.6 m connected to two45o−oriented
shells of length0.5 m. The vertically oriented flat shells are distant from2.4 m (x−direction) and
connected to one coupling element which represents a curvedshell with a non-uniform curvature
††. The four rectangular flat shells exhibit a same thickness of7× 10−3 m and are made of steel
material (see Section5.2 for the material characteristics). Also, the coupling element exhibits a
thickness of4× 10−3 m and is made in aluminum (see Section2.1for the material characteristics).
Each bottom corner of the45o-oriented flat shells is connected to three translational springs
kt = 107 N.m−1 in the threex−, y− and z−directions. The bottom ends of the vertical springs
(y−direction) are subject to vertical displacements (vector±q0 of magnitude10−3 m) acting in
opposite directions (see Figure12). The reference FE model of the structure is depicted in Figure
12. Here, a FE mesh involving a maximum element size of0.08 m is considered which is continuous
across the coupling interfaces, leading to29, 670 DOFs. Such a FE mesh enables the wavelengths
to be discretized at least by8 elements (see Section2.1).

Within the WFE framework, the flat shells – namely, shells1, 2, 3, 4 – are meshed periodically, as
depicted in Figure13. Each flat shell is described by means of identical FE substructures of length
0.1 m whose left/right boundaries involve21 nodes (see Figure13). As a matter of rule, these nodes
are uniformly spread on the substructure boundaries. A number of N2 = N3 = 26 substructures
are used to describe shells2 and3, while N1 = N4 = 5 substructures are used to describe shells
1 and4. The maximum element size involved by these FE substructuresis 0.1 m which appears
coherent regarding the rule of thumb of8 elements (at least) per wavelength (see above). Here, mesh
compatibility is assumed between the shells. On the other hand, the coupling element is meshed
using shell elements of arbitrary shapes with a maximum element size of0.08 m, disregarding the
FE mesh used to describe the connected shells. Thus the FE meshes between shells2, 3 and the
coupling element turn out to be incompatible. Such an issue is addressed by means of the strategy
depicted in Section2.2(see also ref. [2]).

††The curvature of the coupling element is actually based on a cubic Bézier function.
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Figure 12. FE model of a structure involving two sets of two non-coplanar flat shells, with translational
springs subject to vertical displacements (±q0), connected to one coupling element having a non-uniform

curvature.

Figure 13. WFE-based description of the structure depictedin Figure12, involving four flat shells (for each
shell, the direction of wave propagation is mentioned by means of oscillating arrows).

Within the WFE framework, the harmonic forced response of the structure is computed by solving
a wave-based matrix formulation of the formAQ = F (see Section4.3) which is based on Eqs. (32-
36). In the present case, this matrix formulation is expressedas



In1
−C⋆

11µ
N1

1 0 0 0 0 · · ·
−C11 µ

N1

1 In1
0 −C12µ

N2

2 0 0 · · ·
−C⋆

21 µ
N1

1 0 In2
−C⋆

22µ
N2

2 0 0 · · ·
0 0 −C

c
22 µ

N2

2 In2
−C

c
23µ

N3

3 0 · · ·
0 0 0 0 In3

−C⋆
33 µ

N3

3 · · ·
0 0 −C

c
32 µ

N2

2 0 −C
c
33µ

N3

3 In3
· · ·

...
...

...
...

...
...

. ..







Qref⋆
1

Qref
1

Qref⋆
2

Qref
2

Qref⋆
3

Qref
3
...




=




F⋆
1

0

0

0

0

0
...




,



24

(42)

where the expressions of{Cij}, {C⋆
ij}, {Cc

ij} follow from Section3, Section2.2and Appendix B.
Otherwise, the vectorsF⋆

1 andF⋆
4 (not mentioned in Eq. (42)) relate the consideration of imposed

displacements (vector±q0) at the bottom corners of shells1 and4. Solving the matrix formulation
AQ = F provides the amplitudes of the wave modes traveling along the shells, and further on, the
displacements/rotations and internal forces/moments. Here, 126 incident/reflected wave modes are
considered to describe the behavior of each shell. The quadratic velocity of shell2 (measurement
point: medium of the width,1 m above the bottom edge) is computed over the frequency band
[1 Hz, 100 Hz] considering397 discrete frequencies with identical frequency steps. To reduce further
the CPU times associated with the computation of{Cc

