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Using a high-gain observer for a hybrid output feedback: finite-time and asymptotic cases for SISO affine systems

This article suggests a design method of hybrid output feedbacks for affine systems under observability and stabilizability assumptions. Our aim is to use the separation principle on systems controlled by hybrid feedback laws. We investigate two constructive methods for the high-gain observer: the first one is based on a finite-time convergence of the observation error, the second one is based on an asymptotic convergence of the observation error. We illustrate one of our main results on a well-known example: integrators chain.

I. INTRODUCTION

In recent decades, many methods have been introduced for designing output feedback laws that asymptotically stabilizes the origin of a nonlinear system (see e.g [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF], [START_REF] Andrieu | Global asymptotic stabilization for nonminimum phase nonlinear systems admitting a strict normal form[END_REF], [START_REF] Andrieu | A unifying point of view on output feedback designs for global asymptotic stabilization[END_REF], [START_REF] Astolfi | Output feedback stabilization with an observer in the original coordinates for nonlinear systems[END_REF]). More recently, thanks to the hybrid formalism described in [START_REF] Goebel | Hybrid Dynamical Systems[END_REF], new methods have been introduced to design asymptotically stabilizing hybrid state feedbacks laws. This allows to consider a larger class of system (for instance the Brockett integrator [START_REF] Brockett | Differential Geometric Control Theory, chapter Asymptotic stability and feedback stabilization[END_REF]). Moreover, hybrid state feedbacks laws may increase performances (see for instance [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF]).

The design of output feedback controllers may be obtained from an observer and a state feedback design. Note however that for nonlinear continuous systems, designing separately each of these tools leads only to local result. Following [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF], when the observer is tuned based on the robustness property of the continuous state feedback, a semi-global result may be achieved. In this paper, we extend this approach to the case in which the state feedback is hybrid.

This paper is organized as follows. In Section II, by considering stabilizability and observability assumptions, a hybrid output feedback law is designed by considering a high-gain observer which converges in finite-time. Such observers are based on the homogeneity notion (see e.g. [START_REF] Andrieu | High-gain observer with uniform in the initial condition finite time convergence[END_REF]). This type of design may imply numerical problems. In Section III, by considering different stabilizability and observability assumptions that are stronger, we etablish a second theorem that deals with a more classical high-gain observer, because it converges asymptotically. This result is illustrated by the design of an output feedback controller for an integrators chain. Section IV collects some concluding remarks. Finally the appendix collects the proofs of the main results.

Due to space limitation, some poofs are omitted.

II. FIRST SET OF ASSUMPTIONS: THE FINITE-TIME CASE

Let us consider the single-input single-output system:

ẋp = f p (x p ) + g p (x p )u y = h p (x p , u), (1) 
where

x p ∈ R np , y ∈ R, u ∈ R, f p : R np → R np , g p :
R np → R np and h p : R np × R → R are locally Lipschitz functions. We assume that the origin is an equilibrium point for [START_REF] Andrieu | Global asymptotic stabilization for nonminimum phase nonlinear systems admitting a strict normal form[END_REF].

A. Stabilizability assumption

Consider the following nonlinear hybrid system H := (F, F, J , G):

H ẋ = F (x), x ∈ F x + = G(x), x ∈ J (2) 
where F ⊂ R n and J ⊂ R n are called respectively the flow and jump sets associated to the continuous and discrete dynamics given respectively by F : R n → R n and G : R n → R n . Given a closed set A and denoting 

satisfies |x(t, j)| A ≤ α(|x(0, 0)| A ), for all (t, j) ∈ dom(x);
• the set A is uniformly globally attractive (UGA) for ( 2) if for each ε > 0 and r > 0, there exists T > 0 such that for any solution x to [START_REF] Andrieu | A unifying point of view on output feedback designs for global asymptotic stabilization[END_REF] 

such that |x(0, 0)| A ≤ r is complete and satisfies |x(t, j)| A ≤ ε, ∀(t, j) ∈ dom(x), t + j ≥ T ;
• the set A is uniformly globally asymptotically stable (UGAS) for [START_REF] Andrieu | A unifying point of view on output feedback designs for global asymptotic stabilization[END_REF] if it is both uniformly globally stable and uniformly globally attractive;

• given a set Γ, the A is uniformly semi-globally asymptotically stable with respect to Γ for (2) if A is uniformly globally asymptotically stable, by considering only initial conditions in Γ.

