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Abstract

The present paper focuses on non-linear pattern matching based on the Loga-
rithmic Image Processing (LIP) Model. Our contribution consists first of using
the scalar multiplication defined in the LIP context to extend the little-known
Asplünd’s metric to gray level images. Such a metric is explainable as a novel
technique of double-sided image probing and presents the decisive advantage of
being physically justified in the field of transmitted light acquisition. Moreover,
thanks to the consistency of the LIP context with human vision, Asplünd’s
metric is also applicable to images acquired in reflected light: in fact, plenty
of image processing algorithms aim at extracting information as a human eye
would do. Finally, the proposed approach is particularly efficient in presence
of lighting variations or lighting drift. In the paper, we also suggest a solution
to overcome the main drawback of probing techniques, which resides in a high
sensitivity to noise. Various examples are presented to highlight the efficiency
of the method.

Keywords: Grayscale pattern matching, Probing, LIP Model, Metrics.

1. Introduction

Pattern matching consists in detecting occurrences of a given template within
a search image. This topic has been widely investigated by researchers in-
volved in target tracking, artificial vision, characterization of pseudo-periodic
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textures, image analysis, registration, etc. Most of pattern matching algorithms
are founded on the use of correlation tools or metrics in order to estimate the
similarity between the template and a subset of the studied image, or simply
between two images.

Let us refer to some other examples of metric-based pattern matching. Hel-
Or et al. (HelOr, 1985) decrease the computation time thanks to projection
kernels allowing a rapid rejection of image windows that are distant from the
pattern. Bozkaya et al. (Bozkaya, 1997) aim at retrieving all images of a data
base that are similar to a given query image. In the same objective to estimate
similarity between a template and a region of the studied image, correlation is
a very popular tool (Gruen, 1985).

Generally, the notion of similarity refers to a ”good” superposition of the con-
sidered images representative surfaces. An example of such an approach is given
by Huttenlocher et al. (Huttenlocher, 1993) and is based on the Hausdorff met-
ric. A recurrent problem of such methods resides in their high sensitivity to
illumination variations, pattern size changing and generally small evolutions of
image acquisition conditions. In case of variable illumination conditions, D.
Lefebvre et al. (Lefebvre, 2002) propose a technique of correlation peaks that
are invariant under linear intensity transformation.

In (Barat, 2003) and (Barat, 2010), Barat et al. proposed an alternative way
for detecting a known template within an image: the Morphological Probing
(Barat, 2003), and the Virtual Double-Sided Probing (VDIP, (Barat, 2010)).
The VDIP consists of defining an inferior probe and a superior probe. In their
reference configuration, the probes form a template, which includes all objects
to detect. These objects may be for example occurrences of a unique model
with varying size or varying aspect due to noise or illumination changes. The
template specifies the distortion constraints and fixes the limit of variability of
a given query pattern. The present paper is an extension of this approach based
on a new notion of probing: the Asplünd’s metric.

The little-known Asplünd’s metric was initially defined on binary shapes (As-
plund, 1960), (Grünbaum, 1963) and we have extended this notion to gray
tone images (Jourlin, 2012). The specificity of the pattern matching approach
proposed in this paper is linked to an outstanding property of the Asplünd’s
metric: it is independent of possible magnifications of the studied binary shapes.
In the gray tone context, this property will result in a strong independence of
Asplünd’s metric to lighting variations. Furthermore, Asplünd’s metric com-
putation is founded on the use of two homothetic functions of the considered
template in order to obtain the upper and lower probing sets of the studied
image. Such homothetic functions are here defined in the LIP Model framework
(Jourlin, 1988), (Jourlin, 2001) which gives them both a precise physical mean-
ing and a consistency with human vision (Brailean, 1991).
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In section 2, the definition of binary Asplünd’s metric is recalled, as well as the
necessary notions issued from the LIP Model. Section 3 is devoted to the gray
tone version of Asplünd’s metric with a discussion of its advantages, drawbacks
and applicative efficiency. In section 5, a metric issued of ”Measure Theory” is
presented and used to overcome the noise sensitivity of Asplünd’s metric. We
conclude and present the perspectives of this work in section 6.

2. Preliminaries

2.1. About metrics and associated topologies

In this section, the aim is not to enter in depth in the field of general topol-
ogy, because our paper focuses on the particular case of metrics and precisely
on the notion of Asplünd’s metric. Let us begin with a brief recall on the most
common notions used to estimate the similarity between two binary shapes A
and B of the plane R2 (if necessary of R3, .., Rn).

2.1.1. Distances between binary shapes

• Symmetrical difference metric

The ”symmetrical difference” of A and B is noted A△B and is defined according
to:

A△B = (A ∪B) \ (A ∩B)

The Symmetrical Difference distance d△(A,B) corresponds then to the area of
A△B (cf. Fig. 1 (a)).