ij}, a Component Mode Synthesis / Craig-
Bampton (CMS/CB) procedure is used as detailed in ref. [2]. In this framework, the dynamic
stiffness matrix of the coupling element is described by means of a small number of fixed interface
modes. Static modes are also invoked (see ref. [9]). In the present case,40 fixed interface modes
are used. The resulting CMS/CB based WFE solution is comparedwith the reference FE solution,
when the full FE model depicted in Figure12 is solved. The results are shown in Figure14(a).
Also, the relative errors between the FE and WFE solutions, averaged over15 frequency bands of
same width (see last test case), are computed. Again, both the norms of the real and imaginary
parts of the velocity vector are highlighted (see Figure14(b)). It is shown that the WFE solution
perfectly agrees with the reference FE solution. In particular, the relative errors are less than10%
over the whole frequency band. Again, this highlights the efficiency of the WFE strategy. It can be
used without difficulty even when coupling elements, whose characteristics can be strongly different
from those of the shells, are dealt with. Regarding the CPU times, it takes almost12, 650 s with FE to
compute the forced response of the structure. On the other hand, the WFE procedure requires: (i) the
computation of wave modes (660 s); (ii) the computation of the matrices{Cc

ij} based on40 fixed
interface modes of the coupling element (180 s); (iii) the computation of the matrix formulation
AQ = F (800 s). As a whole, this leads to1640 s, i.e.,87% CPU time saving compared to the FE
method. This highlights the relevance of the WFE method.
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Figure 14. (a) Frequency response function of the structuredepicted in Figure12: (——) FE reference
solution; (• • •) WFE solution. (b) Relative errors of the velocity vector: (—•—) real part; (- - o - -) imaginary

part.

Comparisons with the Craig-Bampton Method
A comparison between the WFE method and the CMS/CB method [9] is proposed to predict the
dynamic behavior of the whole structure. Within the CMS/CB framework, it is proposed to describe
each shell, as well as the coupling element, by means of static modes and fixed interface modes.
Here, the shells and the coupling element are meshed in the same way as the WFE modeling (cf.
Figure 13). Also, 2× 126 static modes and126 fixed interface modes are used to describe the
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dynamic behavior of each shell. In other words, the number offixed interface modes is chosen
so that it matches the number of incident/reflected wave modes used by the WFE method. Also,40
fixed interface modes are used for the coupling element, i.e., in the same way as the WFE method.
Using the CMS/CB method yields the quadratic velocity (the measurement point has been specified
above) to be calculated as shown in Figure15(a). Also, the relative error (between CMS/CB and
FE solutions) is shown in Figure15(b) regarding the real part of the velocity vector; the result is
compared with the relative error involved by the WFE method.Although the frequency response
function seems in good agreement with the reference solution, further insights of the relative error
reveal a drawback of the CMS/CB method for predicting the vibratory levels. This is particularly
true around the two main resonances of the structures (over[40 Hz, 60 Hz]) when the error goes up
to 20%, as opposed to the WFE method where the error remains below10%. Also, the CMS/CB
solution appears less accurate than WFE at high frequencies. Otherwise, the condition numbers‡‡

of both CMS/CB and WFE matrix formulations have been plottedin Figure16 to highlight further
on the accuracy of the WFE method. It is shown that the condition number of the WFE matrix
formulation is almost500 times smaller compared to the CMS/CB method when averaged over
the whole frequency band. This highlights the efficiency of the WFE method, in terms of numerical
conditioning, compared to the CMS/CB method. The feature ofthe WFE matrix formulation follows
from the particular form of the matrixA which has been explained in depth in Section4.3. It could be
emphasized that the lack of accuracy of the CMS/CB method canbe solved in theory by increasing
the number of fixed interface modes for the shells, which could however has the consequence of
increasing the condition number of the related matrix formulation (this is understood since the size
of the matrix formulation is enlarged).

Regarding CPU times, it takes around500 s with the CMS/CB method to compute the forced
response of the structure, against1640 s with the WFE method (see above). Those CPU times are
reached using an IntelR© CoreTM 2 Duo processor, and MATLABR©. Within the CMS/CB framework,
the static modes and fixed interface modes are computed twiceregarding shells1 and2 (indeed, the
fixes interface and static modes of shells3 and4 can be simply deduced from those of shells1 and
2). In contrast, the WFE method makes use of the same wave basisfor all the shells. The fact that
the same wave basis can be used for all the shells is explainedsince the wave modes do not depend
on the lengths and boundary conditions of waveguides. This interesting feature demonstrates the
capability of the WFE method to involve CPU times that can be reduced further, regarding structures
involving many shells.
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Figure 15. (a) Frequency response function of the structuredepicted in Figure12: (——) FE reference
solution; (• • •) CMS/CB solution (40 fixed interface modes for the coupling element;126 fixed interface
modes for each shell). (b) Relative errors for the real part of the velocity vector: (—•—) CMS/CB; (—•—)

WFE.

