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There is increasing evidence that the distribution of hydrometeorological variables such as average or extreme rainfall/runoff is modulated by modes of climate variability in many regions of the world. This paper presents a general spatio-temporal regional frequency analysis framework that allows quantifying the effect of climate variability on the distribution of at-site hydrometeorological variables. Climate effects are described through the parameters of a pre-specified distribution, by using regression models linking parameter values with time-varying covariates, such as climate indices. For the regional model copulas are used to incorporate spatial dependency. A Bayesian framework is used for inference and prediction, which enables quantification of parameter and predictive uncertainties. A regional approach enables better identification of climate effects which can be subject to high uncertainty using only at-site (local) analysis. Lastly, model comparison tools enable considering competing statistical hypotheses on the nature of climate effects and selecting the most relevant one. This modelling framework is applied to two case studies assessing the effect of El Niño Southern Oscillation (ENSO) on summer rainfall in Southeast Queensland. The first case study focuses on summer rainfall totals while the second analysis focuses on extremes using summer daily rainfall maxima. The Southern Oscillation Index (SOI), a measure of ENSO, is considered as a timevarying covariate. In order to account for different effects during La Niña and El Niño episodes, an asymmetric piecewise-linear regression is used to analyse the rainfall data using both local and regional models. During La Niña episodes, SOI has a significant effect on both summer rainfall totals and maxima. Conversely, during El Niño episodes, the SOI has little effect on rainfall. It is found that, during a strong La Niña, the most likely 1 in 100 year summer maximum daily rainfall for different sites estimated with the local asymmetric model can be 5% to 33% higher than the

INTRODUCTION

Extreme precipitations and their consequences (floods) are one of the most threatening natural disasters for human beings. In engineering design, Frequency Analysis (FA) techniques are an integral part of risk assessment and mitigation. FA uses statistical models to estimate the probability of extreme hydrometeorological events which provides information for designing hydraulic structures. However, standard FA methods commonly rely on the assumption of 'identical distribution' [START_REF] Brockwell | Time series: theory and methods[END_REF]: the distribution of observations does not vary with time.

As will be reviewed subsequently, there is now a substantial body of evidence that large-scale modes of climate variability (e.g. El-Niño Southern Oscillation (ENSO); North Atlantic oscillation (NAO); Indian Ocean Dipole (IOD); Pacific Decadal Oscillation (PDO); etc.) exert a significant influence on rainfall in various regions worldwide (e.g. [START_REF] Gershunov | Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability[END_REF]; [START_REF] Haylock | Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature[END_REF]; [START_REF] Henley | Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data[END_REF]; [START_REF] Kamruzzaman | Climatic influences on rainfall and runoff variability in the southeast region of the Murray-Darling Basin[END_REF]; [START_REF] Schreck | Variability of the recent climate of eastern Africa[END_REF]; Willems (2013a); (2013b)). Furthermore, climate change is likely to have an influence on hydrology, thus further challenging the assumption of stationarity [START_REF] Milly | Climate change -Stationarity is dead: Whither water management?[END_REF]. Therefore, FA techniques need to move beyond this assumption. In order to provide a more accurate risk assessment, it is important to understand and predict the effect of climate variability/change on the severity and frequency of hydrometeorological events (especially extremes). This paper provides an important step towards this goal, by developing a rigorous regional frequency analysis (RFA) framework for incorporating the effects of climate variability on hydrometeorological events.

Climate variability influences hydrology worldwide. ENSO is one of the prominent modes of climate variability and has global impact on hydrometeorological variables [START_REF] Hoerling | El Nino, La Nina, and the nonlinearity of their teleconnections[END_REF].

For example, during winter (summer) season in northern (southern) hemisphere, during El Niño phase, positive anomalies were found in Southwest U.S [START_REF] Castello | Winter precipitation on the US Pacific Coast and El Nino Southern oscillation events[END_REF][START_REF] Cayan | ENSO and hydrologic extremes in the western United States[END_REF][START_REF] Gershunov | ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results[END_REF][START_REF] Meehl | Current and future US weather extremes and El Nino[END_REF], Southern South America [START_REF] Grimm | ENSO and Extreme Rainfall Events in South America[END_REF] and Southern China [START_REF] Wu | Evolution of ENSO-related rainfall anomalies in East Asia[END_REF]; while during La Niña phase, positive anomalies were found in Northwest U.S [START_REF] Castello | Winter precipitation on the US Pacific Coast and El Nino Southern oscillation events[END_REF][START_REF] Cayan | ENSO and hydrologic extremes in the western United States[END_REF][START_REF] Gershunov | ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results[END_REF][START_REF] Meehl | Current and future US weather extremes and El Nino[END_REF], South Africa [START_REF] Kruger | The influence of the decadal-scale variability of summer rainfall on the impact of El Nino and La Nina events in South Africa[END_REF][START_REF] Vanheerden | The Southern Oscillation and South-African Summer Rainfall[END_REF] and Southeast Queensland, Australia [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF].

In order to overcome the assumption of identical distribution and enable the inclusion of climate information, innovative FA methods have been recently developed. At the local scale (i.e. for a single site), Renard et al. (2006b) built a non-stationary FA model by estimating time-varying parameters from a pre-specified distribution. [START_REF] Micevski | Muttidecadal variability in coastal eastern Australian flood data[END_REF] used the Inter-decadal Pacific Oscillation (IPO) to characterize the flood hazard. [START_REF] Ouarda | Bayesian Nonstationary Frequency Analysis of Hydrological Variables[END_REF] discussed nonstationary FA models within the Bayesian approach. More generally, [START_REF] Khaliq | Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review[END_REF] reviewed non-stationary local FA methods. While local FA methods enabling the inclusion of climate information or non-stationarity are becoming common, such at-site models remain limited by two important drawbacks:

1)

Local analysis cannot be applied to ungauged sites.