• Hausdorff metric

The definition of the Hausdorff distance dH(A,B) is given by the following
formula:

dH(A,B) = Max

[

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(ab)

]

= Max

[

sup
a∈A

d(a,B), sup
b inB

d(b, A)

]

It represents the maximal Euclidean distance between an element of A (or B)
and B (or A) (cf. Fig. 1 (b))
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(a) (b)

Figure 1: Illustration of what d△(A,B) and dH(A,B) respectively represent: (a) The hatched
area represents d△(A,B), (b) the dotted line represents dH(A,B)

Comments: The previous metrics do not estimate the similarity between
A and B in the same way. In fact, d△ is of a ”global” or ”diffuse” nature in
the sense that the similarity between the two shapes is roughly evaluated: small
sized differences will not be detected. On the opposite, dH will put in evidence
such small differences (even reduced to a single point) and is then said of a
”local” or ”atomic” nature.

• Binary Asplünd’s metric

Now let us introduce a completely different approach proposed by Asplünd
(Asplund, 1960), (Grünbaum, 1963). Given two shapes A and B, one of them
(B for example) is chosen as the ”probing” shape: we compute the smallest
homothetic set λB containing A and the largest homothetic set µB included in
A (Fig. 2). It means:

λ = inf {α,A ⊂ αB}

µ = sup {β, βB ⊂ A}

where α and β are positive real numbers.

Figure 2: Probing of A by B
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The Asplünd’s distance dAs(A,B) is given by:

dAs(A,B) = Ln

(

λ

µ

)

Comments: the major interest of the Asplünd’s similarity evaluation between
two shapes resides in its invariance when one of the shapes is magnified or
reduced in an arbitrary ratio α. In fact, replacing the probing set B by αB does
not modify the resulting Asplünd’s distance:

dAs(A,αB) = Ln
λ
α
µ
α

= Ln
λ

µ
= dAs(A,B)

In the context of gray level functions (Section3), this property of Asplünd’s
metric will be interpreted as a strong stability in presence of lighting variations.
Before that, some ”functional” metrics are presented.

2.1.2. Distances between gray level functions

Let us recall the notions of distances corresponding to d△ and dH (respec-
tively d1 and d∞) between two gray level functions f and g.

Such functions are defined on a spatial domain D (subset of the plane R2),
with values in the gray scale [0,M [ where M represents the available number of
gray levels: If the gray level functions are digitized onto 8 bits, M = 28 = 256.

• Metric d1

The d1 distance associates to a pair (f, g) of gray level functions defined on D
or a region R of D the number:

d1,D or R(f, g) =

∫ ∫

D or R

|f(x, y)− g(x, y)|dxdy

In the digital version, it is transformed into the double sum of the differences
between pixels gray levels according to the rows and columns, multiplied by
the area of one pixel. It thus evaluates the ”volume” situated between the
representative surfaces of images f and g:

d1,D or R(f, g) =





∑ ∑

(i,j)∈D or R

|f(i, j)− g(i, j)|





× area of a pixel

Comments: As previously announced, such a distance is comparable to d△ in
the sense it produces a global evaluation of the similarity between f and g (Fig.
3 (a)) and it is weakly sensitive to small sized differences.
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(a) (b)

Figure 3: (a) The value of d1(f, g) corresponds to the hatched area between the representative
surfaces (here curves) of f and g, (b) The distance d∞(f, g) is realized at the point x0

• Metric d∞

On the contrary, we can use ”atomic” metrics, analogue to measures using
”weighted” points (Dirac measures). They are then perfectly adapted in detect-
ing small differences, even as small as a pixel (Fig. 3-b) and are then similar
to the binary Hausdorff metric dH . The most typical example is the metric
d∞ derived from the norm of uniform convergence in the L∞ space, which is
computed on the point realizing the greatest difference between f and g:

d∞(f, g) = sup
(x,y)∈R or D

|f(x, y)− g(x, y)|

In digital version :

d∞(f, g) = sup
(i,j)∈R or D

|f(i, j)− g(i, j)|

Remark: Note that various Hausdorff metrics exist in the functional domain
i.e. applicable to functions and in our case to gray level images (cf. for exam-
ple (Friel, 1998), (Odone, 2001), (Girard, 2010)). Such metrics have a typical
“atomic” behavior: it is the reason why we have deliberately made the choice
to limit our interest to d∞.

2.1.3. Neighborhoods generated by the previous metrics

One of the major interests of the ”metric” tool resides in its associated topol-
ogy, i.e. in the neighborhoods it generates. The shapes of such neighborhoods
are totally different for the d1 and d∞ metrics. In fact, given a function f, each
function g verifying d∞(f, g) ≤ ǫ satisfies |f(x) − g(x)| ≤ ǫ for every point x
lying in the considered interval or region. In one dimension, it means that g
belongs to a ”tolerance tube” around f (Fig. 4 (a)). This remark explains why
d∞ is called ”uniform convergence metric”. The same result holds for images,
the tolerance tube becoming the volume located between the translated repre-
sentative surfaces of f according to +ǫ and −ǫ.
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(a) (b)

Figure 4: (a) Representation of the tolerance tube of f (hatched area), (b) the difference
between a function f and a function g lying in the ǫ− neighbor of f may be arbitrarily large
at some point x

When considering the ”global” metric d1, a ǫ − neighbor of a given function
f is totally different from a tube: it is an unbounded set! In fact, a function g
belonging to the ǫ − neighbor of f may present at some point x an arbitrary
large difference |f(x) − g(x)| and a very small area located between f and g
(Fig. 4 (b)).

