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A wave finite element-based formulation for computing theéal
response of structures involving rectangular flat shells

J.-M. Mencik

ENI Val de Loire, Université Francois Rabelais de Tours|R laboratory, Rue de la Chocolaterie, BP 3410, F-41034
Blois Cedex, France

SUMMARY

The harmonic forced response of structures involving sgveon-coplanar rectangular flat shells is
investigated using the Wave Finite Element method. SuchsHetls are connected along parallel edges
where external excitation sources as well as mechanicatdances are likely to occur. Also, they can be
connected to one or several coupling elements whose shagetyaamics can be complex. The dynamic
behavior of the connected shells is described by means oérnicahwave modes traveling towards and away
from the coupling interfaces. Also, the coupling elememnésraodeled using the conventional finite element
method. A finite element mesh tying procedure between shellgng incompatible meshes is considered
which uses Lagrange Multipliers for expressing the cogptianditions in wave-based form. A global wave-
based matrix formulation is proposed for computing the éonbes of the wave modes traveling along the
shells. The resulting displacement solutions are obtairsdg a wave mode expansion procedure. The
accuracy of the wave-based matrix formulation is highkghin comparison with the conventional finite
element method through three test cases of variable coitiptexThe relevance of the method for saving
large CPU times is emphasized. Its efficiency is also higitdid in comparison with the component mode
synthesis technique.

KEY WORDS: wave finite elements; rectangular shells; congobmode synthesis.

1. INTRODUCTION

The necessity to reduce the CPU times involved by the commaltFinite Element (FE) method
appears crucial in many applications to describe the low-rait- frequency (LF and MF) forced
response of structures. The Wave Finite Element (WFE) ndetbostitutes an efficient alternative to
address this task. The method is confined to the study of widkegwhose FE models are periodic
[1], i.e., which are composed of identical substructures s€heaveguides can be connected either
directly or by means of coupling elements whose local dyearman be complex]. In many cases,
elastic waveguides with uniform cross-sections are dedh. WVithin the WFE framework, the
kinematic and mechanical fields of such structures are sadas terms of numerical wave modes
traveling in positive and negative directions. For eachegande, the wave modes are computed by
considering the mass and stiffness matrices of one singkuBEtructure (see above). The number
of those wave modes is generally very small compared to th#oeuof DOFs required by a full FE
model when the whole waveguide is meshed. This results imbmfarmulations of small sizes
for expressing the forced response of structu@s Proposing a general procedure that makes
the WFE method applicable to the study of complex structimeslving an arbitrary number of
waveguides, connected either directly or by means of congaapling elements, is the motivation
behind the proposed study. The case of rectangular flatsshich are connected along parallel
edges involving arbitrary excitation sources and meclamiapedances, or which are connected
with coupling elements, is specifically dealt with. Thosegled elastic systems seem to constitute



a reasonable approximation for describing many industtrattures, e.g., those encountered in the
automotive sector (see Figute

The WFE method belongs to the class of deterministic wasedbaapproaches which can
be used to assess the MF behavior of shell and plate-liketstas. Among these approaches
are the analytic Trefftz techniques like the Wave Based btfWBM) [4] and the Variational
Theory of Complex Rays (VTCR)5] which make use of propagative plane waves (as well as
evanescent waves) to describe the dynamic behavior of leolthaimains. The study of rectangular
flat shell assemblies has been particularly addressed bwiid in ref. [6]. In this framework,
the wave amplitudes are computed by considering a vargtifmnmulation over the boundaries
(including coupling interfaces) of the shells. Otherwesasichments techniques such as the Partition
of Unity Method (PUM) [/] and the Discontinuous Enrichment Method (DEM] fare other
approaches which consider analytic wave functions as weatbaventional Lagrange polynomials
as interpolation functions of finite elements; these teghes have been proved to be efficient to
improve the convergence of FE models over the MF range. Tatire of these analytic wave-
based approaches is that they can theoretically be appligtuctures having arbitrary shapes and
boundary conditions, contrary to the WFE method where negtiar flat shells are considered (even
though these shells can be connected, as explained abdse) tlhese analytic approaches are not
subject to the discretization errors of the conventionalnféthod as exact wave solutions of the
local governing equations of structures are considereds ey are less susceptible to numerical
dispersion than the WFE method. As another drawback of th& WiEthod, when compared for
instance with the WBM or the VTCR, is the requirement that llbendary conditions are to be
periodic (or uniform) along the direction of waveguides dhdt the excitation sources are to be
considered at the ends of waveguides. However, these adot@med analytic approaches have to
face several drawbacks in the sense that a large number efwkares is usually required to achieve
their convergence (the issue lies in the description of thenbary conditions) while ill-conditioned
full matrix systems are involved. In contrast, the WFE métlappears as an efficient means to
address these issues. The fact that the WFE method usesietglainall number of wave modes
— which travel along one direction and which reflect the cisExstion dynamics of waveguides —
yields the sizes of the related matrix formulations (andstthe CPU times) to be usually small
compared to those involved by the analytic approaches. Tier deature of the WFE method is
that it involves well-conditioned matrix formulations, discussed below.

It is important to understand that the WFE method is in thesrgiccurate as the conventional FE
method to describe the dynamic behavior of structures winglwaveguides. This is true provided
that the same FE models are used for both approaches (riedipeneshes for the waveguides). The
advantage of the WFE method is that it enables the CPU timies largely decreased compared to
the FE method. From this point of view, the WFE method cout#t an interesting alternative to the
usual model reduction strategies like the Component ModeHegis / Craig-Bampton (CMS/CB)
method P] where fixed interface modes are involved to describe thedehof waveguides. The
drawback of the CMS/CB method is that a large number of fixéatiace modes can be required to
reach its convergence. This is explained because the buadd coupling conditions at the ends
of waveguides can be complex, but also because the lengthavefguides can be large (meaning
that a large number of fixed interface modes can be requirdddoribe the spatial dynamics). Such
issues are not involved within the WFE framework due to thetfsat the wave bases are full, i.e.,
basis truncation errors are not involved. Also, the sizethefwave bases do not depend on the
lengths of waveguides.

Several works have been made to compute the forced respérssegte or coupled straight
waveguides by means of the WFE method. A spectral elemeedtsisategy that uses WFE wave
modes for calculating the dynamic stiffness matrices ofrigiea waveguides has been proposed
in ref. [10]. This procedure has been validated to describe the hamfiorted response of simply
supported Kirchhoff Love plates excited by one punctuatéoiMore recently, a WFE approach has
been proposed which uses the reflection/transmission ciegifs of the wave modes at waveguide
boundaries3]. The interesting feature of this approach is that it is das® the computation of the
wave amplitudes, instead of explicitly considering theptiisements/rotations and forces/moments.



This yields simple and well-conditioned matrix formulatgoto be considered to describe the LF
and MF forced responses, which is explained because thatieas of wave amplitudes along
waveguides are governed by means of diagonal matridéss strategy has been successfully used
to describe the forced response of several kinds of straigitguides (beam-like structures, plates,
multi-layered systems) whose left and right limits are sabfo Neumann and Dirichlet conditions;
also, it has been used to describe the dynamic behavior dicetgstems involving two beam-like
structures connected to an elastic junction (namely, alo@element) undergoing local resonances
[2]. In ref. [2], a model reduction technique based on the CMS/CB methodb&as proposed to
describe the dynamic behavior of the coupling element ims$af a few fixed interface modes. Other
WEFE strategies which use the same idea (i.e., computatithreaffave amplitudes by consideration
of the wave reflections/transmissions at waveguide boigs)drave been proposed in refs1][12].

In ref. [11], a procedure has been proposed to assess the dynamic drebfasingle waveguides
excited by one punctual force. The procedure consists iittingl any waveguide into two sub-
waveguides and considering the reflection/transmissiahefvave modes at the location of the
punctual force. This last works has been extended in 1€].tp describe the dynamic behavior of
infinite excited plates subject to fluid loading.

To summarize, the WFE method appears as an efficient mears¢alie the forced responses
of elastic waveguides. The method enables these forcednssp to be computed by means of
small-sized and well-conditioned matrix formulations.f8g the method has been mostly applied
to single waveguides involving Neumann and Dirichlet bamgcconditions, or coupled structures
involving two waveguides. It seems that a general procetthatenakes the WFE method applicable
to an arbitrary number of waveguides, connected eithecijre@r by means of one or several
coupling elements of arbitrary shapes, has not been igatetl yet. Also, proposing a WFE
procedure which takes into account arbitrary excitationrs®s and mechanical impedances at
waveguide interfaces appears as another open challenge,ingestigated previously. Such issues
are addressed within the present study considering théegunotf several non-coplanar rectangular
flat shells connected either directly, along parallel edgesiving arbitrary excitation sources and
mechanical impedances, or by means of coupling elemeriselfestricts the proposed approach
to the case of two coplanar shells connected along one edgkviimg one punctual force, this
yields the plate problem already investigated in refg, (). In a more general view, the proposed
approach aims at investigating the dynamic behavior of dexngtructures such as those depicted
in Figurel.