‡‡Clearly, the condition number represents that of a matrixA used to compute either the wave amplitudes (WFE) (see
above) or the displacements at the interface DOFs (CMS/CB).
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Figure 16. Condition number of the matrix formulation: (——) CMS/CB; (——) WFE.

5.4. Test case 3: six shells, with punctual forces, connected to one cylinder having a conical head

The forced response of the structure depicted in Figure17 is investigated using the WFE method
over a frequency band[10 Hz, 300 Hz]. Such a structure might be viewed as coarsely representing a
part of an aircraft structure. It is composed of six rectangular flat shells involving two horizontally
oriented shells of length3.5 m and width0.5 m, and four45o−oriented shells of length0.5 m and
width 0.3 m. These flat shells are connected to one coupling element representing a cylinder of
length3 m and radius0.25 m whose ends are respectively connected to one conical head of length
0.5 m and a disk-shaped flat cap. The shells and the coupling element exhibit the same thickness
5× 10−3 m and are made of steel material (see Section5.2 for the material characteristics). Each
horizontally oriented flat shell is excited by a vertical punctual force (vectorF0) of magnitude10 N
acting at a location distant of1.5 m from the coupling element, at the middle of the shell width.
The FE model of the structure is depicted in Figure17. It involves 2D triangular shell elements of
arbitrary shapes for the flat shells as well as the coupling element. Here, a FE mesh involving a
maximum element size of0.05 m for the flat shells and the coupling element is considered which
is continuous across the coupling interfaces. The global problem exhibits a plane symmetry (plane
(y, z)) with regard to the main axis of the coupling element, meaning that only half of the structure
can be studied. The number of DOFs involved by the related FE model is21, 726. Such a FE model
is considered for computing the forced response of the structure taken as a reference FE solution.

Figure 17. FE model of a structure involving six non-coplanar flat shells, with punctual forces (F0), coupled
with one cylinder having a conical head.
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Within the WFE framework, the flat shells are meshed periodically, as depicted in Figure18
considering the half of the structure (see above). Here, theshell involving the punctual force is split
into two sub-shells – namely, shells1 and2. The need to split this shell into two sub-shells has been
explained in Section5.2. Each shell is described by means of identical FE substructures of length
0.05 m: the substructures of shells1 and 2 involve 11 nodes over their left or right boundaries,
compared to7 nodes regarding shells3 and4 (see Figure18). Those nodes are supposed to be
uniformly spread on the substructure boundaries. The maximum element size involved by these
FE substructures is0.05 m which appears similar to the FE model depicted in Figure17. Also, the
coupling element is meshed using 2D shell elements of arbitrary shapes with a maximum element
size of0.05 m (say, in a similar way as in Figure17). The connection between this arbitrary mesh
and the periodic meshes used to discretize the shells is carried out by means of the strategy depicted
in Section2.2(see also ref. [2]). Otherwise, mesh compatibility is assumed between the shells.

Figure 18. WFE-based description of the structure depictedin Figure17, involving four flat shells (for each
shell, the direction of wave propagation is mentioned by means of oscillating arrows).

Within the WFE framework, the harmonic forced response of the structure is computed by solving
a wave-based matrix formulation of the formAQ = F (see Section4.3) which is based on Eqs. (32-
36). In the present case, this matrix formulation is expressedas
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(43)

where the matrices{Cij}, {C⋆
ij}, {Cc

ij} are expressed by considering Section3, Section2.2 and
Appendix B. The vectorF⋆

2 relates the punctual force (vectorF0) at the interface between shells1
and2. Here,66 incident/reflected wave modes for shells1, 2 and42 incident/reflected wave modes
for shells3, 4 are considered to describe the dynamic behavior of the wholestructure. Also, the
dynamic stiffness matrix of the coupling element is modeledusing the CMS/CB procedure described
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previously (last test case), by means of20 fixed interface modes. The resulting WFE solution is
computed over the frequency band[10 Hz, 300 Hz] using581 discrete frequencies with identical
frequency steps. The WFE solution is compared with the reference FE solution when the full FE
model (half of the structure) depicted in Figure17 is solved. The results are shown in Figure19(a)
regarding the frequency response function. Also, the relative errors between FE and WFE solutions,
averaged over15 frequency bands of same width composing the whole frequencyband, are shown
(see Figure19(b)). Again, both the real and imaginary parts of the velocity vector are considered.
It is shown that the WFE solution perfectly agrees with the reference FE solution. In particular, the
relative errors appears less than8% over the whole frequency band. The condition number of the
WFE matrix formulation – i.e.,κ(A) – is almost104 when averaged over the whole frequency band.
Again, this highlights the well-conditioning of WFE matrixformulations.