2.1.4. Strategy to define a new ”probing” metric

In order to create a new double-sided probing, the following steps will be
considered in the next sections:

• section 2.2 : Recalls on the Logarithmic Image Processing (LIP) Model,
which constitutes the adequate mathematical framework to define the mul-
tiplication of a gray level function f by a real number λ, noted λ f .

• section 3 : Extension of the binary Asplünd’s metric to gray level func-
tions, thanks to the previous scalar multiplication.

2.2. Logarithmic Image Processing (LIP) Model

Introduced by Jourlin et al (Jourlin, 1988), (Jourlin, 2001), the LIP (Loga-
rithmic Image Processing) Model proposes first a framework adapted to images
acquired in transmitted light (when the observed object is placed between the
source and the sensor). In this context, each gray level image may be identi-
fied to the object, as long as the acquisition conditions (source intensity and
sensor aperture) remain stable. Furthermore, the demonstration, by Brailean
(Brailean, 1991) of the LIP Model compatibility with human vision, consider-
ably enlarges the application field of the Model, particularly for images acquired
in reflected light on which we aim at simulating human visual interpretation.
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An image f is defined on a spatial support D, with values in the gray scale
[0,M [, which may be written:

f : D ⊂ R
2 → [0,M [ ⊂ R

In the LIP context, 0 corresponds to the ”white” extremity of the gray scale,
which means to the source intensity, i.e. when no obstacle (object) is placed
between the source and the sensor. Thanks to this gray scale inversion, 0 will
appear as the neutral element of the logarithmic addition (formula 3 below).
The other extremity M is a limit situation where no element of the source is
transmitted (black value). This value is excluded of the scale, and when working
with 8-bits digitized images, the 256 gray levels correspond to the interval of
integers [0, . . . , 255].

The transmittance Tf (x) of an image f at x ∈ D is defined by the ratio of
the outcoming flux at x to the incoming flux (intensity of S).
In a mathematical formulation, Tf (x) may be understood as the probability, for
a particle of the source incident at x, to pass through the obstacle, which means
to be seen by the sensor.

The addition of two images f and g corresponds to the superposition of the
obstacles (objects) generating respectively f and g. The resulting image will be
noted:

f g

Such an addition is strongly linked to the transmittance law

T
f g

= Tf × Tg (1)

It means that the probability, for a particle emitted by the source, to pass
through the ”sum” of the obstacles f and g, equals the product of the proba-
bilities to pass through f and g, respectively.

Jourlin and Pinoli (Jourlin, 2001) established the link between the transmit-
tance Tf (x) and the gray level f(x) :

T
f g

= 1−
f(x)

M
(2)

Replacing in formula (1) the transmittances by their values obtained in (2)
yields:

f g = f + g −
f · g

M
(3)

From this law, it is possible to derive the multiplication of an image by a positive
real number λ according to :

λ f = M −M

(

1−
f

M

)λ

(4)
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Fundamental remark: such laws satisfy strong mathematical properties.
In fact, if I(D, [0,M [) and F(D, ]−∞,M [) design respectively the set of images
defined on D with values in [0,M [, and the set of functions defined on D with
values in ]−∞,M [, we have:

(F(D, ]−∞,M [), , ) is a real vector space

(I(D, [0,M [), , ) is the positive cone of this vector space

(for more details, see (Jourlin, 2001)).

3. A new probing approach for template location: Asplünd’s metric

for gray tone images

3.1. Definition

It seems us very interesting to extend Asplünd’s reasoning in a ”functional”
context, in order to apply it to gray level images:

• a first generalization would consist of using classical homothetic functions
of f , noted λf to propose Asplünd-like metrics. This approach presents
a certain weakness because the homothetic λf of an image not always
remains in the gray scale.

• the novelty of what we proposed in (Jourlin, 2012) is to replace an ordinary

homothetic function λf by a logarithmic homothetic λ f .

Given two images f and g defined on D, we choose, as for binary shapes, g as
the probing function for example and define the two numbers:

λ = inf
{

α, f ≤ α g
}

and µ = sup
{

β, β g ≤ f
}

and the corresponding ”functional Asplünd’s metric” dAs :

dAs (f, g) = Ln

(

λ

µ

)

(5)

Physical interpretation: Asplünd’s metric being directly based on the
scalar multiplication law defined in the LIP context, it is important to precise
the physical meaning of this law. In fact, in situation of transmitted light,
computing 2 f = f f consists of stacking up two times the semi-transparent
object corresponding to f. More generally, the scalar multiplication of the image
f by λ is explainable as a thickness changing of the observed object in the ratio
λ: if λ > 1, the thickness increases and the resulting image is darker than f and
if λ < 1, the thickness decreases and the resulting image is brighter than f (cf
Fig. 5). This point is fundamental and will explain the particular efficiency of
Asplünd’s metric in presence of lighting variations or lighting drift, as long as
such variations may be modeled by thickness changing.

Remarks:
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(a) (b) (c)

Figure 5: Brightening /darkening an image by means of the LIP scalar multiplication : (a)

Initial image f of dermal papillae by in-vivo confocal microscopy, (b) Image λ f for λ = 0.5,

(c) Image λ f for λ = 1.5

• To compute formula 5 in good conditions, we must take care that every
gray level present in the chosen template is not null (if not, the homothetic
values λ and µ may reach infinity.