Inspired by [START_REF] Sontag | Stability and stabilization: discontinuities and the effect of disturbances[END_REF] and [START_REF] Prieur | Robust optimal stabilization of the Brockett integrator via a hybrid feedback[END_REF], we assume that the origin of (1) can be stabilized by a hybrid state feedback law.

Assumption 1 (Stabilizability).

There exists a hybrid controller defined by (F c , J c , f c , g c , θ c ), where F c and J c are closed sets, F c ∪ J c = R np+nc , g c : R np+nc → R nc , f c : R np+nc → R nc and θ c : R np+nc → R are continuous functions, such that the origin of the system:

ẋp = f p (x p ) + g p (x p )θ c (x p , x c ) ẋc = f c (x p , x c ) (x p , x c ) ∈ F c (3a) x + p = x p x + c = g c (x p , x c ) (x p , x c ) ∈ J c (3b)
is uniformly globally asymptotically stable.

B. Observability assumption

Following [START_REF] Astolfi | Output feedback stabilization with an observer in the original coordinates for nonlinear systems[END_REF], we define recursively the following functions for all

(x p , ṽ) ∈ R np × R np , ϕ 0 (x p , v 0 ) = h p (x p , v 0 ), ϕ i (x p , v 0 , . . . , v i ) = ∂ϕi-1 ∂xp f p (x p , v 0 ) + i-1 k=0 ∂ϕi-1 ∂v k v k+1
. for all i = 1, . . . , n p -1, where the notation ṽ = (v 0 , . . . , v np-1 ) has been used. We consider also the function

φ c : R np × R np → R np defined as φ c (x p , ṽ) =    ϕ 0 (x p , v 0 ) . . . ϕ np-1 (x p , v 0 , . . . , v np-1 )   
Given a smooth function u : [0, ∞) → R, we denote, for all x p ∈ R np and t ≥ 0,

φ(x p , t; u) = φ c (x p , u(t), . . . , u (np-1) (t)) .
where, for each k ∈ N, u (k) denotes the k-th derivative of the function u. We can now state the observability assumption employed in the first main result:

Assumption 2 (Observability for a suitable controller).

There exists a smooth controller ū : [0, ∞) → R, such that: (i) For all t ≥ 0, the function x → φ(x, t; ū) is injective on R np ; (ii) For all t ≥ 0 and for all x p ∈ R np , the matrix ∂φ(xp,t;ū) ∂xp is invertible.

Remark 1. With this property, and given a compact set of initial condition, it is possible to design a finite time highgain observer. Indeed, if (1) satisfies Assumption 2, then for each t ≥ 0, the function φ(•, t; ū) is a diffeomorphism from R np to R np . Inspired by [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF], by setting u = ū(t) and Z = φ(x p , t; ū), the system (1) can be rewritten as follows:

Ż = SZ + Bδ(Z, t) (4) 
where

Z =      z p1 z p2 . . . z pn p      , S =         0 1 0 . . . 0 0 0 1 . . . 0 . . . . . . . . . . . . . . . 0 0 . . . . . . 1 0 . . . . . . . . . 0         , B = 0, • • • , 0, 1 T and δ : R np × [0, ∞) → R is a nonlinear
continuously differentiable function. Following [START_REF] Andrieu | High-gain observer with uniform in the initial condition finite time convergence[END_REF], for all compact set of initial conditions and for all T > 0 it is possible to design an observer which converges in time T .

Under Assumptions 1 and 2, we are interested in the design of a hybrid output feedback law that makes the origin of the system (1) semi-globally asymptotically stable by coupling the state feedback considered in Assumption 1 and a finite-time high-gain observer that will be obtained from Assumption 2.