The rest of the paper is organized as follows. In Section & bisics of the WFE method are
recalled regarding the description of wave modes travellagg structures. Numerical experiments
are made to highlight the wave modes traveling along reciandjat shells. Also, the wave-based
coupling conditions between several shells connectedecetastic coupling element are recalled in
accordance with past studies4] 15]. In Section 3, the wave-based coupling conditions between
two connected non-coplanar rectangular flat shells arevetkriThe procedure enables external
excitation sources as well as mechanical impedances tokka tato account over the coupling
interface. Also, a tying formulation based on Lagrange Miiérs is proposed which addresses the
issue of shells having incompatible FE meshes. In Sectitimedstrategy for computing the forced
response of structures involving several connected saetiscoupling elements is investigated. A
wave-based matrix formulation is proposed for computirgy dimplitudes of the wave modes in
each shell. In Section 5, numerical experiments are madégtdight the accuracy of the WFE
strategy. The forced response of structures is investigaiasidering the following test cases: (1)
three non-coplanar shells, with a punctual force, whos@laogi conditions involve lineic densities
of translational and rotational springs (Figug (2) two sets of two non-coplanar shells, with
translational springs subject to vertical displacemerdsnected to one coupling element having
a non-uniform curvature (Figurg?); (3) six non-coplanar shells, with punctual forces, carieéd
to one cylinder having a conical head (Figurd. The relevance of the WFE method, in terms of
accuracy and CPU time savings, is emphasized in comparigbhmeference solutions issued from

*Clearly, the components of these diagonal matrices arertipagation parameters.



the FE method. Also, a comparison with the conventional GBESethod (test case 2) is carried
out to highlight further on the efficiency of the WFE method.

b Coupling element
( ) Flat shells

(a)

Flat shells

Figure 1. Structures involving several connected rectmndlat shells subject to punctual fordgy), springs

(K, K') with imposed displacementg(, qp), lineic density of translational and rotational springs, ¢;,

kr): (a) structure involving three shells when one shell has erige clamped; (b) structure involving four
shells when two shells are connected to one coupling element

2. WFE METHOD

2.1. Wave propagation along rectangular flat shells

The WFE method aims at numerically describing the waveliray along periodic structured]|
Such structures are called periodic in the sense that theypealescribed by means of identical
substructures which are connected along a mainagxisferred to as the direction of propagation.
Rectangular flat shells which are meshed periodically atbeg lengthz belong to that class of
structures. In the present study, these shells are supposedelastic, dissipative (considering a
loss factorn) and subject to harmonic disturbance under frequery@r (w being the pulsation).
The basic assumptions, for those thin elastic structusebiait both bending and in-plane motions
that include drilling degrees of freedonfd], are taken into account. In this framework, these
structures are meshed by means of 2D triangular flat shefleziées with three nodes and six degrees
of freedom (DOFs) per node (i.e., three displacements am tfotations) that incorporate both
bending actions]7] as well as membrane actions with drilling DOHS]. A rectangular flat shell
with a periodic FE mesh is shown in FigueThe related FE substructures have the same length
d while their left and right boundaries (i.e., the edges ciiect with thez—direction) contain the
same number of DOFs, namely

The WFE method requires the mass and stiffness matricesydfArsubstructure to be known;
it uses a state vector representati@f] [for linking the kinematic/mechanical fields between the
left (or right) boundaries of two adjacent substructutremdk — 1. In the frequency domain, this
relationship is expressed in terms diax 2n symplectic matrixS as [3]

u® = Su(k_l)7 1)

where u = [q7 £+ F7|T, q and F being then x 1 vectors of displacements/rotations and
forces/moments, respectively. The sign ahead~ah u results from the convention made for
expressing the forces on the left or right boundaries of titestsuctures: in the present study,
the convention-F (resp.F) is used to denote the left (resp. right) substructure baries. In
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Figure 2. Finite element model of a rectangular flat shell eptesentative substructure of lengtlfthe
sought waves are those traveling in thedirection).

Eq. (1), the matrixS is constructed from the condensed dynamic stiffness mafrany of these
substructures with regard to its left and right boundarméq { 4] for further details).

The wave modes refer to the eigenvalues and eigenvectdssvdiich are denoted afu;};
and{®,},, respectively. It must be noticed thatis expressed from the dynamic stiffness matrix
of a substructure (see above), meaning that the wave modesdiep the frequency. According
to Bloch's theorem (], the eigenvalue$y.;}, can be expressed gs—*%7},, where{g,},; have
the meaning of wave numbers. Also, the eigenvedid@s} ;, also known as wave shapes, relate the
spatial distributions of the kinematic and mechanical §@lder the width of the shelkdirection).
The fact thatS is symplectic (see above) yields the wave modgs;, ®,)}, to be split inton
incident andn reflected wave modes, i.e:,waves traveling towards andwaves traveling away
from the right (or left) boundary of the shell. These incitamd reflected wave modes are denoted as
{(pime, ®37<)}; and{(uz°*, ®7°)};; they are usually defined so tHat*<| < 1 and|uZ*f| > 1Vj. 1.
Otherwise, the vectors of displacements/rotatigasd forces/momentsF, over any substructure
boundaryk (i.e., either a coupling interface between two consecuwilsstructureg — 1 andk, or
a limiting edge of the shell), can be expanded3s [

q(k) _ @(ilnCQinc(k) + @;eeref(k) , :tF(k) _ Qli:'nCQinc(k) + @;efczref(k)7 (2)

where &3¢, ®r°f, & and ®i°* are squaren xn matrices constituted from the

displacement/rotation and force/moment components ofrtbilent and reflected wave shapes;
also,Q<*) andQf(¥) aren x 1 vectors of wave amplitudes, whose variation along the sell

governed as]

Qinc(k) _ HQinC(k_l) , Qref(k) _ u—lczref(k—l)7 (3)

where p is an x n matrix defined as: = diag{y;*};, such that||ull2 <1 (||.]|2 being the
2—norm)*.

Numerical results
The wave modes of an aluminum rectangular shell are compated a frequency band

tSuch a consideration follows from the fact tisails a symplectic matrix — i.e., its eigenvalues come in pasrgal/u)
[19] — while it is assumed that the shell is damped.

The fact that|u||2 < 1 is readily proved sincﬁ@“ﬂ < 1Vj.



[10 Hz,300 HZ]. The characteristics of the structure are: dengity 2700 kg.m*, Young’s
modulusE = 70 x 10° Pa, Poisson’s ratio = 0.3, loss factom = 0.01, width (z—direction)L, =

1 m and thicknessgf{—direction)h = 5 x 10~3 m. Within the WFE framework, the sought waves are
those traveling along the length of the shell, namely:theirection. The wave modes are computed
by considering the FE model of a substructure of lerlgth0.05 m with 21 nodes uniformly spread
on its width, as shown in Figur2 (here, the distance between two consecutive node$ism).
The choice of this length.05 m between two consecutive nodes follows from the well knowa r
that consists in discretizing the wavelengths at least bynse& finite elements. To this end, one
focuses on the wavelength of the bending wave traveling infamte equivalent Reissner-Mindlin
plate, which is known analytically, at the maximum frequenonsidered (i.e.300 Hz). Actually,

it is assumed that this wavelength represents a minimunevagarding all the modes traveling
along the shell. In other words, the fact to discretize thialgtic wavelength at least yelements
yields the same conclusion regarding the other wavelengties FE model of the substructure is
performed using the COMSOL Multiphysissoftware. It is worth recalling that each triangular
element incorporates both bending actions (with a sheaection factorx = 5/6) and membrane
actions with drilling DOFs.

The fact that the left boundary (as well as the right boundemytains, = 21 x 6 = 126 DOFs
means that a same number of incident/reflected wave modés beecomputed. This is achieved
by means of MATLAB® using the procedure proposed in refd] that consists in solving a
generalized eigenproblem for the displacements/rotatomty. The procedure requires one to get
the mass and stiffness matrices of the substructure (amdatétly, the dynamic stiffness matrix
condensed over the left and right boundaries) which is dgmadmans of COMSOL Multiphysié®.
The wave modes are computedat discrete frequenciesfy } uniformly spread on the frequency
band[10 Hz, 300 Hz], considering an identical frequency st&yy. Part of these wave modes are
highlighted in Figure3 regarding the dispersion curves — i.e., the real and imagiparts of the
wave numbers — over the frequency band. To track any wave moder the frequency domain, a
correlation criterion among the wave shapes at two consedliscrete frequencieg andf, + A f
is proposed as

|(¢’q5)ﬁ+Af(<I’q7‘)fk| |(<I’F5)ﬁ+Af((I’FT)fk|

max + ) 4)
s {||((I)q8)fk+Af||2||(‘I)qr)fk||2 ||(‘I)F8)fk+Af||2||((I)Fr)fk||2}

where the superscripf denotes the conjugate transpo®g, and®z, (resp.®,, and®,) represent
the vectors of the displacement/rotation components antbtice/moment components of the wave
shaped,. (resp.®,), respectively. Clearly, once a wave mode has been numbereat the discrete
frequencyf;, the proposed criterion enables one to select among all #ve wiodes computed at
the subsequent discrete frequerfgy+ A f the one which matches the best (from the point of view
of the displacement/rotation components as well as theforement components) this wave mode
r at the discrete frequendf.. Thus the procedure consists in renumbering the selectee made
asr for the discrete frequency, + Af, and so on. In other words, this criterion yields the wave
modes to be clearly identified over the frequency domain k€3] for further discussions).

The wave modes can be classified as propagating (i.e., thgnearg parts of the wave numbers
are close to zero), evanescent (i.e., the real parts of the mambers are close to zero) or complex
(i.e., the real and imaginary parts of the wave numbers atteeacfame order). For the sake of clarity,
the complex wave modes are not shown in Figir&he wave shapes are generally disparate, as
seen in Figurd where nine modes are considered@¥ - (the arrow indicates the direction of wave
propagation). Wave shapes (a), (b), (c) and (d) highlightdbnventional longitudinal, flexural (in
thez— andy—directions) and torsional modes. Other wave shapes refiresgh order modes, part
of them becoming propagating at certain frequencies (spa€3). It is worth emphasizing that the
wave shapes are subject to changes as the frequency irgsraaseen in Figureat 300 Hz.
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Figure 3. Several dispersion curves for the wave modeslingvalong the rectangular flat shell depicted in
Figure2: (——) wave modes whose shapes are depicted in Figueesl5.
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Figure 4. Several wave shapes (real parts of the displaderoeponents) at 10 Hz.