• A simple solution to avoid such a situation consists of adding one unit to
each gray level of the considered image.

• This metric dAs is adaptable to local processing, in particular to detect
on an image f the place where a given template is probably located. In
this case, the template corresponds to an image t defined on a spatial
support Dt smaller than D. For each location of Dt included in D, the

distance dAs (f |Dt, t) is computed, where the notation f |Dt represents the
restriction of f to Dt.

Then such distances are normalized to cover the gray scale [0, 255] and the
darkest areas correspond to minimal distances. The result is visualized under the
name of Asplünd’s map, which constitutes the first step of pattern recognition.

3.2. Examples

Let us now visualize some images on which a target has been selected and the
corresponding Asplünd’s maps computed. Remember that Asplünd’s approach
holds in both situations of images acquired in transmission or reflection.

3.2.1. Images acquired in transmission

Petri dishes. In order to locate the bacteria present in a Petri dish (Fig. 6
(a), we select a target (Fig. 6 (b) and compute the Asplünd’s map (Fig. 6(c)
corresponding to this target when we move it inside the Petri dish.

10



(a) (b) (c)

Figure 6: (a) Petri dish (Escherichia Coli bacteria), (b) Target selected inside a bacterium
(dark zone), (c) Asplünd’s map

Comments on Figure 6: On the Asplünd’s map, we can observe the lo-
cation of the bacteria is obtained. The bright zone surrounding each of them
corresponds to high values of Asplünd’s metric, when the target meets the back-
ground. Note also that the distance is small when the target is included in the
background, due to the probing effect.

Image of human skin : dermoepidermal junction acquired in in-vivo confocal mi-
croscopy. We tackle here a problem of higher complexity than the previous one.
Nevertheless, the steps are the same: target selection and creation of Asplünd’s
map (cf. Fig. 7).

Comments on Figure 7: The initial image Fig. 7 (a) is acquired in trans-
mission. An automated extraction of the dark regions representing the inner
boundaries of the papillae is a hard problem if we consider their heterogeneity.
The target Fig. 7 (b) is a subset of Fig. 7 (a) selected into a dark region.
Nevertheless, this pattern is not homogeneous in terms of gray levels, as it can
be seen on the magnified image Fig. 7 (c). At each position of the target in-
side the initial image, the local Asplünd’s distance is computed and the map of
such distances is represented on Fig. 7 (d). The dark points correspond to the
target locations where small distances have been computed. Note that the dark
regions are now rather homogeneous. Thus, to get a binary image, it remains
to apply to d) an automated thresholding algorithm (Interclass Variance Max-
imization of (Otsu, 1979) for example. Morphological operations (opening and
closing) are then applied in order to smooth the boundaries. These last one are
superposed on the initial image (Fig. 7 (e)).

3.2.2. Images acquired in reflection

Remember that (Brailean, 1991) established the consistency of LIP Model
operators with human visual system. This result justifies the use of Asplünd’s
metric to process images acquired in reflection, as long as the information we
aim at, corresponds to human interpretation.

Target detection in images of car crash test. The Asplünd’s distance is used here
to detect the targets during a car crash test (Fig. 8 (a) with authorization of
the Insurance Institute for Highway Safety). As seen above, we need a probing
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(a) (b) (c)

(d) (e)

Figure 7: Asplünd’s detection of dermal papillae : (a)Initial image of dermal papillae by in-
vivo confocal microscopy, (b) Selected target, (c) Magnified target, (d) Asplünd’s maps, (e)
Contours extracted from (d) and superposed on (a)

function which will fit into the target we are looking for. On Fig. 8 (b), the
white area delimitates the function (target subset) which will probe the image.
In fact, the different locations of the target inside the initial image may be not
exactly the same by their orientation, their size, etc. The probing function is
chosen smaller than the target in order to adapt to these small variations. On
Fig. 8 (c), the darkest areas correspond to a small distance, and a bright area
to a high distance. All the targets have been detected, except the one on the
head of the dummy. This is due to the different orientation of this target (more
than 45◦ with the reference).

Pores detection on human skin. The initial image (Fig 9-a) represents human
skin. The location of pores inside this image is rather difficult, due to the
variations of shapes and gray levels of such pores. We selected a pore on the
initial image and represented it (Fig. 9-b) magnified twenty times. Then we
obtain the map of Asplünd’s distances (Fig. 9-c) when moving the template
inside the initial image. To conclude, an automated thresholding (Variance
Interclass Maximization, cf. (Otsu, 1979)) applied to this map produces the
pores locations (Fig. 9-d).

3.3. Neighborhoods associated to Asplünd’s metric

3.3.1. Tolerance tubes

First let us recall the above mentioned ”comment” (following Fig. 2), point-
ing the invariance of Asplünd’s metric when one of the shapes is magnified or

12



(a) (b) (c)

(d) (e)

Figure 8: Target detection thanks to Asplünd’s metric : (a) Crash test Image, (b) Probing
zones inside the target magnified 10 times, (c) Probing function magnified 10 times, (d)
Asplünd’s map, (e) Thresholded image of (d) : location of the targets
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(a) (b)

(c) (d)

Figure 9: Occurrences of a given template on a human skin image : (a) Initial image: human
skin with selected template (white boundary), (b) Chosen template (a skin pore) magnified
20 times), (c) Map of Asplünd’s distances when moving the template inside the image, (d)
Pores detection on image (a) (automated thresholding on (c))
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Figure 10: A tolerance tube Tλ,µ,ǫ(f) delimited by λ f and µ f and a neighbor g of f
lying in this tube

reduced in an arbitrary ratio α.