Coupling Assumptions 1 and 2 together with a temporal timer and a high-gain strategy as in [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] yields the following hybrid system:

       ẋp = f p (x p ) + g p (x p )U(x p , x c , σ) ẋc = f c (x p , x c ) ẋp = ψ p (x p , x c , σ, U, y) σ = s(σ) (x p , x c , σ) ∈ F c × [0, T ] (5a) 
         x + p = x p x + c = g c (x p , x c ) x+ p = xp σ + = σ (x p , x c , σ) ∈ J c × [T, +∞) (5b) where U = U(x p , x c , σ) is such that U = ū(σ) if σ ≤ T and u = θ c (x p , x c ) if σ > T ,
ψ p is a continuous vector field to be designed, σ stands for the timer state and s

: [0, ∞) → [0, ∞) is a smooth function such that s(σ) = 1 for σ ≤ T and s(2T ) = 0.
C. First main result Theorem 1. (Attractivity for appropriate initial timer states) Under Assumptions 1 and 2, for all compact sets Γ ⊂ R np , there exist a positive real number T and a function ψ p such that by focusing on solutions satisfying σ(0) = 0, the origin of ( 5) is attractive with a basin of attraction containing Γ × {0}. More precisely, for all x ♯ ∈ Γ, the solutions of (5) starting from (x p (0), x c (0), xp (0), σ(0)) = (x ♯ , 0, 0, 0)

converge to {0} × [0, 2T ].
The proof of this result is omitted due to space limitation. Remark 2. Let us emphasize that the property written in Theorem 1 is not the uniform semi-global asymptotic stability since only solutions of ( 5) with initial conditions satisfying σ(0) = 0 are considered, and since we were not able to state the stability property. Remark 3. By exploiting the high-gain observer and the timer, a convergence of the error observation is obtained in finite time. Roughly speaking, the designed output feedback controller first observes the state and then stabilizes it. Therefore this approach allows to exclude the Zeno solutions, and impose that the solutions follow a continuous time dynamics during T units of time, so that the observer is able to converge.

III. SECOND SET OF ASSUMPTIONS: THE ASYMPTOTIC CASE

A. Stabilizability Assumption

In this section, we consider an approach similar to the one of [START_REF] Teel | Global stabilizability implies semi-global stabilizability by output feedback[END_REF]. Indeed, based on some hybrid stabilizability assumption and observability assumption, we obtain semiglobal asymptotic stabilizability of the origin. Note however that due to some particular effects of hybrid dynamics (for instance Zeno solutions) we require a persistent flow condition on the stabilizing state feedback.

Assumption 3 (Persistent flow stabilizability).

There exist a hybrid controller (F c , J c , f c , g c , θ c ), a real λ in (0, 1] such that the set {0}×[0, 1] in R np+nc ×[0, 1] is uniformly globally asymptotically stable for the following system

     ẋp = f p (x p ) + g p (x p )θ c (x p , x c ) ẋc = f c (x p , x c ) σ = 1 -σ (x p , x c , σ) ∈ F c × [0, +∞), (6) 
     x + p = x p x + c = g c (x p , x c ) σ + = 0 (x p , x c , σ) ∈ J c × [λ, +∞). (7)
Remark 4. This assumption is related to the notion of persistent flow, which charaterizes that a small dwell time λ > 0 should exist between two successive jumps.

B. Observability Assumption

Moreover, in this context, we need an observability assumption uniform in the control input.

Assumption 4 (Complete Uniform Observability). System (1) is completely uniformly observable, that is (i) For all ṽ in R np , the function x p → φ c (x p , ṽ) is injective on R np ; (ii) The matrix ∂φc(xp,ṽ) ∂xp

is invertible for all (x p , ṽ) ∈ R np × R np .

C. Second main result

With the previous assumptions, it holds the following: Theorem 2 (Semi-global asymptotic stability). Assume there exists a function γ such that, for all (x p , x c ) in J c , we have:

|g c (x p , x c )| ≤ γ(|x c |) . ( 8 
)
Under Asumptions 3 and 4, the origin of system ( 1) is uniformly semi-globally asymptotically stabilizable by a hybrid dynamic output feedback. More precisely, for all compact sets Γ contained in R np , there exist a C 1 function Ψ p : R np × R × R → R and a positive real number c x such that the set {0} × [0, 1] in R 2np+nc × [0, 1] is uniformly asymptotically stable for the system