2.2. Wave-based coupling conditions between severakstmtinected to one coupling element

The issue of several waveguides connected to one elastiicgelement has been treated in depth
in the literature (see for instance refd4[ 21, 2]). The related wave-based coupling conditions
are recalled here for the sake of clarity. A kind of problemicihhis addressed within this topic
is depicted in Figurés, considering several flat shells having different oridotad { (z;, yi, z:) }4,



(@) (b) (©

Figure 5. Several wave shapes (real parts of the displaderoeiponents) at 300 Hz.

connected to one coupling element of arbitrary shape. Withe WFE framework, the dynamic
behavior of the shells is described by means of wave modesSseton?2.1) while the local
dynamics of the coupling element are assessed using ttaastlRE method. The procedure uses a
mesh tying formulation that connects each shell with thepting element. Lagrange Multipliers are
invoked to address incompatible meshes between the shellha coupling element. Here, these
Lagrange Multipliers are discretized with respect to thenké@sh of the coupling elemerit4].

Flat shells

Coupling element

Coupling interfaces

Shell i -

Figure 6. Several non-coplanar flat shells connected to ongling element having an arbitrary shape.

For the sake of clarity, the present study will be restrictedhe consideration of coupling
elements which are free from excitation sources (the caseugling elements undergoing imposed
forces and prescribed displacements has been treated tim ideqef. [21] and may be considered
without difficulty). According to ref. 14], the wave-based coupling conditions between a sét of



rectangular flat shells connected to one coupling elemendaressed as
Q:{ef ;}nc
Lo =cl ], ()
QI}’%ef %m
whereQ:* and Q:** denote the vectors of wave amplitudes at the coupling atetrfregarding

incident/reflected wave modes traveling along each shéil=1,..., R). The matrix C¢ is
expressed as

Cc = _(Aref)flAinc’ (6)
where [L4]

Aref _ TTD*T \Il;ef + ‘Il;ef ’ Ainc _ TTD*T \I/;nc + ‘Illj‘:nc. (7)
Here,D* is the dynamic stiffness matrix of the coupling element @rsid on the interface DOFs;
T is a block diagonal matrix with block componen{t8¢}; which reflect the use of Lagrange
Multipliers to describe the coupling conditions betweea shells and the coupling element; also,

\y;nc, \Ilflef, Pirc and Pt are square matrices of same size expressed as

[ LS(®T) 0 [ L5(25 0

e = : : W= : : , (8)
Y LG(®7)r | . 0 LH(5 )R
[ L5(®§) 0 | [ L5 (2 ) 0 |

e = : : W = : : ;
Y LH(2F)r | . 0 LH(PF)r |

where, for each shell(i = 1,. .., R), £S is a squarer; x n; matrix (n; being the number of DOFs
contained over the left/right boundary of the shell) whictpresses the displacements/rotations
and forces/moments of the shell in the coordinate systerheo€oupling element:©, y¢, z¢) (see
Figure®6) [2].

Remark

When deriving Eq.5), the shells are assumed to be connected to the couplingetemer their
right boundaries: in other words, the local frame axi®f each shelt is assumed to point towards
the coupling element (see Figuse Considering the left boundaries of some shells does riag) br
additional difficulties, however.

3. WAVE-BASED COUPLING CONDITIONS BETWEEN TWO CONNECTED LS

3.1. Mesh tying formulation

Two structures involving one or several sets of rectangfliédrshells, connected along parallel
edges, are depicted in Figute Within the WFE framework, the shells are meshed perioljical
in terms of identical FE substructures (see Secfidl). The related FE models are illustrated
in Figure 7 regarding two connected shellsand: + 1. These shells are described by means of
two local reference frameR; = (x;,yi,2) and R, 1 = (41, vi+1, 2) Whose orientations in the
global reference frame — namelg, = (z,y, z) — are expressed around thedirection in terms

of two anglesa; anda; 1. The coupling interface — namely, — represents the right boundary
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of shell i as well as the left boundary of shelk 1. In the present study, it is supposed that
the displacement/rotation field of the shells are contisuacrossl’. Also, it is supposed that
punctual and lineic excitation sources (forces/momeuts)yell as mechanical impedances (e.g.,
translational or rotational stiffnesses), are likely tecwcoverr”.

Figure 7. Two coupled shells and i + 1 having different FE meshes and different orientatiensand
a;+1 (around the:—direction), connected along one common interfidevolving excitation sources (e.g.,
punctual forceF;) and mechanical impedances.

The substructures used to describe the two shells are ehtibleave different lengthd; and
d;+1, as well as different FE discretizations. This yields défe@rnumbers of DOFs; andn;.
to describe the boundaries of shellandi + 1. Here, it is assumed without loss of generality that
shelli exhibits the finest mesh compared to shiell 1 (see Figure?). The issue is to transcribe
the coupling conditions within the FE framework by considgrincompatible meshes across the
coupling interfacd". Lagrange Multipliers are used to treat this issue. In tlEisiework, a Lagrange
Multiplier field is defined onl” which is discretized using the trace of the mesh of eithed st
shelli + 1. In the present study, it is proposed to choose the finest ifsbgti i), the motivation
behind this choice being that the spatial behavior of shedin be correctly mapped on shel 1
by means of a sufficient number of constraints. It is worthnpog out that the consideration of
the coarser mesh (shélk- 1), instead of the finest mesh, would have been problematarday
zero-energy mode's Considering such a discretization for the Lagrange Miigtigield yields the
continuity of the displacement/rotation field acrdsso be expressed in the global reference frame
R as

Bia] — Biyial,, =0, 9)

whereq; and q/,, denote the vectors of displacements/rotations, resp. fell $ and shell
i+ 1, expressed oif’; also, B; and B, ; are real matrices of the fornis; = fF NqugdS and
Biy1 = [ NquipHdS (the superscript’ denoting the matrix transposey,, is the matrix of
interpolation functions which discretize the Lagrange fifilier field on I"; N,r andN,r are

the matrices of interpolation functions which discretike displacement/rotatién fields E)?lshells
andi + 1 on I, respectively (see reflfl] for further details). If one assumes ti¥t,» andIN,, are
equal yields the matri®; to be square positive definite and thus invertible. AccagdmEq. Q),

§Such an issue occurs considering for instance the case ajhdyhoscillating spatial behavior of sidewith zero
displacement points coincident with the DOFs of side1, yielding a null displacement solution of shel- 1.
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this yieldsq; to be uniquely determined from the knowledgeydf, as

qzr = quf—ﬁ-lv (10)
whereB = Bi‘lBZ—H. Also, the vectors of forces/moments expressed'@re linked as
Fzﬂ»l = BT(_FzF + Fem - iWZqzr)v (11)

A justification on how Eq.11) has been derived can be found in réf4][ Here,F! andF/, , are
the vectors of forces/moments expressed’oresp. for shelf and shelk + 1; also,F.,, is a vector

of excitation sources defined dhwith respect to the mesh of shéjlw is the pulsation; finallyZ

is an impedance matrix defined with respect to the mesh off shehich reflects punctual or lineic
springs (or masses, ...) dnh The fact that those springs can be excited by imposed displewts,
instead of being clamped on one of their ends, can be takenactount without difficulty by
expressing the vectdr.,. in a suitable way. To summarize, the coupling conditionsveen two
non-coplanar rectangular flat shellandi + 1 are expressed by means of Ed))(and (L1). It is
worth emphasizing that these relations are expressed iglttal reference fram®& = (z,y, 2).
Expressing these relations in the local reference fraRies (x;, v, 2) andR; 11 = (i1, Yit1, 2)

of the shells enables the vectors of displacements/romtod forces/moments to be expressed in
terms of wave modes, as explained in Secidiq. (2)). Such a procedure is considered here for
expressing the coupling conditions in wave-based formtlksipurpose, it is proposed to introduce
two rotation matrice€; and.Z;. 1, defined as

(q{‘)Rz = ‘Ciqzr ) (FzF)Rz = Einrv (12)

(qu—kl)RHl = ‘Ci+1qu+1 ) (F£+I)Ri+l = ‘Ci+1FzF+1' (13)
The matricesZ; and£; ., are constructed from the direction cosines of the local &am; and
Rit1, respectively, in the global fram®B. These matrices are real and orthogonal, ik&.2; =
Ll =Tand L], L1 = Liy1 L], =1 Introducing Egs. 12) and (13) in Egs. (0) and (L1)
while invoking the aforementioned orthogonality propestof £; and £,.; enables the coupling
conditions to be expressed as

(qzr)Ri, = (‘CZB‘CZ;J) (qz!;l)me (14)
and
(FL)Re = = (LBLLL)" [, + (CiawZL]) (al)r] + (BLL,) Feoo  (15)

Egs. (L4) and (L5) express the coupling conditions between the two shellgravthe vectors of
displacements/rotations and forces/moments are exgrésshe local reference frame®; and
R.+1. Expanding these vectors in terms of the wave modes of thelwelhs yields the wave-based
form of the coupling conditions. The procedure is detailetehfter.

3.2. Wave-based coupling conditions

The wave mode expansion of the vectors of displacemerdsibns and forces/moments follows
from Eq. @), where the superscriptsnc andref denote the wave modes which travel towards
and away from theight boundaryof any shell (see Figur@). Regarding for instance shel)
the matrices of incident/reflected wave modes are writtefides®); = [(®i)] ()] ]" and

(@), = [(@5*F)] (®F°7)]], while the related vectors of wave amplitudes are denoteq8E"

andeef(k). Should thdeft boundaryof the shell (instead of its right boundary) be considered as
a reference, the matrices of incident/reflected wave modesenoted ag®***); and (®**),,

while the vectors of wave amplitudes are denoted@d®**) and Q***"). These matrices and
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vectors are simply expressed as

((I)inc*)i _ (q,ref)l_ 7 (q,ref*)i _ (‘I>inc)i Qinc*(k) _ Ql_'ef(k) Q?ef*(k) _ ch(k)

K2 K2 ) 2 2

(16)

3

Such a convention involving the right or left boundary of inell is introduced here as a means to

clarify and simplify the subsequent developments madearptper. The convention is highlighted
in Figure8.

Figure 8. WFE-based description of the coupled shells depia Figure?.