The same property holds for gray level functions:

If dAs (f, g) = Ln
(

λ
µ

)

, we can write dAs (f, α g) = Ln
λ
α
µ
α

= dAs (f, g).

Given an image f and a tolerance ǫ, we can consider the following successive
steps:

• Create a family of tolerance tubes Tλ,µ,ǫ(f) constituted of regions delim-

ited by two homothetics λ f and µ f such that Ln
(

λ
µ

)

= ǫ.

• Define the neighborhood NAs,ǫ(f):

g ∈ NAs,ǫ(f) ⇔ ∃(λ, µ), ∃α, /Ln

(

λ

µ

)

= ǫ

and α g ∈ Tλ,µ,ǫ(f)

• Visualize a mono-dimensional representation (Fig. 10), which perfectly
illustrates the Asplünd’s property underlined in the comments at the end
of 2.1.1: One image or a template g may be a neighbor of an image f , in
Asplünd’s sense, even if g is significantly darker (or brighter) than f : it
suffices that some homothetic of g resembles some (other) homothetic of
f .

This point must be considered as an advantage if the template and the search
image are for example acquired under different illumination conditions. On the
opposite, it could be a real problem if the resemblance between the template
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Figure 11: A given function f and the centered tube Tλc,c,ǫ(f)

and the image is intended in terms of gray levels. For this reason, let us show
that a ”centered” tolerance tube may be selected within the family of all the
tolerance tubes.

3.3.2. Tolerance tube centered on the studied gray level function

Given a gray level image f , and a tolerance value ǫ in terms of Asplünd’s

metric, the neighbor NAs,ǫ(f) is the union of all the tubes Tλ,,ǫ(f). Among
them, consider the tube Tλc,µc,ǫ(f) defined by a pair of real numbers λc and µc
compelled to have symmetric values around the unit integer 1, for example such
that λc = 1+ k and µc = 1− k. Such a tube is centered at f and the condition

Ln
(

λc
µc

)

= ǫ yields:

Ln

(

1 + k

1− k

)

= ǫ ⇔
1 + k

1− k
= eǫ

⇔ k =
eǫ − 1

eǫ + 1

which gives the values of λc and µc:

λc =
2eǫ

eǫ + 1
and µc =

2

eǫ + 1

The resulting tube is represented in Fig. 11. On the brick wall image of Fig. 15
(a), it is then possible to extract only the bricks presenting gray levels resembling
those of a given template T (cf Fig. 12)
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(a) (b) (c)

Figure 12: Application of a centered tube : (a) Initial image, (b) template T , (c) Locations,
after thresholding of the Asplünd’s map, of bricks (the dark ones) belonging to the tube
Tλc,µc,ǫ(T ) for ǫ = 1

4. Comparison of Asplünd’s metric with other Pattern Recognition

techniques

4.1. Comparison with other metrics

We will adopt here the definitions and notations of section 2.1.2 devoted to
classical distances between gray level functions.

4.1.1. Global metrics

First let us note that ”global” distances like d1, d2, ..., dp considerably differ
from Asplünd’s approach:

• They are unable to detect small sized objects

• They do not generate tolerance tubes (cf. section 2.1 devoted to neigh-
borhoods associated to the considered metrics)

In conclusion, such metrics are not really comparable to Asplünd’s one and do
not aim at the same applications.

4.1.2. Atomic metrics

The most common examples of such metrics are the ”uniform convergence”
metric d∞ (section 2.1.2) and the Hausdorff metric in its functional version.
These two metrics are very similar each other and have properties in common
with Asplünd’s metric: they generate tolerance tubes and are sensitive to small
sized differences.

Nevertheless, their behavior in presence of lighting variations or lighting drift is
very different of Asplünd’s one. This point is developed in the following section.
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4.1.3. A fundamental advantage: insensitivity to ”lighting” variations and ”light-
ing” drift

Let us consider a given template g. For easiness of figures interpretation, we
will represent g as a mono-dimensional function, knowing that the applications
we are interested in are bi-dimensional images. On Fig. 13 (a), we can observe

homothetic functions α g of g for various values of α, showing that a unique
initial template produces a family of probing functions.

Remark: this set of probing functions will permit to adapt the probes to the
studied region, giving access to ”spatially variant” testing. Another spatially
variant approach has been proposed by Bouaynaya et al (Bouaynaya, 2008) in
the mathematical morphology framework. This domain may appear disjointed
of the probing techniques, but Barat et al have established a strong link between
the two contexts in (Barat, 2003) and (Barat, 2010).

The main interest of the novel approach we propose is justified by a physi-
cal property of the logarithmic scalar multiplication : Remember that the
LIP Model is initially adapted to images acquired in transmitted light and that
α g represents the image corresponding to an object whose thickness is mul-
tiplied by α (Jourlin, 2001) for example.