               ẋp = f p (x p ) + g p (x p )u ẋp = Ψ p (x p , y, u) ẋc = f c (x p , x c ) σ = 1 -σ y = h p (x p , u) , u = θ c (x p , x c ) (9) 
(x p , x c , σ) ∈ F c × [0, +∞)          x + p = x p x+ p = xp x + c = g c (x p , x c ) σ + = 0 (x p , x c , σ) ∈ J c × [λ, +∞). (10)
where 1 xp = Sat cx (x p ) , [START_REF] Liu | Eigenstructure Assignment for Control System Design[END_REF] with basin of attraction containing

Γ × {0} × R + (which is a subset of R 2np+nc × R + ).
Remark 5. Note that the timer avoids Zeno solutions. See e.g [START_REF] Johansson | On the regularization of Zeno hybrid automata[END_REF] and [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF].

The main steps of the proof can be found in Appendix A.

D. Example: integrators chain

We want to illustrate the Theorem 2 by applying it on the system ẋp1 = x p2 , ẋp2 = u + x 2 p2 and y p = x p1 , with the set Γ = {x p ∈ R 2 : x p1 ≤ 50, x p2 ≤ 50}. Because this system has the same structure as (4), Assumption 4 holds.

We design a global controller:

u g = -x p1 -x 2 p2 -k 1 x p2 - k 2 (x p2 + k 1 x p1 ),
where k 1 = 1 and k 2 = 2. We focus on the linearization around the origin and design a more efficient controller (u l = -Kx p , where K is a matrix with appropriate dimensions and computed with a pole placement method, as described in e.g. [START_REF] Liu | Eigenstructure Assignment for Control System Design[END_REF]). By uniting these two controllers thanks to a discrete variable x c ∈ [0, 1] (see e.g [START_REF] Prieur | Uniting local and global controllers with robustness to vanishing noise[END_REF]) and setting λ = 0.01, we get a hybrid controller that satisfies Assumption 3. Let us numerically compute the solutions whose initial conditions are x # p = (20, 10) and x # c = 0. The phase portrait of the plant state and the time-evolution of x c -variable are respectively given in Figures 1 and2. The stabilization is illustrated by Fig. 1. It is checked on Fig. 2 that there is no Zeno solution. 

IV. CONCLUSION

In this paper, two techniques are proposed to design a hybrid output feedback controller. Both methods combine an observer and a hybrid stabilizing state feedback law. The first case considers a finite-time converging observer, whereas the second method suggests to use a high-gain controller asymptotically converging to the state. The asymptotic design is illustrated on a nonlinear control system. This work lets different questions open. The first one is the relaxation of the persistent flow condition considered in Assumption 3 used in the second main result. This may be done by applying robustness arguments. Moreover the applications of these results to other nonlinear control systems are under actual investigation.

APPENDIX

A. Proof of Theorem 2 1) Lower bounded existence time in a compact set:

This subsection is devoted to the tunning of the saturating parameter c x and to the construction of some sets. Indeed the construction of the observer is based on the construction of a specific set that needs to be selected in an appropriate way taking into account jumps that may occur due to the hybrid dynamics. Along this subsection, we consider the system defined by, for all (x p , x c , σ) in

(F c ×R + )∪(J c ×[λ, +∞)),      ẋp = f p (x p ) + g p (x p )θ c (ω, x c ) ẋc = f c (ω, x c ) σ = 1 -σ (ω, x c , σ) ∈ F c × [0, +∞), (12) 
     x + p = x p x + c = g c (ω, x c ) σ + = 0 (ω, x c , σ) ∈ J c × [λ, +∞), (13) 
where ω is an external time function in L ∞ loc ([0, +∞); R np ). Note that in the particular case where ω = xp , which is defined in [START_REF] Liu | Eigenstructure Assignment for Control System Design[END_REF], the solution to system (12)-( 13) (without the dynamics xp ) is also solution to system (9)- [START_REF] Johansson | On the regularization of Zeno hybrid automata[END_REF].