Invoking the aforementioned convention yields the wave enexpansion to be written for both
shellsi andi + 1 as

(B3 QI + (@5),Q5°",
(B QI + (@F),Q5", (7)

=2
=555
3 3
-

and

(A1) Ry = (BF) i1 QT + (2577) i QESY,

—(Fl )Ry = (2F)in1QAT + (F)i1 Q15T (18)

where (q/ )z, and (q/,,)=,,, (resp. (F/)z, and (F/ )z,,,) are the vectors of displace-
ments/rotations (resp forces/moments) introduced ini@ect.1. The minus sign ahead of
(FL )=.., in Eq. (18) follows from the convention mentioned below Ef).(Also, Q* andQz**
(resp.Q2¢ andQ:s%*) denote the vectors of wave amplitudes for shétesp. sheli + 1) at the
coupling interfacel". Introducing Eqgs. 17) and ({8) in Egs. (4) and (L5) leads to the following
matrix system (see Appendix A for further details):

Aref |: Q:ifef :| — _Ainc |: innc 0

refx incx + refx\— T ) (19)
g i+1 :| |: _(q>F f )i-i-ll (B‘C?Jrl) Fez

i+1



whereAre* andA*»¢ are two(n; + n;11) x

(i + nig1)

9 matrices expressed as
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Im- (‘I)ref) (£ B‘C;ﬂ-l) (@Zef*)wl
Aref — (@ref*)z+1 (£ BE;—:—l) I ) (20)
x [(®F%); + (LiAwZLT) (®E°F)] e ]
and
(@ref) (@:mc) (@ref) (£ 85?4-1) (@(jinc*)i_’_l ]
Ainc — @ref* E BET . (21)
( 1nc)1+1 ( H—l)T - (@ref*)l_’_l(@mc*)%’_l
x [(®8<); + (LAwZLT) (®im);] |

In Egs. (9-21), (<I>ref) and(<I>ref*)l+1 are the inverses of the matricgb;**); and (®;°*) 11,
respectively. The eX|stence of such inverses results fronfact that(@gef) and (®g°t*), ., are
full column rank (a proof of this statement is given in red])[ Invoking these inverses results in
a better numerical conditioning of the mat&¢e. In fact, this circumvents the numerical issue
involved when the matrix is partitioned into displacemmatttion and force/moment components
[3]. Also, each reflected or incident wave modte = [‘I>qTT<I>FTT]T is normalized with respect to its

euclidean norn@@ﬂéqr + ® ®;,.)'/? to improve further on the conditioning &*<f. According

to Eq. 0), A™*f is formulated in such a way it involves identity matrices @agdnal block terms.

It is invertible provided thatlet(I,,., — A5TATST) # 0 (A5" and Afs™ being the bottom left
and top right off-diagonal block terms of the matrix). Suchassumption appears to be satisfied
provided that the matrixm{AZs* A5t} is full rank (whereIm denotes the imaginary part). This
question can be viewed as proving th&is* and A{;f are full rank (it is assumed that these
conditions are sufficient to prove than{AZ*Azst} is full rank, taking into account that the
matrices are complex). Regarding for instacg?®, this requires one to verify that (i) a non-zero
matrix (®3°*); 1, cannot lead tqL;BL], |)(®:°*)i11 = 0, i.e., null(L;BL], ) = {0}, and (ii)
ran(L; Bﬁgﬂl) cannot intersect the null space (@gef);l. Condition (i) is readily verified since
L;BLY | is full column rank; this is proved taking into account tHa . agrange Multiplier field is
discretized with regard to the finest mesh (sidehis would have failed otherwise (see comments at
the beginning of Sectio®.1). Also, condition (ii) is verified becaui@ref) is full rank (the proof

is given in ref. B), i.e., null((@flef)l ) = {0}. The proof thatAZzs* is full rank can be achieved
on the same way as above, provided that the mét#§°’); + (L,iwZLT) (®5°7);] is full rank
[3]. This seems to be verified in general, taking into accouat (#p:°*); and(<I>ref) are full rank
matrices, except maybe in some very particular cases {ehgn (/:iinL‘iT) (®5°7)i = —(®F*9):)
which will be not considered here.

Thus, taking into account that the matee® is invertible yields the solution of Eql$) to be
expressed as

ref
[ Qrief* :| = C[
i+1

where

Qinc
3

incx
i+1

] F (22)

0

(C:_(Aref)—lAinc ’ F = cefn T
_(CI’F f )z+11 (Bﬁfﬂ) Fey

(Aref ) -1 (23)

Eq. 22) expresses the wave-based coupling conditions betwedts shand i + 1. Here, C
is a square(n; + n;11) X (n; + n;41) Matrix whose components are to be understood as the

9n; andn;, are the numbers of DOFs contained over the left/right botiesiaf shellsi andi + 1, respectively.
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reflection/transmission coefficients of the wave modesdidmning both shells and: + 1) at the
coupling interfacel"; otherwise,F is a (n; + n;4+1) x 1 vector that plays the role of excitation
sources.

Remark: case when shell- 1 has the finest mesh
In this case, the matri® is defined asZ = B;}lBi. It can be shown without difficulty that the
relationships22) and @3) still hold provided thatA™** and A" are expressed as

~(@5); (CoBLT)"

|
AT = X (B )it1 — (Lit1iwZLTL) (B5)ia] |,
— (@) (Lo BLT) (95°%); | P
(24)
ref\—1 inc _(i)ll':ef)i_l (£1+1B£?)T
inc (QF )l (QF )l inck . T incx
A = X [(@F)ip1 — (Lip1iwZL] ) (PE)ig ]
— (@) (Lo BLT) (98, (®5°7) L (2 i1
(25)
Also, the vector of excitation sourc&ss to be expressed as
f\—1 0
F = (A™*f) (26)

(@5%), " (BLT)" Feo

4. FORCED RESPONSE COMPUTATION

4.1. Preliminary comments and conventions

The harmonic forced response of structures involving sgvectangular flat shells and coupling
elements is investigated. Within the WFE framework, the potation of the forced response
requires a set of wave-based coupling and boundary conditmbe expressed over the left/right
boundaries of the shells. This yields a global wave-basdthiarmulation to be considered which
provides the wave amplitudes, and ultimately the kinemeaid mechanical fields, for each shell.
This strategy is depicted in the rest of the section.

As opening remarks of this study, it is worth emphasizing thay shell: is supposed to
be composed from an integral numh®y of identical substructures. This yields the number of
substructure boundaries (i.e., the coupling interfacasvd®n the substructures as well as the
two limiting edges) involved along the shell to B¢ + 1. As a convention, the substructures
are numbered from the left to the right boundary of the shdlo, the following notations are
introduced:

Qlinc _ Q;nc(NH»l) : Q;;-ef _ Q;ref(NH»l) ’ Qlinc* _ Q;an*(l) 7 Qgef* _ Qzef*(l)’ (27)
where{Qi", Q¥**} are the vectors of wave amplitudes expressed at the rigmdaoy of the shell
(i.e., considering the substructure boundaky+ 1), while {Qi»°*, Q¥***} are the vectors of wave
amplitudes expressed at the left boundary (i.e., consigehie substructure boundairy.
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4.2. Wave-based description of the global structure

The wave-based coupling conditions between two shiedisdi + 1, connected along a common
interfacerl’; ;+1, have been derived in Secti@nThey are expressed by EG2], where the matrixC

and the vectoF are to be formulated using either Eq80{21) and @3) (case when shellhas the
finest mesh), or Eqs24-26) (case when shell+ 1 has the finest mesh). The wave-based coupling
conditions 22) are to be expressed for each interfd¢g.; considered. In block matrix form, this

yields
ref B . inc .
|: Qrief* :| = |: (c“ | (C“+1 :| |: Qiznc* :| + |: IFIE‘Z :| ) (28)

* *
i+1 Ci-ﬁ-li | CH—li-&-l i+1 i+1

whereC;; andCy,,,,, are squarer; x n; andn,;; x n;11 matrices whose components denote
the reflection coefficients of the wave modes, respectivayshells: andi + 1; C;;, andCj,;
are rectangulan; x n;y1 and n;1; x n; matrices whose components denote the transmission
coefficients among the wave modes of the two shells; @sandF; _, aren; x 1 andn;; x 1
vectors of excitation sources (resp. for shésd: + 1).

The wave-based coupling conditions between several staiisected to one coupling element
have been derived in Secti@n2 (Eq. (6)). In the general case when several coupling elements are
dealt with, the strategy consists in numberingagr = 1, ..., R,) a given shell connected to one

coupling element (s = 1,...,.5). In block matrix form, this yields
) )
. A
;i Cgsltsl e CgsltsRs %?16
.| = S : | (29)
. .
g:}RS (CI(‘;:sRstsl e CgsRstsRs Q%?;S

When deriving this equation, the shells are implicitly ased to be connected to the coupling
element over their right boundaries. Considering thetrdefindaries does not bring difficulties, as
mentioned below Eq8j.

Apart from the coupling conditions, the left and right boarids of any shelli may
involve imposed forces/moments as well as imposed displants/rotations, rather than
coupling conditions, which also need to be considered. Télated wave-based boundary
conditions are expressed in Appendix B, considering imgoseces/moments and imposed
displacements/rotations, as well as mechanical impedaibese boundary conditions are deduced
from Eq. (L1), taking into account thaf., ; = 0. The resulting expressions, expressed at the left
boundary and the right boundary of the shell, are

QP =CLQI T, QP =CuQi + T, (30)

whereCy, andC,; are squarey; x n; matrices expressing the reflection coefficients, whjleand
IF; stand for the vectors of excitation sources (cf. Appendix B)

As a final comment, according to Eq8) @nd @7), the vectors of wave amplitudes (expressed at
the left and right boundaries of any shélhare linked as

Qi = pliQr Qi = piQre, (31)

where p; is the diagonal matrix of the wave mode parametgys;™°);};, which is such that
[|pe;]]2 < 1 (cf. Section2.1).