In such conditions, we can legitimately consider that the set
{

α g
}

of probing

functions automatically adapts to background illumination variations modelled
by ”thickness” changing. This point is illustrated (Fig. 13 (a) and 13 (b)). On
Fig. 13 (a), we represent a probing function g (in blue color) and two homo-

thetic functions α g in green and red, respectively with α > 1 (darker than
g) and α < 1 (brighter than g). On 13 (b), the representations of the studied
image f and of the probing function g are defined on an interval. On succes-
sive intervals I, the homothetic functions λ g and µ g defining locally the
Asplünd’s distance between f |I and g are drawn.
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(a) (b)

Figure 13: (a) Probing function g and two homothetic profiles, (b) Profiles of λ g and µ g

corresponding to dAs (f |I , g) minimum

Now let us illustrate this property on a bi-dimensional image f , first in the
field of images in transmission. For this purpose, we start with the three images
presented in Fig. 5 representing dermal papillae acquired in confocal microscopy.
The processing used in Fig. 7 (extraction of dermal papillae thanks to Asplünd’s
metric) is applied exactly in the same conditions to the three images, showing
the results are quite similar, despite the strong lighting variations (cf Fig. 14).
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(a) (b) (c)

(a) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 14: (a)Initial image of dermal papillae by in-vivo confocal microscopy, (b) Selected
target, (c) Magnified target, (d) Asplünd’s map for initial image, (e) Contours extracted from
(d) and superposed on (a), (f) Brightening of (a), (g) Asplünd’s map for brightened image,
(h) Contours extracted from (g) and superposed on (f),(i) Darkening of (a), (j) Asplünd’s
map for darkened image, (k) Contours extracted from (j) and superposed on (i)

Another example is illustrated (cf Fig. 15) for images in reflection. We
start with a bricks wall with various gray levels (Fig. 15 (a)). Two bricks with
different gray levels are selected as templates T1 and T2 (Fig. 15 (b) and (e)).
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The resulting Asplünd’s maps are given (Fig. 15 (c) and (f)). On these maps,
the location of each brick (bright or dark) is clearly pointed by a dark area
corresponding to the local minima of Asplünd’s metric. Note that such areas
would be easily thresholded, due to their strong contrast with their neighboring
pixels.

On the same figure, we display the results obtained with the atomic metric
d∞ (Fig. 15 (d) and (g)) showing this metric is unable to furnish the location
of each brick, particularly for the bright target.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 15: (a) Initial image, (b) T1 magnified two times, (c) Asplünd’s map for T1, (d) d∞
map for T1, (e) T2 magnified two times, (f) Asplünd’s map for T2, (g) d∞ map for T2

To conclude this section, let us consider an image presenting a strong light-
ing drift. We apply to the Petri dish of Escherichia Coli bacteria (Fig. 16 (a))
a lighting drift (Fig. 16 (b)), resulting in Fig. 16 (c). The Asplünd’s maps
obtained on Fig. 16 (a) and (c) are represented in Fig. 16 (d) and (e), showing
the weak sensitivity to lighting drift.
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(a) (b) (c)

(d) (e)

Figure 16: (a) Petri dish (Escherichia Coli bacteria), (b) Lighting drift, (c) Lighting drift
added to (a), (d) Asplünd’s map for (a), (e) Asplünd’s map for (c)

4.1.4. Comparison with correlation methods

Another popular approach to determine the possible locations of a template
T inside an image f consists of computing a correlation map (?) thanks to
classical correlation coefficient

∑

x∈R (f(x)−A(R)) · (g(x)−A(T ))
√

∑

x∈R (f(x)−A(R))
2
·
√

∑

x∈R (g(x)−A(T ))
2

where :

• R represents the region of f compared to the target

• g(y the gray level at y in T

• A(R) and A(T ) the average gray level values of R and T

Note that the behavior of this technique is, by definition, similar to that of
global metrics, the computation being done on the whole considered data.

We will limit us to show the behavior of a correlation on the Bricks Wall (Fig.
17).
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(a) (b) (c)

Figure 17: (a) Initial image, (b) Selected template, (c) Associated correlation map )

Comments on figure 17: this figure clearly shows that a correlation ap-
proach will only detect the bright bricks if the target is bright and the dark
ones otherwise. Moreover, we can note that the boundaries of the bricks pro-
duce weak transitions in terms of gray levels. This point makes difficult the
extraction of the peaks on the correlation map.

4.1.5. Comparison with existing double sided probing

As previously demonstrated, performing Asplünd’s metric clearly appears as
a double sided probing, as proposed by Barat (Barat, 2010). The fundamental
differences with Barat’s approach are mainly due to the physical justification of
Asplünd’s probes, whose consequences are:

• An automated generation of the probes

• The probes values never come out the gray scale

• The ”gap” between probes is not a priori chosen but determined by the
probing itself

Excepted these noticeable differences, the behavior and properties of the two
methods are similar in the sense they locate a region looking like the template
when this region lies inside the tolerance tube determined by the upper and
lower templates.