To define the set of interest, consider V : R np+nc+1 → R + a continuously differentiable positive definite and proper Lyapunov function associated to the hybrid stabilizing state feedback of Assumption 3. Hence a real α in (0, 1) exists such that V verifies:

V (x p , x c , σ) = 0 ⇒ x p = 0 , x c = 0 , σ ∈ [0, +∞) and ∂V ∂x (x)F (x) ≤ -V (x), ∀x ∈ F c × [0, +∞) V (G(x)) -V (x) ≤ -αV (x), ∀x ∈ J c × [λ, +∞) (14) 
where we used the compact notation x = (x p , x c , σ) and

F (x) =   f p (x p ) + g p (x p )θ c (x p , x c ) f c (x p , x c ) 1 -σ   , G(x) =   x p g c (x p , x c ) 0   .
Let m = max xp∈Γ,σ∈[0,λ] V (x p , 0, σ) and consider the following compact sets:

D m := {x ∈ R np+nc+1 , V (x) ≤ m}, D l1 := {x ∈ R np+nc+1 , V (x) ≤ l 1 }, (15) 
where l 1 > m. Consider also the set

D + l1 = {(x p , x c , 0) ∈ R np+nc+1 , ∃(x - c , σ -) ∈ R nc+1 , |x c | ≤ γ(|x - c |), (x p , x - c , σ -) ∈ D l1 }. We finally define the two last sets D l2 = {x ∈ R np+nc+1 , V (x) ≤ l 2 } and D n := {x ∈ R np+nc+1 , V (x) ≤ n} where l 2 > l 1 is such that D + l1 ⊂ D l2
and where n > l 2 . Let us now establish the following property for solutions of system ( 12)-( 13) initiated from D m . Lemma 1. (Lower bounded existence time of solution in D n ) Let c x = max (xp,xc,σ)∈Dn {|x p |}. There exists T min > 0 such that for all ω in L ∞ loc ([0, +∞); R np ) with ω(t) ≤ c x for all t in [0, T min ], and all x # := (x # p , x # c , σ # ) in D m , all solutions x(•, •) of ( 12)-( 13) with x(0, 0) = x # and all (t, j) in dom(x) then x(t, j) ∈ D n for all t ≤ T min .

Proof. Let V the positive real numbers defined by

V = max x∈Dn,|ω|≤cx ∂V ∂x (x)F ω (x, ω)
where

F ω (x, ω) =   f p (x p ) + g p (x p )θ c (ω, x c ) f c (ω, x c ) 1 -σ   .
In the remaining part of the proof, we show that Lemma 1 holds with T min chosen as any positive real number satisfying

T min < inf -ln(1 -λ), l 1 -m V , l 2 -n V .
Let x # be in D m and let x be a solution of system ( 12)-( 13) whose initial conditions are x # . For all (t, j) in dom(x), we denote V(t, j) = V (x(t, j)).

Let (t, j) in dom(x) such that t ≤ T min . To prove the lemma, we need to show that x(t, j) is in D n . First of all, we show that j ≤ 1. Indeed, assume j ≥ 2. This implies that there exist t 0 and t 1 such that 0 ≤ t 0 < t 1 ≤ t such that (t 0 , 0), (t 0 , 1), (t 1 , 1), (t 1 , 2) are in dom(x). Note that σ(t 0 , 1) = 0 and σ(t 1 , 1) = λ. Moreover, for all s in [t 0 , t 1 ], (s, 1) is in dom(x) and that ∂σ ∂t (s, 1) = 1σ(s, 1). Hence, t ≥ t 1t 0 = -ln(1λ) ≥ T min . Hence this is impossible, and therefore j ≤ 1.

So two cases may be distinguished. j = 0 This implies that s ∈ [0, t] → x(s, 0) is a continuous mapping with x(0, 0) in D n ⊂ D l1 

∂V ∂t (s, 0) = ∂V ∂x (x(s, 0))F ω (x(s, 0), ω(s)) ≤ V .
This gives

V(t * , 0) ≤ V t * + V(0, 0) ≤ V T min + m < l 1 .
Hence x(t * , 0) is in the interior of D l1 . It yields that there exists ε > 0 such that x(t * + ε, 0) is in the interior of D l1 which contradicts the fact that t * is an extremum. j = 1 This implies that there exists t 0 in [0, t] such that (t 0 , 0) and (t 0 , 1) is in dom(x). Following the first case study, it is possible to show that x(t 0 , 0) is in D l1 . Moreover, we have x p (t 0 , 1) = x p (t 0 , 0) and, due to [START_REF] Goebel | Hybrid Dynamical Systems[END_REF] x c (t 0 , 1) = g(x c (t 0 , 0), w(t 0 )) ≤ γ(x c (t 0 , 0)) .

