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Anomalous Josephson Current in Junctions with Spin-Polarizing Quantum Point Contacts
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We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas
with Rashba spin-orbit coupling. The point contact acts as aspin filter when embedded in a circuit with normal
electrodes. We show that with an in-plane external magneticfield an anomalous supercurrent appears even
for zero phase difference between the superconducting electrodes. In addition, the external field induces large
critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.

PACS numbers: 74.45.+c, 71.70.Ej, 72.25.Dc, 74.50.+r

Josephson junctions (JJ) are the basic building blocks for
superconducting electronics with applications that rangefrom
SQUID magnetometers to possible quantum computing de-
vices. In superconductor-normal metal-superconductor (S-
N-S) junctions the supercurrent flow is due to the Andreev
states—a coherent superposition of electron and holes states.
These states depend on the electronic structure of the normal
material and on the properties of the S-N interface [1, 2, 3, 4].
Modern technologies based on two dimensional electron gases
(2DEGs) [5, 6] or nanowires [7] allow for a precise control
of such electronic properties, and thus of the JJ characteris-
tics. Moreover, spin-orbit (SO) effects offer new alternatives
to control the spin and charge transport [8, 9].

Superconducting rectifiers are among the new devices pro-
posed and studied during the last few years. Most of these pro-
posals are based on the dynamics of vortices [10, 11]. Here we
show that in systems with SO-coupling rectifying properties
can be obtained by controlling the spin of the Andreev states.
To this end we consider a ballistic JJ with a quantum point
contact (QPC) in a 2DEG with SO interaction. The QPC can
be tuned to control the number of transmitting channels and
thus the critical current of the junction [3, 4, 5, 12, 13]. On
the other hand, the QPC with SO coupling may act as a spin
filter producing spin-polarized currents when embedded in a
circuit with normal leads [14, 15, 16]. The normal current
also generates an in-plane magnetization—perpendicular to
the current —as well as out-of-plane spin-Hall textures [17].
Both effects are maximized at the core of the QPC [18]. As
the SO-coupling preserves time-reversal symmetry (TRS), we
expect that these peculiarities of the transmitting channels do
not harm the Josephson effect when the leads become super-
conducting. However, the Josephson current itself breaks the
TRS and, as we show below, it reveals striking effects of the
SO-coupling. For example, the supercurrent generates spin
polarization in the 2DEG [19] and the QPC in a similar way
normal current does [17, 18]. This is due to the distinctive
spin texture of each Andreev state that contributes to the local
magnetization in a supercurrent-carrying state.

More striking effects take place if an external in-plane mag-
netic field is applied. Its effect on the supercurrent character-
istics depends on the nature of the junction. In the absence

of SO-coupling, the Zeeman field may generateπ-junctions
resembling the case of S-ferromagnet-S junctions [1, 20]. For
systems with SO-coupling, the existing theories include the
description of perfectly contacted 2DEG junctions [21], wide
junctions [22], 1D-conductors [23] and junctions with quan-
tum dots [24, 25]. In our case, the QPC, the internal SO field
and the external Zeeman field conspire to reveal novel effects.
Remarkably, we find a critical currentIc that depends on the
current flow direction. With more than one transmitting chan-
nel, the QPC can be tuned to show either a largeIc asymmetry
or a perfect symmetry. In this regime the JJ can act as a su-
percurrent rectifier [10, 11]. At the origin of this effect isthe
anomalous supercurrent—proportional to the external field—
that appears even for zero phase differenceφ between the
two superconducting leads [20, 23]. Devices based on InAs-
related materials, that present strong gate-tunable Rashba SO-
coupling are good candidates to look for these effects [5, 6].
In what follows we present the main results of the theory.
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FIG. 1: (a) Schematic view of the junction. Panels (b) and (c)corre-
spond to QPC1 and QPC2 simulated with gates placed atz=30 and
90 nm on top of the 2DEG, respectively. The conductance with ideal
2DEG electrodes (dotted line), with the metallic electrodes described
in the text (thick line) and the current polarizationP (thin line) are
shown. The Rashba coupling strength isα=20 meVnm.
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The total Hamiltonian of the system reads