4.3. Matrix formulation

Considering the set of equations mentioned in Secfi¢h a global matrix formulation can be
expressed which enables the computation of the wave ardeéitfor each shell. To this aim, it is
proposed to number as2, . .. all the rectangular flat shells involved to describe the wistlucture.
Two consecutive shells are numbered asd: + 1. Also, it is proposed to denote as
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e (Oq)L (resp.(01)g) the set of integers which correspond to shells that areexted to other
shells over their left (resp. right) boundaries,

e O, the set of integers which correspond to shells that are @ied¢o coupling elements,

e (O3). (resp.(Os)g) the set of integers which correspond to shells whose le#ip(rright)
boundaries do not involve coupling conditions.

Regarding the coupling elements, the €&t can be partitioned a®, = U;035, wheres (s =
1,...,95) relates any coupling element number. As a result, accortinEq. 81), Eqgs. £8-30)
yield the following system of equations:

Qgef* _ Cz'*i Hi\[iQ;ref + (C;'—l N?EI] Qﬁfl* + IF; Vi € (Ol)La (32)

Q= Coi ) Q" + Ciar 1 QIS +Fi Vi€ (O, (33)
R N

QT = Cf o i QT Vi, €03 r=1. R, s=1...5 (34)
q=1

Qi = Chpl QI +F; Vie (O3), (35)

QP =Cup Q™ +Fi Vi€ (O3 (36)

Invoking the aforementioned equations yields a matrix idation of the formAQ = F, whereQ
andFF are given by

Qll“ef* ]FT
Qzl“ef Fl
Q — Qgef* , F = ]FE . (37)

Here,A andF are, respectively, 2) . n; x 2. n; matrixand & ), n; x 1 vector whose exact

expressions depend on the kind of structures investigatezke will be specified in the next section
considering different test cases. The solution of the mé&irimulation provides the wave amplitudes
asQ = A~'F (this is true provided thak is invertible). The matrix formulation is to be computed
at every discrete frequency considered within the frequéaad studied. The determination of the

vectors of displacements/rotatioqgc) and forces/momentEEk) at any substructure boundaky
(k=1,...,N; + 1) along any shelf follows from Eq. @), where the vector® ™" andQ:**™"
are to be expressed as (cf. Ed3.4dnd 7)):

Q;nc(k) _ ufle:Z;ef* , Q;ef(k) _ uzjlvi*(kfl)Q:ifef k=1,...,N;+1. (38)
Again, itis important to understand that the solution pdex by the WFE method —i.e., by solving
the aforementioned matrix systeh@ = [F and using the wave mode expansigj gives in theory
exactly the same result as the conventional FE method (set@®&). This is true provided that
both FE and WFE approaches are based on the same FE modes fohtihe structure, i.e., with
periodic meshes for the shells. Should the related FE médsheé#ferent, FE and WFE solutions
may be slightly different.
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Remark: CPU times

The WFE method requires a matrix (see above) of size )" . n; x 23 . n; (23, n; being the
total number of DOFs involved over the left and right boumekiof the shells) to be inverted at
several discrete frequencies for computing the forcedoresg of structures. In case when coupling
elements are considered, it also requires the dynamiaesis$f matrices of these elements to be
condensed on their interfaces DOFs at each discrete fregusach a procedure is achieved by
inverting particular block components of these matriédslh comparison, the classic FE method
requires a dynamic stiffness matrix with a larger size - idnich includes all the DOFs of the
shells and eventual coupling elements — to be inverted at faghiency. Taking into account
that the number of DOFs used to describe the shells is usoalgh greater compared to those
contained over their left and right boundaries, this yiellds size of FE-based matrices to be
considerably large compared to those involved by the WFHatktConsidering that the number of
matrix inversions is usually large (i.e., many discretegfrencies can be considered for expressing
the dynamic behavior of the structure), this yields the Cipés$ involved by the WFE method to
be very small compared to those of FE.

4.4. Numerical conditioning

The wave-based matrix formulation involved by Eq32-86) is expressed adQ = F whose
solution isQ = A~'FF. The matrix formulation is well-conditioned provided thae condition
number ofA is small enough. This feature is highlighted as follows. Tarix A involves identity
matrices as diagonal block terms, while its off-diagonaickl terms are of the form-Cpu? (N
denoting the number of substructures in shells). The feasfithis matrix form is thaf|p||2 < 1
(see below Eq.3)), meaning thaf\ tends to the identity matrix wheN increases. In other words,
the matrix is likely to be inverted without difficulty when afficient number of substructures are
dealt with. The second feature is the useudf in —Cu™v which results in a filtering effect for
high order wave modes — i.e., those for which the paramdiers; are close-to-zero — that do
not contribute for expressing the forced response of theeire. Those non-contributing modes
may be understood as spurious solutions of the WFE methochwdain be sources of numerical
problems. The fact that such modes can be filtered througbatihgideration of matrix terms of the
form —Cpv in A is explained as follows. Let us assume that the matfitesdy are partitioned

as
- {%%} , (39)

where the matrice$; andé&,, as well as the matrig, have close-to zero components. Hgreelates
the diagonal matrix of the wave parameters associated @fthementioned spurious modes, while
&1 and &; reflect coupling matrices for linking those spurious modeshe other wave modes.
The fact thatt; and€&, have close-to-zero components is explained since theapumodes are
decoupled from the modes which contribute for expressiaddited response of the structure (this
is understood since the spurious modes do not contributeetfotced response, by definition). As
a result, right multiplying the matri by p gives

Clé&
& | C

C:

Cn | & [(Eﬁ 0}
Cu?N = ~ . 40
H &t | Cha 00 (40)

Here, it is assumed that the mat@ﬁ can be neglected compared@ﬂ, because the matrig
has close-to zero components (see above). To summarizeréitegy consisting in expressing the
matrix formulationAQ = F by means of Eqs.3¢-36) yields the influence of high order spurious
wave modes to be considerably lowered when computing theedoresponses. This makes the
proposed matrix formulation relatively well-conditioned
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5. NUMERICAL EXPERIMENTS

5.1. Introduction

The relevance of the WFE strategy, as proposed in the lasbseis discussed there for computing
the forced response of different kinds of structures, ngmel

1. Three connected shells, with a punctual force, subjelateéic densities of translational and
rotational springs (see Figug.

2. Two sets of two connected shells, with translationalgpgrisubject to vertical displacements,
connected to one coupling element having a non-uniformature (see Figure2). This kind
of structure may be understood as coarsely representing af@atrain structure.

3. Six shells, with punctual forces, connected to one cyiaad structure having a conical head
(see Figurel7). This kind of structure may be understood as coarsely reptig) an aircraft
structure.

The first test case (Figur® is quite simple. Its investigation aims at validating thetegy
depicted in Sectio® which describes the wave-based coupling conditions betweset of non-
coplanar shells that exhibit lineic impedances and puhdtwees over their coupling interfaces.
The other test cases (Figuré® and17) appear more complex as they involve coupling elements
whose shapes are not as simple as rectangular flat shelis.ifmestigation aims at validating the
strategy depicted in Sectiohwhich mixes wave-based coupling conditions, between cctede
shells and between shells and coupling elements, in a whalexnfiormulation.

For each test case, the frequency response function (sagutidratic velocity) is computed
at some measurement point using the WFE strategy describ&elctiond. In this framework, the
flat shells are meshed periodically (see Secfid) while incompatible meshes can be considered
over the coupling interfaces (see Secti@wand2.2). The criterion for meshing these shells is to
discretize the wavelength of the bending wave travelingnimnéinite equivalent Reissner-Mindlin
plate at least by means 8felements at the maximum frequency considered (see Sexfipn

Within the WFE framework, a matrix formulation of the forx@Q = FF is considered (see Section
4.3) which is solved using MATLAE®. As a preliminary step, the mass/stiffness matrices ofrséve
FE substructures and coupling elements are to be obtairesl.isTdone by means of COMSOL
Multiphysics®. The mass/stiffness matrices of the substructures are tasedmpute the wave
modes (see Sectioh 1), while the mass/stiffness matrices of the coupling elesane used to
compute the matricegCs; } mentioned in Sectio@.2and Eq. 84).

For each test case, the WFE solution is compared with a referE& solution provided by
COMSOL Multiphysic® when the whole structure is finely meshed using 2D shell efésnef
arbitrary shapes. Considering the reference solution-Eheneshes are supposed to be compatible
across the coupling interfaces. Regarding test cases 2 andC®mponent Mode Synthesis /
Craig-Bampton (CMS/CB) procedure is investigated witthie YWFE framework which uses a few
fixed interface modes of the coupling elements to computenthteices{Cs, } [2]. The relevance of
this CMS-based WFE procedure, in terms of accuracy and GR&Jgaving, is discussed compared
to the FE method. Additional experiments are carried ouandigg the test case 2 to compare the
WFE method with the conventional CMS/CB method when all thells, as well as the coupling
element, are modeled in terms of fixed interface modes.

5.2. Test case 1: three connected shells with lineic dexssitf translational and rotational
springs, and a punctual force

The frequency response of a structure whose FE model is ddpiatFigure9 is investigated
using the WFE method over a frequency ban@Hz, 300 Hz|. The global structure is composed

IIHere, the quadratic velocity is defined as the norm of theoigi@ector.
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of three rectangular shells of same widthn (z—direction) while their respective lengths @6 m,

V2 x 0.6 m and0.7 m. Both shellsl and3 are oriented along the horizontal direction, while shell
2 is rotated from an angle: = 45° around thez—direction. Both shellsl and 3 are made of
aluminum material whose characteristics are given in 8edil (it is worth recalling that their
thickness iss x 1072 m). In contrast, shelt is made of steel material (density= 7800 kg.m 3,
Young’s modulusE = 210 x 10° Pa, Poisson’s ratio = 0.3, loss factom = 0.01) with a thickness
10 x 1073 m. Shell1 is subject to a transverse punctual force (vedgy of magnitudel0 N at
location(z = 0.4 m, z = 0.3 m). Shellsl and2 are coupled over a common interface with a uniform
lineic density of translational springs = 107 N.m~? acting in they—direction. Also, shell€ and

3 are coupled over a common interface which is supposed t@bdrism external excitation sources
and mechanical impedances. Apart from the coupling cathtithe left edge of shellis subject

to a uniform lineic density of rotational springs = 5 x 103 N acting in thez—direction, while
the right edge of shel is clamped. The reference FE model of the structure, as ¢gedvby
COMSOL Multiphysic® using 2D triangular shell elements of arbitrary shapes ejgided in
Figure9. Regarding this reference FE model, the shell meshes arpatdste across the coupling
interfaces; also, the maximum element siz&.iBt m, which leads tal7,304 DOFs. This yields
the wavelengths to be described at least by mear$ efements (4 elements for shel?) at the
maximum frequency considered (i.800 Hz), which is completely satisfactory from the point of
view of numerical dispersion.