This implies that x(t 0 , 1) ∈ D + l1 . Note that [t 0 , t] → x(s, 1) is a continuous mapping with x(t 0 , 1) in D l2 ⊂ D n . As in the previous case, we define t * , the largest time in [t 0 , t] such that x(s, 1) is in D n (i.e. t * = max s∈[t0,t],x(ℓ,1)∈Dn,∀ℓ∈[t0,s] {s}). Note that if t * = t then this implies that x(t, 1) is in D n , hence the result. Assume t * < t. This implies that, for all s in [t

0 , t * ], it holds ∂V ∂t (s, 1) = ∂V ∂x (x(s, 1))F ω (x(s, 1), ω(s)) ≤ V .
This implies

V(t * , 1) ≤ V t * + V(t 0 , 1) ≤ V T min + l 2 < n .
Hence x(t * , 1) is in the interior of D n and following the previous case, we get a contradiction. This concludes the proof of Lemma 1.

2) Robustness margin in the compact set:

Lemma 2. (Robustness margin) Under Assumption 3, let V be a function which satisfies [START_REF] Sontag | Stability and stabilization: discontinuities and the effect of disturbances[END_REF]. Let D n be defined in the previous section. There exist a class K function ρ and a positive real number ε r such that, for all e ∈ R np , with |e| ≤ ε r and all (x p , x c , σ) in D n the following relations hold. This concludes the proof of Lemma 2.

• If (x p + e, x c , σ) ∈ F c × [0, +∞) ∂V ∂x (x)   f p (x p ) f c (x p + e, x c ) 1 -σ   + ∂V ∂x ( 
3) Tuning the high-gain observer: In this subsection we design a high-gain observer for the system (1) in the form ẋp = Ψ p (x p , y, u) .

(18)

The function Ψ p is selected to estimate the state x p for initial conditions in the set Moreover, the observer has to be designed such that the estimation error is smaller than the stability margin of the

D np = {x p ∈ R np , ∃(x c , σ) ∈ R nc × R + , (x p , x c ) ∈ D n } .

  F c and J c are computed from the local version of the basin of attraction. Note that we can find a function γ such that |g c (x p , x c )| := |1x c | ≤ γ(|x c |) We tune the observer xp = f p (x p ) + g p (x p )θ c (x p , x c ) + k(y p , ŷp ) where: k(y p , ŷp ) := -280 -2 * 280 2 (y p -ŷp ).

Fig. 1 .

 1 Fig. 1. Phase portrait of the plant state xp. The two main jumps of the xc-variable are marked by a circle 1 Given a positive real number c, Satc : R n → R n is the saturating vector function defined by Satc(0) = 0 and Satc(x) := x min n 1, c |x| o , ∀x = 0.

Fig. 2 .

 2 Fig. 2. Time-evolution of the xc variable. The two main jumps are marked by a circle.

2 V 2 V 2

 222 x p + e, x c ) ≤ -1 (x p , x c ) + ρ(|e|) (16)• If (x p + e, x c , σ) ∈ J c × [λ, +∞) V (x p , g c (x p + e, x c ), 0) -V (x p , x c , σ) p , x c , σ) + ρ(|e|)Proof. Employing (14), the set D n being compact and the functions (F, G, V ) being continuous, there exists ε r such that for all |e| ≤ ε r and (x p , x c , σ) in D n then:• If (x p + e, x c , σ) in F c × [0, +∞), ∂V ∂x (x)F (x) ≤ -1 (x) , • If (x p + e, x c , σ) in J c × [λ, +∞) V (G(x)) -V (x) ≤ -1 2 αV (x), ∀x ∈ J c × [0, λ] .Consider now the strictly increasing function ρ : [0, ε r ) → [0, +∞) as the function ρ(s) ≥ max max (xp+e,xc,σ)∈Dn∩Fc×R+,|e|≤s ν 1 (x, e) , max (xp+e,xc,σ)∈Dn∩Jc×R+,|e|≤sν 2 (x, e) x p ) f c (x p + e, x c ) c (x p + e, x c )θ c (x p , x c )) (x, e) = V (x p , g c (x p + e, x c ), 0) -V (x p , g c (x p , x c ), 0).

  and the control input u is a measurable function such that |u(t)| ≤ ū with ū = max xp∈Dnp,(xc,σ)∈Dnc θ c (x p , x c ) whereD nc = {(x c , σ) ∈ R nc+1 , ∃x p ∈ R np , (x p , x c ) ∈ D n }.