H=HQPC +HR +HL +HC , (1)

hereHQPC describes the central 2DEG with the QPC (see
Fig.1(a)). In the effective mass approximationHQPC =
(p2x + p2y)/2m

∗ +α/~(pyσx − pxσy) +V (x, y)− gµB~σ ·B,
where the first two terms are the kinetic energy and the Rashba
SO-coupling, respectively, andV (x, y) is the confinement po-
tential that defines the QPC. We use a potential that simulates
the effect of two electrodes held at a distancez from the 2DEG
[26], with a gate voltage controlling the height,Vg, of the po-
tential barrier at the center of the QPC. The last term inHQPC

is the Zeeman energy. The HamiltoniansHR andHL describe
the right and left superconducting electrodes with an orderpa-
rameter∆R/L=∆0e

±iφ/2. Finally,HC describes the contact
between the superconductors and the 2DEG.

For the numerical calculations we discretized the space,
mapping the Hamiltonian (1) onto a tight-binding-like model.
We use a square lattice with hopping matrix elementstN and
tS for the normal (2DEG) and superconducting materials, re-
spectively [27]. The microscopic parameters of the normal re-
gion correspond to InAs-like materials [5]: the effective mass
is m∗ = 0.045me and the electron densityn ∼ 1012cm−2

(the Fermi energy isEF ∼ 53 meV). We take the total length
of the junctionL = 1.2µm and analyze two point contacts
denoted as QPC1 and QPC2 corresponding to different val-
ues ofz. We use∆0 = 1.5 meV and the coherent length
ξ0 = ~vsF /∆0 = 43 nm corresponding to Nb films,vsF is the
Fermi velocity of the superconductor [5, 6].

We evaluate the normal and anomalous propagators that
contain the information of all the physical quantities of in-
terest. For∆0 =0 the normal conductanceG=

∑

σ,σ′ Gσ,σ′

is evaluated using the conventional Landauer-like formulation
[26]. HereGσ,σ′ is the contribution to the conductance due to
incident electrons with spinσ that are transmitted with spin
σ′. The spin polarization of the current is defined asP =
∑

σ(Gσ,↑−Gσ,↓)/G. These quantities characterize the QPC
in the normal state. For∆0 6= 0 we calculate the Josephson
current flowing through the right N-S interface, [27]

I(φ)=i
e

~

∑

i∈N,j∈S

[ti,jSN

〈

ψ†(xj)ψ(xi)
〉

−tj,iSN

〈

ψ†(xi)ψ(xj)
〉

]

(2)
herexi andxj are coordinates at the edge of the 2DEG and
the superconducting electrode, respectively,ti,jSN is the hop-
ping matrix element connecting neighboring sites at the in-
terface and the field operatorψ†(x)= (ψ†

↑(x), ψ
†
↓(x)) creates

an electron at coordinatex. We chooseti,jSN = (tN + tS)/2,
decreasing this value increases the normal scattering at the in-
terface producing narrow resonances within the central 2DEG
region with strong influence on the Josephson current [13].

The zero-field case: The normal conductance of the system
presents clear structures on top of the plateaus, shown in Fig.
1(b) and 1(c) as broad resonances originated in the scattering
at the electrode-2DEG interfaces. As shown in the same figure
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FIG. 2: (a) Current-phase relation (CPR) for different gatevoltages
in QPC1. (b) Critical current and conductance as function ofVg. The
points labelled with letters indicate the parameters of thecurves of
panel (a). In (c) and (d) color maps of the y and z magnetization
calculated with the critical current of curve C of panel (a) are shown.
The SO strength isα=20 meV.nm and the lattice parameter isa0 =
3nm.

these QPCs generate spin-polarized currents with a polariza-
tion P in the range[0-0.6] depending on the strength of the
SO-coupling and the number of transmitting channels.