Shell
(aluminum)

Shell
(steel)

Shell
(aluminum)

\ 0

Figure 9. FE model of a structure involving three non-coatdtat shells with lineic densities of translational
and rotational springs:{ andk,), a punctual forceK,) and a clamped edge.

Within the WFE framework, the shells are meshed periodicall depicted in Figur0. Also,
the first shell is to be split into two sub-shellsand 2 of respective length§.4 m and0.5 m,
whose common interfacg , involves the punctual forcer(;). The need to split this shell appears
as a requirement of the WFE procedure since excitation esuran only be considered on the
left or right boundaries of waveguides. In this framewote pther shells are numbered as shell
3 and shell4. Shells1, 2 and 4 are discretized by means of identical substructures (sgeréi
10) of lengthd = 0.05 m and containin@1 nodes (i.e.126 DOFs) uniformly spread on each left
or right boundary. In this case, shells2 and4 are respectively composed of, =8, N, = 10
and N, = 14 substructures. In contrast, shalis composed ofV; = 12 substructures of length
ds = /2 x 0.05 m, which are discretized by means 1f nodes (i.e.90 DOFs) over each left or
right boundary (see Figurg0). The FE discretization of each shell is chosen so that theaf
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8 elements per wavelength is satisfied3ab Hz (see Sectio2.1). The FE meshes turn out to be
incompatible acrosg,3 and I's4, i.e., between shelld and 3 and between shelld and 4. The
need to consider different meshes is explained since 8hethibits a bending rigidity which is
high compared to other shells, meaning that it can be digerttising a coarser mesh with a view
to reducing CPU times. To address these incompatible megshed_agrange Multipliers fields
are respectively introduced ans; andI';4. These Lagrange Multipliers fields are discretized with
respect to the sides with the finest meshes (see Sektirusing the same interpolation functions
as the corresponding shells. In the present case, theseaggear linked to shelisand4. Also,
the lineic densities of springs (interface; and left edge of shell) are discretized in the same way
as shell2 and shelll, respectively. As a result, the impedance matrices turrimbge of the form

k [ NI N4rdS (N4 being the matrix of interpolation functions used to diszesthe displacement
fields of the shells over their left or right boundary). Ovee shell boundaries, the displacement
fields are supposed to be discretized by means of lineapuwiggion functions, which in the present
case are chosen as Lagrange polynomials.

Shell 4

Figure 10. WFE-based description of the structure depiict&dgure9, involving four shells.

Within the WFE framework, the forced response of the whalecstire is computed by solving a
wave-based matrix formulation of the forAQ = IF (see Sectiod.3), which in the present case is
based on Eqs3@-33) (coupling conditions between shells) and E¢&-86) (boundary conditions
over the left edge of shelland right edge of shell). The matrix formulation is expressed as

I, —Cr 0 0 0 0 FQEt ] T 07
—Cn [llivl In1 0 —Ci2 Hévz 0 0 Qlief
~C3y " 0 L,  —Chm” 0 0 Q'
0 0 —Coop3”® I, 0 0 Qx| =
0 0 0 0 L., —Cyy Qi
o 0 0 0 T T I, |LQ ] L
(41)

where the expressions of matric€s;, C;; (i,j = 1,...,4) and vectordF; andF3 follow from
Section3 and Appendix B. Also, the vectorB; and Fj relate the punctual forceF() on
T'12. Solving this matrix formulation while invoking the wave aw expansion?) provides the
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displacements/rotations, as well as the internal forcesients, at any location within the shells.
Particularly, the quadratic velocity of shell at the location(z = 0.3 m, z = 0.3 m), is computed
over the frequency band0 Hz, 300 Hz] using 581 discrete frequencies with identical frequency
steps0.5 Hz. The WFE solution is compared with the reference FE smiutvhen the full FE
model depicted in Figur@is solved. The results are shown in Figarga). Also, the relative errors
between the FE and WFE solutions are computed. Here, botiotines of the real and imaginary
parts of the velocity vector, averaged ouvérfrequency bands of same width, are investigated
(see Figurell(b)). In other words, the magnitude as well as the phase of¢tacity vector are
highlighted. It is shown that the WFE solution perfectly egg with the reference FE solution,
even at high frequencies when the frequency response duristrather complex. Here, the relative
errors are less tha% over the whole frequency band. This particularly meansttreat¥VFE-based
matrix formulation 1) can be used without difficulty even when lineic impedancesdaalt with,
without introducing numerical ill-conditioned problemesd., spurious resonances, among others).
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Figure 11. (a) Frequency response function of the struafemicted in Figured: (——) FE reference
solution; @ e ) WFE solution. (b) Relative errors of the velocity vecter-¢—) real part; { - o - -) imaginary
part.

CPU times and numerical conditioning

The accuracy of the WFE method has been emphasized aboveairtp the classic FE method.
Its efficiency compared the FE method lies in the fact thatiR&) times are considerably reduced.
In fact, the WFE method requires a matfbof size2 > *. n; x 2. n; (= 684 x 684 in the present
case) to be inverted at each discrete frequency consideeed§1 frequencies). In contrast, the
FE method requires a matrix of siz&, 304 x 17,304 to be inverted at the same frequencies. Here,
it takes almosbl80 s to compute the forced response of the structure with the VkEtBod (with
MATLAB ®) against6, 560 s with FE (with COMSOL Multiphysic®), considering a FE model
with an element siz€.05 m — i.e., which is comparable with the WFE model regardindlshe

2 and4 — using an Inté®? Coré™ 2 Duo processor. It must be noticed that even if the CPU times
required to calculate the wave modes are taken into accaumt890 s to compute the wave modes
of shells1, 2 and4 (here, these shells involve identical substructures, imgahat they exhibit the
same wave modes) ando s to compute the wave modes of stiH, the global computational cost
of the WFE method remains relatively small, i&% less than FE. It must also be noticed that the
wave modes are to be computed once and for all, regardlebg &irid of boundary and coupling
conditions considered over the left or right edges of thdélshEhis interesting feature of the WFE
method enables the forced response of the global struciure tomputed many times with very

**The objective behind this averaging process is to lowernfiegnce of slight shifts among the resonance frequencies
(between the WFE and FE solutions) which are sources of higinsealthough they are of minor importance
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small CPU times (i.e., without the need to re-compute theawawdes) to investigate different kinds
of boundary and coupling conditions (parametric analysis)

Otherwise, the well-conditioning of WFE matrix formulati® has been emphasized in Section
4.4. The WFE solution can be claimed to be less sensitive to stoatiding errors of input data
provided that the condition number &f(see Eq.41)) — x(A) = ||A||2]|A ||z — is small enough.

In the present case,(A) < 10° over the whole frequency band which is completely satisfyct
from the point of view of m-digit floating point arithmeticse., the relative error for expressing
the structure behavior is expressedias—"™, wherel0~"™ is the machine precisiom{ = 32 for
many softwares) while:(A) < 10“ (« < 6 in the present case). It is worth emphasizing that the
fact thatx(A) is small, although due to the particular form of the mafkifsee Sectiod.4), is also
explained because the structure is damped: consideringampidg will have as effect to make
A singular at the resonance frequencies of the structurdinigdo infinite responses (which is of
course unrealistic).

5.3. Test case 2: two sets of two connected shells, withlatmsal springs subject to vertical
displacements, connected to one coupling element haviog-aniform curvature

The forced response of the structure depicted in Figaris investigated using the WFE method
over a frequency band Hz, 100 Hz]. Such a structure might be viewed as coarsely representing
a part of a train structure. It is composed of four rectangfit shells of same widtl2 m
(z—direction), i.e., two vertically oriented shells of lengtt m connected to twd5°—oriented
shells of length.5 m. The vertically oriented flat shells are distant fram m (x—direction) and
connected to one coupling element which represents a cshatwith a non-uniform curvature

T, The four rectangular flat shells exhibit a same thicknesgofl0~2 m and are made of steel
material (see Sectioh.2 for the material characteristics). Also, the coupling edemexhibits a
thickness oft x 1072 m and is made in aluminum (see Sectibfi for the material characteristics).
Each bottom corner of the5°-oriented flat shells is connected to three translationahgp

k, = 10" N.m~! in the threez—, y— and z—directions. The bottom ends of the vertical springs
(y—direction) are subject to vertical displacements (veetar of magnitudel0—2 m) acting in
opposite directions (see Figui®). The reference FE model of the structure is depicted inréigu
12. Here, a FE mesh involving a maximum element sizé @ m is considered which is continuous
across the coupling interfaces, leadin@670 DOFs. Such a FE mesh enables the wavelengths
to be discretized at least 3yelements (see Secti@nl).

Within the WFE framework, the flat shells — namely, shéll, 3, 4 — are meshed periodically, as
depicted in Figuré 3. Each flat shell is described by means of identical FE sutistres of length
0.1 m whose left/right boundaries invol\2¢ nodes (see FigurE3). As a matter of rule, these nodes
are uniformly spread on the substructure boundaries. A rurabN, = N3 = 26 substructures
are used to describe sheflsand 3, while N; = N, = 5 substructures are used to describe shells
1 and4. The maximum element size involved by these FE substructsr@s m which appears
coherent regarding the rule of thumbsélements (at least) per wavelength (see above). Here, mesh
compatibility is assumed between the shells. On the othed he coupling element is meshed
using shell elements of arbitrary shapes with a maximum efersize of0.08 m, disregarding the
FE mesh used to describe the connected shells. Thus the Rtesnlestween shells 3 and the
coupling element turn out to be incompatible. Such an issaeldressed by means of the strategy
depicted in Sectiof.2 (see also ref.q]).