To conclude this section, let us summarize the compared properties of our ap-
proach with other metrics and pattern matching techniques in a table (Tab.
1).
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Techniques
Metrics

Properties Global Atomic Corre-
Double-
sided

d1, d2,
..., dp

d∞ dH dAs lation
probing
(Barat)

Detection of small
sized objects

No Yes Yes Yes No Yes

Tolerance tubes No Yes Yes Yes No Yes
Physically justified No No No Yes No No
Insensitivity to
Lighting variations

No No No Yes No Yes

Insensitivity to
lighting drift

No No No Yes No Yes

Insensitivity to
noise

Yes No No No Yes No

Automated genera-
tion of probes

Not Concerned Yes
Not
Con-
cerned

No

Table 1: Properties of Asplünd’s metric compared to other metrics, to correlation and double
sided probing (Barat, 2010)

4.2. Main drawback: noise sensitivity

Scientific honesty obligates us to mention that Asplünd’s approach is highly
sensitive to noise, as well as all other atomic metrics. Nevertheless, an adapta-
tion to image processing of a metric often used in ”Measure Theory” will permit
us to solve efficiently this problem (see section 5 below).

In order to illustrate the noise sensitivity of the Asplünd’s metric, let us consider
a gray level image f whose representative surface is an oblique plane (Fig. 18)

Figure 18: Initial image f and its representative surface in false colors
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On Fig. 19, we can observe the image g corresponding to the previous image
f and its representative surface (in false colors) after addition of a Salt and
Pepper noise.

Figure 19: Image g: Initial image f with salt and pepper noise and its representative surface

If we aim at expressing the Asplünd’s distance between f and g, we com-
pute the real numbers λ and µ corresponding to the probing of g by f . The
probing oblique planes are represented on both sides of g (Fig. 20). To facil-
itate interpretation, we limit the representation of Fig. 20 to a section of the
representative surfaces.

Figure 20: Surfaces of g and the probing functions λ f and µ f

Noise peaks which determine the Asplünd’s distance clearly appear on Fig
20.

5. A solution to overcome noise sensitivity

5.1. Description of the method

The sensitivity of Asplünd’s metric to noise was already mentioned. A very
simple way to overcome such a drawback consists of adapting a well-known
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metric to our particular situation. Such a metric has been defined in the context
of ”Measure Theory” and will be called Measure metric or M -metric. Our aim
is not here to deeply enter this theory, so we will limit to a short recall adapted
to the context of gray level images defined on a subset D of R2. Given a measure
µ on R

2, a gray level image f and a metric d on the space of gray level images,
a neighborhood Nµ,d,ǫ,ǫ′ of f may be defined thanks to µ and to two arbitrary
small positive real numbers ǫ and ǫ′ according to:

Nµ,d,ǫ,ǫ′ = {g, µ ({x ∈ D, d(f(x), g(x)) > ǫ}) < ǫ′}

It means that the measure of the set of points x where d(f(x), g(x)) overcomes
the tolerance ǫ satisfies another tolerance ǫ′. Let us interpret that in the context
of Asplünd’s metric:

• the gray level image being digitized, the number of pixels lying in D is
finite, so the ”measure” of a subset of D is directly linked to the cardinal
of this subset, for example the percentage P of its elements related to D
(or a region of interest R included in D). In our case, we search a subset
D′ of D such that f |D′ and g|D′ are neighbors for the Asplünd’s metric
and the complementary set D \D′ of D′ related to D is small sized when
compared to D. This last condition can be written:

P (D \D′) =
#(D \D′)

#D
≤ p

where p represents an acceptable percentage and #D the number of ele-
ments in D.

• In such conditions, the neighborhood Nµ,d,ǫ,ǫ′(f) becomes NP,dAs,ǫ,p(f
′):

NP,dAs,ǫ,p(f
′) =

{

g/∃D′ ⊂ D, dAs(f |D′ , g|D′) < ǫ and #(D\D′)
#D

≤ p
}

Now let us describe the role of the M-metric concerning the example of the
oblique plane (See section 4.2).

Figure 21: Representative surfaces of g and the probing functions λ f and µ f
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In order to decrease the Asplünd’s measurement, we need to move closer
together the probing functions λ f and µ f thanks to the M-metric. Rela-
tively to the definition of this metric, the set D \D′ corresponds to the part of
D where the highest noise peaks are located. Before presenting the details of
the method, let us visualize (Fig. 22 (a) and 22 (b)) the set D \ D′ emerging
through the probing functions for p = 0.98 and p = 0.95.

(a) (b)

Figure 22: Decreasing Asplünd’s distance by neglecting a small percentage of pixels : (a)
Image g and its probing functions for p = 0.98, (b) Image g and its probing functions for
p = 0.95

The set D \ D′ represents respectively 2% of the set D (Fig. 22 (a)) and
5% to the set D (Fig. 22 (b)). It appears that a small restriction of the set
D permits to improve highly the Asplünd’s distance, and thus to overcome the
noise effect.

Associated to the Asplünd’s distance, the M-metric permits to determine a
set D′ satisfying the distance (percentage) condition.