For superconducting contacts, the current-phase relation
(CPR) is shown in Fig. 2 for different values of the param-
eters. We observe two characteristic CPR: resonant-like and
tunnelling-like (sinusoidal) relations. AsVg changes the junc-
tion alternates between these two behaviors. The critical cur-
rent Ic is defined as the maximum current in the CPR. The
dependence ofIc and the conductance of the normal stateG
on Vg is shown in Fig. 2(b). The structure of both curves is
similar with the peaks located at the same position showing
that the maximums ofIc are due to one-electron resonances
[4]. The structure of the Andreev spectrum includes a num-
ber of (dispersive) states with phase-dependent energies and
(non-dispersive) states confined at each side of the constric-
tion, details will be presented elsewhere [28]. When there is
only one transmitting channel, the Josephson current is domi-
nated by a single (spin) pair of dispersive Andreev states. As
Vg decreases and the QPC opens, the current is the superposi-
tion of contributions due to different pairs of states.

Due to the SO-coupling each Andreev state has a well de-
fined spin texture which in the presence of a supercurrent con-
tributes to the local magnetization. As an illustration we cal-
culate the magnetization components〈Sy(xi)〉 and〈Sz(xi)〉
for all the lattice sites within the 2DEG. As shown in Fig. 2(c)
and 2(d), the supercurrent-induced steady magnetization has
an in-plane component perpendicular to the current direction
and an out-of-plane component with the spin-Hall structure
[17, 19].
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FIG. 3: CPR for QPC1 (panels (a) and (c)) and QPC2 (panels (b)
and (d)) with an external field ofgµBB=0.3 meV. In (a) and (b) the
QPC heightVg is set to follow a resonance at the first conductance
plateau for different values of the SO couplingα (in meVnm). In (c)
and (d) theI(φ) for different Vg (in meV) at the second and third
plateaus are shown. Note the asymmetry betweenI(φ) > 0 and
I(φ) < 0.

Effect of external in-plane magnetic fields: The spin tex-
ture of each Andreev state has a component along they-
direction. In general, for a spin-polarizing QPCs, a pair of
dispersive Andreev states—indicated by|+〉 and |−〉—have
〈+|Sy|+〉 6= −〈−|Sy|−〉. Consequently, with an external
field B in they-direction the absolute value of their Zeeman
shifts is different. The effect is illustrated in Fig. 3(a) and
3(b). In QPCs with a single transmitting channel we follow
a resonance as the SO-couplingα is increased. For smallα
we observe the characteristic behavior of a resonant state in
the presence of a field. The distance between the step-like
changes of the current is a measure of the Zeeman splitting.
As α increases the Zeeman shift of one of the Andreev states
decreases and changes sign (the step-like structure crosses the
φ = π point). In the largeα limit 〈+|Sy|+〉 ≈ 〈−|Sy|−〉
and the CPR shows a single step. In this limit, the QPC acts
as a very efficient spin filter in the first plateau [14, 18]: all
transmitted electrons have essentially the same spin orienta-
tion. This results in an anomalous supercurrent forφ=0. To
estimate it, we may assume a smooth QPC and evaluate the
phase shiftϑn(E) acquired by an electron travelling from one
superconducting electrode to the other in the WKB approxi-
mation. Inϑn(E) the indexn=± is the channel index andE
is the energy measured from the Fermi energy. For smallE
we have

ϑn(E) ≈ kFλn +
E

~vF
δn, (3)

herekF (vF ) is the Fermi wavevector (velocity) in the 2DEG,
λn . L and δn & L are related to the effective length of
the junction at the Fermi energy. Assuming that at resonance
the scattering at SN interface plays no important role we have
[23]

I(φ)=
evF
π

∑

n

1

δn
Ω(φ+ µn

B

∆n
), (4)

hereΩ(x) is a periodic function withΩ(x) = x for |x| <
π, ∆n = ~vF /δn and µnB is the Zeeman shift. Then,
in Fig. 3(a) and 3(b) the step-like structures correspond
to φ = π − µnB/∆n and the anomalous currentI(0) =
(2e/h)