Regarding CPU times, it takes almost13, 000 s with FE to compute the forced response of the
structure, against380 s with the WFE method (this includes the computation of wave modes, the
computation of the matrices{Cc

ij} based on20 fixed interface modes of the coupling element, the
computation of the matrix formulationAQ = F). This leads to97% CPU times savings compared
to the FE method. Again, this gives credit to the WFE method asan efficient means to describe the
forced response of structures that can be complex, even at high frequencies.
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Figure 19. (a) Frequency response function of the structuredepicted in Figure17: (——) FE reference
solution; (• • •) WFE solution. (b) Relative errors of the velocity vector: (—•—) real part; (- - o - -) imaginary

part.

6. CONCLUSION

In this paper, a wave finite element based strategy has been proposed for computing the forced
response of structures involving several connected rectangular flat shells. Within the WFE
framework, the shells are connected along their left or right boundaries; also, each shell is meshed
periodically by means of identical FE substructures. The shell dynamic behavior is described by
means of numerical wave modes traveling towards and away from the coupling interfaces. In the
present study, those rectangular flat shells are enabled to be oriented in different ways as well as they
can be connected along coupling interfaces where mesh compatibility is not necessarily assumed.
Also, the coupling interfaces are supposed to involve several kinds of external excitation sources
(i.e., punctual and lineic forces/moments) as well as mechanical impedances (e.g., lineic densities
of springs). Finally, the shells are supposed to be connected to one or several coupling elements
whose shapes, as well as dynamic behavior, can be relativelycomplex.

A mesh tying formulation based on Lagrange Multipliers, which describes the coupling
conditions between two connected shells or between severalshells connected to one coupling
element, has been proposed and adapted to the WFE framework.The resulting wave-based coupling
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conditions have been formulated. A WFE strategy has been proposed to assess the forced response
of structures involving several connected shells and coupling elements. A CMS/CB procedure has
been used to describe the dynamic behavior of the coupling elements by means of a small number
of fixed interface modes. The WFE strategy is based on a globalwave-based matrix formulation for
computing the amplitudes of the wave modes traveling along the shells. The determination of the
displacements/rotations and forces/moments within the shells follows from a wave mode expansion
procedure. One feature of the proposed wave-based matrix formulation is that it is well conditioned,
which particularly means that it can be used without difficulty even when a large number of shells
are dealt with. As a second feature, it enables the CPU times to be considerably reduced compared
to the conventional FE method. The relevance of this WFE strategy has been clearly highlighted
considering the forced response of three kinds of structures involving several connected flat shells
and coupling elements of variable complexities. Also, its efficiency in terms of accuracy has been
highlighted in comparison with the conventional CMS/CB method.

APPENDIX A. DERIVATION OF MATRICESAref AND Ainc

Inserting Eqs. (17) and (18) in Eqs. (14) and (15) gives
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Left multiplying Eq. (A-1) by (Φref
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i leads to
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while left multiplying Eq. (A-2) by −(Φref⋆
F )−1

i+1 leads to
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Expressing, in matrix form, Eqs. (A-3) and (A-4) leads to Eq. (19) whereAref andAinc are given
by Eqs. (20) and (21).

APPENDIX B. EXPRESSIONS OF MATRICESC⋆
ii, Cii, AND VECTORSF⋆

i AND Fi OVER
THE LEFT/RIGHT BOUNDARIES WHERE COUPLING CONDITIONS DO NOTAPPLY

The wave-based boundary conditions on the left and right boundaries of any shelli are expressed as
follows:
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• Case when two vectors of forces/momentsFex = F0 and Fex = F′
0 are respectively

considered on the left and right boundaries. Expressing these vectors in the local frameRi

of the shell, i.e.,(F(1)
i )Ri

= LiF0 and(F(Ni+1)
i )Ri

= LiF
′
0, while invoking the wave mode

expansion (2) leads to
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where the minus sign ahead ofLiF0 is introduced since the left boundary of the shell
is of concern (see comment below Eq. (1)). As a result, Eqs. (B-1) and (B-2) lead to
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• Case when two vectors of displacements/rotationsq0 andq′
0 are respectively considered

on the left and right boundaries. Expressing these vectors in the local frameRi, i.e.,
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Again, this yieldsQref⋆
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• Case when two matrices of mechanical impedanceZ = Z0 andZ = Z′
0 and two vectors of

forces/momentsFex = F0 andFex = F′
0 are respectively considered on the left and right

boundaries. In that case, the boundary conditions are deduced from Eq. (11) with FΓ
i+1 = 0.

According to Eq. (12), this gives
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Invoking the wave mode expansion (2) leads to
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