  . Hence we can define t * , the largest time in [0, t] such that x(s, 0)is in D l1 (i.e. t * = max s∈[0,t],x(ℓ,0)∈D l 1 ,∀ℓ∈[0,s] {s}).Note that if t * = t then this implies that x(t, 0) is in D l1 , hence the result. Assume t * < t. This implies that for all s in [0, t * ] we have
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The proof of this result is omitted due to space limitation. 4) Proof of Theorem 2: Consider the positive real number c x obtained in Lemma 1 and the function k obtained in Lemma 3. In the first part of the proof, we show attractivity of the set {0}×[0, 1] in R 2np+nc ×[0, 1] along the solutions to system (9)-( 10) whose initial conditions are in Γ×{0}×R + .

Let

and defined on its time domain denoted dom # . Note that the system ( 9)-( 10) can be rewritten as the hybrid system ( 12)-( 13) with ω = Sat cx (x p ) and xp is given with the observer (18).

With Lemma 1 and with the σ dynamics (persistent flow), we know that there exists j 0 such that (T min , j 0 ) is in dom # and for all (t, j) in dom # with t ≤ T min then (x p (t, j), x c (t, j), σ(t, j)) is in D n . Note moreover that this implies that for all (t, j) in dom # with t ≤ T min then the control input satisfies |u(t, j)| ≤ ū. With Lemma 3, we get that the observer state is well defined for all (t, j) in dom # with t ≤ T min . Moreover, for all (t, j) in dom # with t ≥ T min , |x p (t, j) -xp (t, j)| ≤ c e .

We can now show that for all (t, j) in dom # , x(t, j) is in D n . We will argue by contradiction to prove this assertion. By assuming that it is false, two cases may occur.

1) The solution escapes D n when flowing. Hence, there exists (t 0 , j 0 ) in dom # such that (x p , x c , σ)(t 0 , j 0 ) is in D n and for all ε > 0 there exists δ < ε such that (t 0 + δ, j 0 ) is in dom # and (x p , x c , σ)(t 0 + δ, j 0 ) is not in D n . Note that this implies that (x p , x c )(t 0 , j 0 ) is at the boundary of D n . Consequently, this implies V(t 0 , j 0 ) = n. Note moreover, that keeping in mind that |x p (t 0 , j 0 )-xp (t 0 , j 0 )| ≤ c e ≤ ε r we get employing Lemma 2 ∂V ∂t (t 0 , j 0 ) ≤ -1 2 V(t 0 , j 0 )+ρ(c e ) ≤ -n 6 . This implies that the function s → V(t 0 + s, j 0 ) is strictly decreasing. It contradicts the existence of small ε.

2) The solution escapes D n when jumping. Hence, there exists (t 0 , j 0 ) in dom # such that (x p , x c , σ)(t 0 , j 0 ) is in D n and (x p , x c , σ)(t 0 , j 0 + 1) is not in

)n < n. This is a contradiction with the escape of the solution from D n . Consequently, for all (t, j) in dom # , we have x(t, j) is in D n . Note that the timer forces the t component of the time domain to be unbounded. Hence, thanks to the Lemma 3, lim t+j→+∞ |x p (t, j)x p (t, j)| = 0. We get the result employing the triangular structure of the system with the ISS property in D n (i.e. Lemma 2).

To conclude the proof, let us prove the stability property. From the same argument, the set

is invariant along solutions for sufficiently small v 0 , is an open set and contains {0} × [0, 1] in R 2np+nc × [0, 1]. Note moreover that for all neighborhoods of {0} × [0, 1] in R 2np+nc × [0, 1] there exists v 0 sufficiently small such that S v0 is included in it. This allows to conclude stability of the set R 2np+nc × [0, 1], and the proof of Theorem 2.