TTThe curvature of the coupling element is actually based arbacdézier function.
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Non-flat coupling element
(aluminum) \

2
Flat shells Flat shells
(steel) (steel)

Figure 12. FE model of a structure involving two sets of twatoplanar flat shells, with translational
springs subject to vertical displacementsy()), connected to one coupling element having a non-uniform
curvature.
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Figure 13. WFE-based description of the structure depicté&dgure12, involving four flat shells (for each
shell, the direction of wave propagation is mentioned bymses oscillating arrows).

Within the WFE framework, the harmonic forced response @stinucture is computed by solving
a wave-based matrix formulation of the fol@Q = F (see Sectiod.3) which is based on Eqs3%-
36). In the present case, this matrix formulation is expressed

[ L, —Cip 0 0 0 0 TrQeet1 [F
—Cq1 /.l/{vl In1 0 —Cio /.lév2 0 0 Qlief 0
~Cymt 0 L,  —Chuy® 0 0 Q™ 0

0 0 —C8y 1y L, —Cs 13" 0 - QF | —| O
0 0 0 0 L., —Chypds Q5™ 0
0 0 —C5y 1y 0 —Cpy® Iy 5 0
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(42)

where the expressions ¢t;;}, {C}; }, {C¢; } follow from Section3, Section2.2and Appendix B.
Otherwise, the vecto®8} andF} (not mentioned in Eq.42)) relate the consideration of imposed
displacements (vectarq) at the bottom corners of shellsand4. Solving the matrix formulation
AQ = T provides the amplitudes of the wave modes traveling aloaglttells, and further on, the
displacements/rotations and internal forces/momentse,H26 incident/reflected wave modes are
considered to describe the behavior of each shell. The gtiadelocity of shell2 (measurement
point: medium of the width]l m above the bottom edge) is computed over the frequency band
[1 Hz, 100 Hz] considering397 discrete frequencies with identical frequency steps. @ace further
the CPU times associated with the computatiof©f; }, a Component Mode Synthesis / Craig-
Bampton (CMS/CB) procedure is used as detailed in @&f. Ih this framework, the dynamic
stiffness matrix of the coupling element is described bymseaz a small number of fixed interface
modes. Static modes are also invoked (see 8). [n the present casd fixed interface modes
are used. The resulting CMS/CB based WFE solution is compaitadhe reference FE solution,
when the full FE model depicted in Figufe is solved. The results are shown in Figura).
Also, the relative errors between the FE and WFE solutiovesaged ovet 5 frequency bands of
same width (see last test case), are computed. Again, bethdims of the real and imaginary
parts of the velocity vector are highlighted (see Figl#é)). It is shown that the WFE solution
perfectly agrees with the reference FE solution. In paldicihe relative errors are less thaits
over the whole frequency band. Again, this highlights tHieieihcy of the WFE strategy. It can be
used without difficulty even when coupling elements, whoseatteristics can be strongly different
from those of the shells, are dealt with. Regarding the CRIddi it takes almog®, 650 s with FE to
compute the forced response of the structure. On the otinel; ttee WFE procedure requires: (i) the
computation of wave modesd0 s); (i) the computation of the matricg<’s; } based onl0 fixed
interface modes of the coupling elemen8( s); (iii) the computation of the matrix formulation
AQ =T (800 s). As a whole, this leads t640 s, i.e.,87% CPU time saving compared to the FE
method. This highlights the relevance of the WFE method.
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Figure 14. (a) Frequency response function of the strualemgcted in Figurel2: ( ) FE reference
solution; @ e ) WFE solution. (b) Relative errors of the velocity vecter-¢—) real part; { - o - -) imaginary
part.

Comparisons with the Craig-Bampton Method

A comparison between the WFE method and the CMS/CB metbjoid proposed to predict the
dynamic behavior of the whole structure. Within the CMS/E8xiework, it is proposed to describe
each shell, as well as the coupling element, by means ot staides and fixed interface modes.
Here, the shells and the coupling element are meshed in the say as the WFE modeling (cf.
Figure 13). Also, 2 x 126 static modes and26 fixed interface modes are used to describe the
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dynamic behavior of each shell. In other words, the numbeixetl interface modes is chosen
so that it matches the number of incident/reflected wave siaded by the WFE method. Alst)
fixed interface modes are used for the coupling elementjn.¢he same way as the WFE method.
Using the CMS/CB method yields the quadratic velocity (treasurement point has been specified
above) to be calculated as shown in FigliE€a). Also, the relative error (between CMS/CB and
FE solutions) is shown in Figurgs(b) regarding the real part of the velocity vector; the resul
compared with the relative error involved by the WFE methdithough the frequency response
function seems in good agreement with the reference salutiother insights of the relative error
reveal a drawback of the CMS/CB method for predicting theatitry levels. This is particularly
true around the two main resonances of the structures {¢¥étz, 60 Hz|) when the error goes up
to 20%, as opposed to the WFE method where the error remains belgwv Also, the CMS/CB
solution appears less accurate than WFE at high frequer@tbsrwise, the condition numbeir's

of both CMS/CB and WFE matrix formulations have been ploiteligure16 to highlight further
on the accuracy of the WFE method. It is shown that the camditumber of the WFE matrix
formulation is almost00 times smaller compared to the CMS/CB method when averaged ov
the whole frequency band. This highlights the efficiencyhef WFE method, in terms of numerical
conditioning, compared to the CMS/CB method. The featutk@¥WFE matrix formulation follows
from the particular form of the matri& which has been explained in depth in Sectioh It could be
emphasized that the lack of accuracy of the CMS/CB methodbeaolved in theory by increasing
the number of fixed interface modes for the shells, which @ dwawever has the consequence of
increasing the condition number of the related matrix fdatian (this is understood since the size
of the matrix formulation is enlarged).

Regarding CPU times, it takes aroub@d s with the CMS/CB method to compute the forced
response of the structure, agaifnét0 s with the WFE method (see above). Those CPU times are
reached using an Int€ICore’™ 2 Duo processor, and MATLAB. Within the CMS/CB framework,
the static modes and fixed interface modes are computed tedgeeding shells and2 (indeed, the
fixes interface and static modes of shélland4 can be simply deduced from those of shelsnd
2). In contrast, the WFE method makes use of the same wavefbasils the shells. The fact that
the same wave basis can be used for all the shells is explgineelthe wave modes do not depend
on the lengths and boundary conditions of waveguides. Tiéesting feature demonstrates the
capability of the WFE method to involve CPU times that candakiced further, regarding structures
involving many shells.
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Figure 15. (a) Frequency response function of the struafemécted in Figurel2: (——) FE reference

solution; @ « ¢) CMS/CB solution 40 fixed interface modes for the coupling elemerit§ fixed interface

modes for each shell). (b) Relative errors for the real patti@velocity vector: {—e—) CMS/CB; (—e—)
WFE.

tiClearly, the condition number represents that of a matrixsed to compute either the wave amplitudes (WFE) (see
above) or the displacements at the interface DOFs (CMS/CB).
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Figure 16. Condition number of the matrix formulatior~) CMS/CB; (——) WFE.

5.4. Test case 3: six shells, with punctual forces, conndctene cylinder having a conical head

The forced response of the structure depicted in Fidures investigated using the WFE method
over a frequency band0 Hz, 300 Hz]. Such a structure might be viewed as coarsely representing a
part of an aircraft structure. It is composed of six rectdagflat shells involving two horizontally
oriented shells of lengtB.5 m and width0.5 m, and four45°—oriented shells of length.5 m and
width 0.3 m. These flat shells are connected to one coupling elemergseqting a cylinder of
length3 m and radiug$).25 m whose ends are respectively connected to one conical fidaiigoh

0.5 m and a disk-shaped flat cap. The shells and the coupling atezmbibit the same thickness
5 x 1072 m and are made of steel material (see Sedfi@for the material characteristics). Each
horizontally oriented flat shell is excited by a vertical ptural force (vectoF) of magnitudel0 N
acting at a location distant af5 m from the coupling element, at the middle of the shell width.
The FE model of the structure is depicted in Figlire It involves 2D triangular shell elements of
arbitrary shapes for the flat shells as well as the couplirgneht. Here, a FE mesh involving a
maximum element size @.05 m for the flat shells and the coupling element is considereidtwh
is continuous across the coupling interfaces. The glolalpm exhibits a plane symmetry (plane
(y, 2)) with regard to the main axis of the coupling element, megutiiat only half of the structure
can be studied. The number of DOFs involved by the related B&efis21, 726. Such a FE model

is considered for computing the forced response of thetstreitaken as a reference FE solution.

Fo
Flat shells /

« (steel)

Flat shells
Coupling element <« (steel)

(steel) y

x\I/.Z

Figure 17. FE model of a structure involving six non-coplditet shells, with punctual force®(), coupled
with one cylinder having a conical head.
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Within the WFE framework, the flat shells are meshed peralticas depicted in Figuré8
considering the half of the structure (see above). Hereslib# involving the punctual force is split
into two sub-shells — namely, shelland2. The need to split this shell into two sub-shells has been
explained in Sectioh.2 Each shell is described by means of identical FE substrestof length
0.05 m: the substructures of shellsand 2 involve 11 nodes over their left or right boundaries,
compared td7 nodes regarding shells and4 (see Figurel8). Those nodes are supposed to be
uniformly spread on the substructure boundaries. The maxiralement size involved by these
FE substructures i8.05 m which appears similar to the FE model depicted in FiduteAlso, the
coupling element is meshed using 2D shell elements of argishapes with a maximum element
size of0.05 m (say, in a similar way as in Figufe/). The connection between this arbitrary mesh
and the periodic meshes used to discretize the shells isdaut by means of the strategy depicted
in Section2.2 (see also ref.q]). Otherwise, mesh compatibility is assumed between teéssh

b ""4A§A‘)?/j’i‘¢ Substructure

Shell 4 Substructure

Figure 18. WFE-based description of the structure depict&dgurel7, involving four flat shells (for each
shell, the direction of wave propagation is mentioned bymse# oscillating arrows).