Our method uses mainly the differences, pixel per pixel, between two images,
and more precisely the histogram of these differences. In our case, this sub-
traction does not imply any problem: the superior probing function λ f is
always superior to the image g, which is superior to the inferior probing func-
tion µ f . Thus, the resulting differences will always remain in the grayscale.
These histograms are presented in Fig. 23.
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(a) (b)

Figure 23: Histograms of the differences between g and its probing functions : (a) Histogram

between λ f and g, (b) Histogram between g and µ f

Note that the first bin of the histogram, corresponding to the value 0, rep-
resents the number of contact pixels between the two images. These histograms
reveal that the main part of the pixels between these images present a differ-
ence of around 20 gray-levels. As probing functions, λ f and µ f must be
as close as possible from g in order to decrease the Asplünd’s distance, we have
to disregard the pixels corresponding to the first bin of the actual histogram of
differences, until the bins the most relevant have been reached. Disregard the
first bin means to consider the following bin as the new first one. Suppressing
the first bin will modify the selection of the pixels making contacts. They will
be closer to the image g.

Now let us define the real numbers kλ and kµ corresponding to the bins making

contact between the images g and λ f and g and µ f respectively. Initially,
kλ = kµ = 0 and they are pointing on the real first bin of the histograms. In
this configuration, λ and µ correspond to the initial Asplünd’s distance. If now
we increase kλ for instance, a new λ′ can be computed such that the kthλ bin
becomes the bin making a contact. In other words, if xλ is a pixel belonging to
the first bin of the histogram of differences between g and λ f , we can write:

λ f(xλ) = g(xλ) and λ′ f(xλ) = g(xλ)− kλ

Similarly, in the case of kµ, if xµ belongs to the first bin of the histogram of

differences between g and µ f :

µ f(xµ) = g(xµ) and µ′ f(xµ) = g(xµ) + kµ

The scalars kλ and kµ can be seen as the gray-levels numbers we need to add or
subtract in order to get the contact points closer from g, as illustrated in Fig.
24. Until the value p has not been reached, the scalars kλ and kµ are increased.
The set D \D′ corresponds to the pixels belonging to the bins of the histograms
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which are neglected. A new Asplünd’s distance is computed for each new pair
(λ′, µ′).

Figure 24: Illustration of the differences kλ and kµ between the initial probing functions and
the new ones for p = 0.97

5.2. Results

In Fig. 25, we consider the image ”Bricks wall”, the same with a Salt and
Pepper noise, and the results obtained thanks to the M-metric for various values
of the percentage p.

Comments on figure 25: These resulting images use the same gray scale.
A dark area corresponds to a small value of Asplünd’s distance, and the lighter
it is, the larger the distance. The resulting images are a little smaller than the
initial ones, due to the side effect of the M-metric.

Without the M-metric processing, no information can be measured on the noisy
image Fig. 25 (e)). The application of this metric permits to improve the re-
sults, and to finally get a quality (Fig. 25 (i), corresponding to the percentage
0.95) comparable to that obtained without any noise.

However, when decreasing the percentage value, we can observe the emergence
of horizontal black lines (Fig. 25 (j) and 25 (k)). Such lines are due to the fact
that the vertical boarders between two successive bricks are small enough to be
neglected at the considered percentage.

In conclusion, the M-metric appears efficient to overcome the noise problem.
Nevertheless, it remains to find an automated method in order to determine
the optimal percentage adapted to a given noisy image. This would probably
necessitate an hypothesis on the noise nature.

Another way to approach this problem would consist of studying the curve
representing the Asplünd’s metric decreasing according to the percentage of
neglected points.
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(a) (b) (C)

(d) p = 1 (e) p = 1 (f) p = 0.98

(g) p = 0.98 (h) p = 0.95 (i) p = 0.95

(j) p = 0.90 (k) p = 0.90

Figure 25: Illustration of the M-metric method for various values of percentage p. : (a) Initial
image: Brick wall, (b) Initial image with Salt and Pepper noise, (c) Pattern to be extracted
(magnified), (d) (f) (h) (j) different values of p for image (a), (e) (g) (i) (k) different values of
p for image (b)
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6. Conclusion and perspectives

6.1. Conclusion

In the present paper, the little-known Asplünd’s metric has been extended to
gray level functions in order to detect, inside a studied image, the most probable
locations of a given template. The proposed approach appears as a good syn-
thesis between ”double sided probing” techniques and ”atomic” metrics which
present a very strong justification in the field of images acquired in transmitted
light.

Moreover, the consistency of the chosen framework (Logarithmic Image Pro-
cessing Model) with human visual perception permits the application of the
method to images acquired in reflection on which we aim at extracting informa-
tion as a human eye would do.

Asplünd’s metric possesses noticeable properties: starting from an initial pat-
tern, the probes are automatically generated and always remain inside the gray
scale. Finally, Asplünd’s approach has demonstrated its particular efficiency in
presence of lighting variations or lighting drift.

The common weakness of Asplünd’s metric with probing techniques and atomic
metrics resides in their high sensitivity to noise. This problem has been over-
come by neglecting a certain percentage of pixels when performing the probing.

6.2. Perspectives

The immediate perspective of the present work consists of defining a color
version of Asplünd’s metric (already done) and applying it to various situations
(in progress).

Another natural extension will be to study the links of Asplünd’s probing with
mathematical morphology, the lower and upper probes allowing clearly the defi-
nition of an erosion-type and a dilation-type operators, the 3-dimensional struc-
turing elements corresponding to the representative surfaces of the probes. In
order to not disturb the presentation, this point has not been developed here,
but its interest is evident, as well as the link with Gauges Theory holding in the
Vector Spaces domain (Narici, 1985).
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