∑

n µnB is given by the total Zeeman energy of the
transmitting channels—note it does not depend onL. Non-
linear effects with larger anomalous currents occur for large
fields if µnB/∆n > π for some of the channels. We consider
only the linear regime in which the current cancels for a phase
ϕ= πI(0)δ+δ−/evF (δ+ + δ−). Thisϕ−junctions in a ring
geometry generates a spontaneous current with a fraction of
a vortex threading the ring. Let us point out that the Zeeman
field couples to the momentum through the SO-coupling, act-
ing as a gauge field that generate aϕ-junction. Yet, this kind
of symmetry argument is not sufficient, and the adiabatic QPC
here plays an essential role in filtering and coherently mixing
very few transverse channels. Indeed, no such effects have
been obtained in wide junctions [21] and quantum dots [24].
An exception is Ref. [23] were a 1D case was considered.

As in the zero-field case, a small change inVg shifts the
resonance fromEF and the current becomes a smooth func-
tion of the phase, characteristic of a non-resonant junction.
Remarkably, with more than one pair of transmitting chan-
nels the CPR presents new effects, displayed for instance in
the second conductance plateau, Fig. 3(c) and 3(d). In Fig.
3(c), we show a value ofVg for which two resonances—with
different values of their parametersµn andδn—lie atEF .

ChangingVg shifts each resonance by a different amount.
The total CPR now results from the superposition of contribu-
tions with different step-like structures and differentϕ-shifts.
This leads to a critical currentIc that depends on the current
direction. We define the critical current asymmetry asI+c /I

−
c

whereI+c andI−c are the critical currents for each flow direc-
tion. Figure 4 shows that for physical values of the param-
eters a large asymmetry can be obtained by tuning the gate
voltage. The magnitude of the asymmetry depends on the
detailed structure of the dispersive Andreev states, whichis
determined by the interplay between the SO-coupling, the ex-
ternal field and the QPC potential (see figs. 4(c) and 4(d)). We
found that the asymmetryI+c /I

−
c can be larger than 3. These

large assymmetry values are the main result of our work.
In summary, we have shown that a spin-polarizing QPC

brings new physics to the JJs. While the most relevant effectis
the new mechanism to generate critical current asymmetries,
the device shows other interesting properties that highlight the
effects of the SO-coupling on the Andreev states:i) the super-
current generates a magnetization in the 2DEG, being larger
at the core of the QPC;ii ) an external in-plane magnetic field
induces an anomalous current at zero phase difference (aϕ-
junction) [23]. In the latter case, we obtainπ-junctions for
some values of the gate voltage (as forα= 0), while in gen-
eralϕ < π. Such junctions, tunable both by an external flux
and a Zeeman field, may have applications in SQUIDs or su-
perconducting quantum bits. With more than one transmit-
ting channel, the external field induces a large critical current
asymmetry if the QPC potentialVg is properly tuned. Even



4

FIG. 4: Critical current asymmetry vs.Vg for QPC1 (a) and QPC2
(b) and different values ofα (in meVnm) with the same applied field
of Fig. 3. The conductance of the QPCs is also shown (dotted line).
The lower panels are maps of the supercurrent for QPC1 withα=20
(c) and QPC2 withα= 5 (d) in the [φ,Vg] plane. TheVg-scales of
these maps are shown with horizontal bars in panels (a) and (b). The
vertical dashed lines correspond to the curves of Fig. 3(c) and 3(d).

for moderate values of the SO-coupling, and realistic values
of the external field (B < 1T ), the asymmetry can be quite
large. The QPC is a central ingredient as it allows the con-
trol of the number and properties of the transmitting channels.
These junctions act as supercurrent rectifiers in the interval
min(I+c , I

−
c ) < |I| < max(I+c , I

−
c ), which can be controlled

by adjusting the gate voltage. As this effect relies on the con-
trol of the spin polarization of the Andreev states, it gener-
ates a new alternative for supercurrent rectifiers based on pure
spintronic effects.
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