Within the WFE framework, the harmonic forced response @fthucture is computed by solving
a wave-based matrix formulation of the fofi@Q = I (see Sectiod.3) which is based on Eqs3%-
36). In the present case, this matrix formulation is expressed

In2 _(C§2 p’é\b 0 0 0 0 Q12“ef* ¢2(
—Cspp* L,  —Cgps° 0 —Csy py* 0 Qs 0
0 0 In,g — §3 /lév?’ 0 0 gef* = 0 ,
—C5, 13 0 —C§3 3" L, —C§, py"* 0 Q5* 0
0 0 0 0 I, —Chy il Qzeff* 0
L ~Ci " 0 —CS3 p3™ 0 —C§y py* I, JLQ™ 1 L0
(43)

where the matrice$C;;}, {C};}, {C5;} are expressed by considering Sect®rSection2.2 and
Appendix B. The vectoF; relates the punctual force (vectBp) at the interface between shells
and2. Here,66 incident/reflected wave modes for shell® and42 incident/reflected wave modes
for shells3, 4 are considered to describe the dynamic behavior of the wétaleture. Also, the
dynamic stiffness matrix of the coupling element is modelsidg the CMS/CB procedure described
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previously (last test case), by means26ffixed interface modes. The resulting WFE solution is
computed over the frequency bafid Hz, 300 Hz] using 581 discrete frequencies with identical
frequency steps. The WFE solution is compared with the eef FE solution when the full FE
model (half of the structure) depicted in Figuréis solved. The results are shown in Figi#a)
regarding the frequency response function. Also, theivelatrrors between FE and WFE solutions,
averaged ovet5 frequency bands of same width composing the whole frequbany, are shown
(see Figurel9(b)). Again, both the real and imaginary parts of the veloeéctor are considered.

It is shown that the WFE solution perfectly agrees with themafice FE solution. In particular, the
relative errors appears less th#ffi over the whole frequency band. The condition number of the
WFE matrix formulation —i.e«(A) —is almostl0* when averaged over the whole frequency band.
Again, this highlights the well-conditioning of WFE matifiarmulations.

Regarding CPU times, it takes almdst, 000 s with FE to compute the forced response of the
structure, againsi80 s with the WFE method (this includes the computation of waeeles, the
computation of the matricelsCs; } based ore0 fixed interface modes of the coupling element, the
computation of the matrix formulatiohQ = F). This leads t®7% CPU times savings compared
to the FE method. Again, this gives credit to the WFE methaoarasfficient means to describe the
forced response of structures that can be complex, eveglafieiquencies.
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Figure 19. (a) Frequency response function of the strualemgcted in Figurel7: ( ) FE reference
solution; @ e ) WFE solution. (b) Relative errors of the velocity vecter-¢—) real part; { - o - -) imaginary
part.

6. CONCLUSION

In this paper, a wave finite element based strategy has begoged for computing the forced
response of structures involving several connected rgatan flat shells. Within the WFE
framework, the shells are connected along their left ortrighundaries; also, each shell is meshed
periodically by means of identical FE substructures. Thallstynamic behavior is described by
means of numerical wave modes traveling towards and away fn@ coupling interfaces. In the
present study, those rectangular flat shells are enabledidndnted in different ways as well as they
can be connected along coupling interfaces where mesh dihifipais not necessarily assumed.
Also, the coupling interfaces are supposed to involve sd\eénds of external excitation sources
(i.e., punctual and lineic forces/moments) as well as mgichhimpedances (e.g., lineic densities
of springs). Finally, the shells are supposed to be conddot®ne or several coupling elements
whose shapes, as well as dynamic behavior, can be relatigeiplex.

A mesh tying formulation based on Lagrange Multipliers, ethidescribes the coupling
conditions between two connected shells or between sesbgrlls connected to one coupling
element, has been proposed and adapted to the WFE framéherkesulting wave-based coupling
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conditions have been formulated. A WFE strategy has begropenl to assess the forced response
of structures involving several connected shells and ¢og@lements. A CMS/CB procedure has
been used to describe the dynamic behavior of the couplemesits by means of a small number
of fixed interface modes. The WFE strategy is based on a giedad-based matrix formulation for
computing the amplitudes of the wave modes traveling albegshells. The determination of the
displacements/rotations and forces/moments within tl#ssfollows from a wave mode expansion
procedure. One feature of the proposed wave-based matmiufation is that it is well conditioned,
which particularly means that it can be used without diftiz@ven when a large number of shells
are dealt with. As a second feature, it enables the CPU timbs tonsiderably reduced compared
to the conventional FE method. The relevance of this WFHegjyahas been clearly highlighted
considering the forced response of three kinds of strustumenlving several connected flat shells
and coupling elements of variable complexities. Also, ifciefncy in terms of accuracy has been
highlighted in comparison with the conventional CMS/CB huet.

APPENDIX A. DERIVATION OF MATRICESA~®f AND Air¢
Inserting Egs.17) and (L8) in Egs. (L4) and (L5) gives
(57 QF°F — (LiBLYL,) (®5°)i QIS (A-1)
= — {(3°):iQ™ — (LBLL) (BP) i1 QT }
and
refx refx T re re . re re
_((I’F ! )i+1 i+f1 + (LiBEiT-H) [(‘I’F f)in‘ T+ (EilWZEiT) ((I’q f)in‘ f]
incx incx T inc inc . inc inc
= —{ (@) Qi + (LBLL) " [(@F)Qi + (Lawzc]) (93,8 }
+(BLL,)" Fe. (A-2)
Left multiplying Eq. (A-1) by (®2°f); " leads to
Qi — (85), " (LiBLEL) (5™ )i QI
= — {(@5);1(@7)iQi™ — (7)1 (LBLE) (8)iQET } (A-3)

while left multiplying Eq. A-2) by —(@;ef*);jl leads to

T (@) (LBLT) T [(@FQE + (LAwZL]) (@5
= — {(@) (@) QT — (@) (LBLT)"
X (@) Qi + (LiAwZLl) (@29),Q1]} — (@)1} (BLL,) Feor  (A-4)

Expressing, in matrix form, EqsA¢3) and A-4) leads to Eq.19) whereAr*f and Ai=c are given
by Egs. 20) and @1).

APPENDIX B. EXPRESSIONS OF MATRICES?;, C;;, AND VECTORSE? AND F; OVER

THE LEFT/RIGHT BOUNDARIES WHERE COUPLING CONDITIONS DO NOAPPLY

The wave-based boundary conditions on the left and righhbaries of any shellare expressed as
follows:
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e Case when two vectors of forcessrmomeilts, =F, and F., = F{, are respectively

considered on the left and right boundaries. Expressingethiectors in the local fram®g;

of the shell, i.e.(F"))x, = £,;F, and(FV ") = £,F), while invoking the wave mode
expansion?) leads to

(B°),QI" + (B57), QI = —LiF, (B-1)

(257):Q1™ + (250, Q7*" = LiFy, (B-2)
where the minus sign ahead @fF, is introduced since the left boundary of the shell
is of concern (see comment below EQ))( As a result, Eqs.R-1) and B-2) lead to
Qret* = Cr,Qi»e* + Fr (left boundary) and)r*f = C; Qi + F; (right boundary), where

(C:z — (@ref*) (q,mc*) , (C” — (q,ref) (@mc)

Fi = —(®F") 'LiFo , Fi= (@) LF. (B-3)

Case when two vectors of displacements/rotatignsnd qf, are respectively considered
on the left and right boundaries. Expressing these vectorthé local frameR,, i.e.,

@)z, = Liqo and (¢ V)%, = Liq), while invoking the wave mode expansio®) (
leads to
(q>;nc*)iQémc* + (q,;ef*)iqzref* — L’qua (8-4)
(BG)QI + (B5):QP" = Lig. (B-5)

Again, this yieldsQ*** = Cx,Qi*<* + Fr (left boundary) andd:** = C;;Qi*¢ + F; (right
boundary), where

C:z _ (@ref*) ((I>1nc*) ; C _ (@ref) (émc)
F; = (‘I);ef*)i lﬁiQO , Fi= ((I)f;ef)i lﬁiQO- (B-6)

Case when two matrices of mechanical impedafice Z, andZ = Z{, and two vectors of
forces/moment#., = F, andF., = F{, are respectively considered on the left and right
boundaries. In that case, the boundary conditions are @eduom Eq. (1) with F., |, =
According to Eq. {2), this gives

_(Fi)Ri + EiFem — ElleE? (qi)Ri =0. (B-?)
Invoking the wave mode expansia?) (eads to

(q>li=nc*)i Qz;nc* + (q,;:ef*)i Q;ref*

= (DinOLT) [((b;m*)ininc* + ((bflef*)inFef*] — L;Fy, (B-8)
( 1nc) anc (Qref)iQ?f
= —(LiAwZL]) [(F):QP™ + (B5°5),Q%] + LiFy,. (B-9)

Again, this yieldsQ:*** = C;;Qi<* + F; (left boundary) andQ:** = C;; Qi + I, (right
boundary), where

Chi = — [(@F)i — (LiiwZoL] )(®5) 1] [(®i7%); — (LiiwZoLT)(®2),]
(Cii = — [(q,;ef)i =+ (EiinE)ET @;ef)l] [ <I>1nc (E leOET)(q>1nC) ]
F = — [(@F); — (LiiwZoLT )(@5);] ' LiFy,

-1

F; = [(®F) + (LAwZL] ) (RET)] LiFy,. (B-10)
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