2) Uncertainty in parameter estimates (and hence predictive estimates) tends to be very large due to the limited number of observations at one location. In addition, if climate information is included and more complex models are proposed, these observations may not be enough to identify the parameters [START_REF] Thyer | Parameter estimation and model identification for stochastic models of annual hydrological data: Is the observed record long enough[END_REF].

This motivates the development of regional frequency analysis (RFA) models that use information from multiple sites to overcome these shortcomings. Many RFA methodologies have been developed over the years. [START_REF] Cooley | Bayesian spatial modeling of extreme precipitation return levels[END_REF] and [START_REF] Ghosh | A hierarchical Bayesian spatio-temporal model for extreme precipitation events[END_REF] used Bayesian spatial models for extreme precipitation, but still under the identical distribution assumption. [START_REF] Cunderlik | Non-stationary pooled flood frequency analysis[END_REF] described a second-order non-stationary approach to pooled flood FA, and Hanel et al.

(2009) introduced a non-stationary index-flood model for extreme precipitation. Recently, several authors [START_REF] Aryal | Characterizing and modeling temporal and spatial trends in rainfall extremes[END_REF][START_REF] Lima | Spatial scaling in a changing climate: A hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow[END_REF][START_REF] Sang | Hierarchical modeling for extreme values observed over space and time[END_REF] started investigating spatio-temporal models using hierarchical approaches. In the same vein, [START_REF] Gregersen | A spatial and non-stationary model for the frequency of extreme rainfall events[END_REF] also used Poisson regression models to describe the frequency of extreme rainfall in both space and time. A common difficulty for all these approaches is the treatment of the spatial dependency existing between data.

The main contribution of this paper is the construction of a rigorous spatio-temporal framework that enables the quantification of the effect of climate variability on the severity/frequency of hydrometeorological events. This framework builds on the previous works referenced in this introduction section: it brings together several components separately developed in previous studies (in particular spatio-temporal regression models, copula-based modeling of spatial dependence, Bayesian inference, model comparison tools) to derive a general and flexible modeling platform.

This paper has two main objectives:

1) Model Development, Inference and Comparison: the construction of the model, using regressions with spatial and temporal covariates to describe the spatio-temporal variability of the parameters, is described. Inference accounts for spatial dependence between data and uses a Bayesian framework, thereby enabling a direct quantification of estimation uncertainty and predictive uncertainty. In addition, within this general framework, different climate-informed regression models can be compared (for instance, linear vs. non-linear regression). This helps identifying the most suitable regression to link climate variability and spatio-temporal hydrometeorological variability.

2) Model Application: Two case studies illustrate the application of the framework to quantify the ENSO effect on the summer total and extreme rainfall in Southeast Queensland (SEQ),

Australia. The flexibility of the framework enables several competing statistical hypotheses to be rigorously compared, e.g. to assess whether the effect of ENSO on summer maximum daily rainfall is symmetric or asymmetric.

Similar studies on the summer total and maximum rainfall over SEQ were described by [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] and [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF]. In particular, these authors highlighted the existence of an asymmetric relationship between ENSO and precipitation in Eastern Australia. With reference to [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] a simplified physical interpretation for this asymmetric relationship, is as follows:

During La Nina events the warm pool of Pacific Ocean sea surface temperature anomaly's (SSTA) moves westward, closer to the Eastern Australia coast, producing higher rainfall in SEQ. The stronger the La Nina event, the further the warm pool moves west and the higher the rainfall in SEQ. During El Nino events, the warm pool of Pacific SSTA's moves east, producing reduced rainfall in SEQ. Once this warm pool moves sufficiently east away from the coast of Australia, the intensity of the El Nino event is irrelevant. Thus while an El Nino event produces reduced rainfall, the intensity of the El Nino event does not impact on rainfall in SEQ.

In this paper, we do not attempt to discuss or discover new physical understanding for the reasons behind this relationship. Instead, we focus on developing a framework that can provide local multisite predictions of this effect of ENSO on rainfall and rainfall extremes, which is of prime importance for engineering design and operations. More precisely, we aim at addressing the following shortcomings of previous studies:

1)

The aforementioned studies are based on precipitation totals or maxima spatially averaged over a large region (South-East Queensland or Eastern Australia). From an engineering perspective this type of analysis is inadequate. Practical applications require estimates of the ENSO effects on rainfall at individual sites, rather than spatially averaged regions. This framework aims to provide predictions of multi-site local scale climate effects.

2)

The use of simple statistical approaches such as least-square linear regression may suffice to estimate an overall ENSO effect over a given region, but is not sufficient for engineering applications. Indeed, such applications require predicting the full distribution of the target precipitation variable conditionally on the ENSO state, which in turn allows estimation of extreme rainfall conditioned on ENSO.

As such, this paper aims to complement and build on previous studies that have demonstrate ENSO effects using spatially averaged data, by providing multi-site local predictions of hydro-over spatial regions suitable for practical engineering applications.

The paper is organized as follows. Section 2 describes the framework for building general climateinformed models at both local and regional levels. Section 3 and Section 4 present the case study with ENSO effect on summer rainfall in Southeast Queensland. Different regression models are compared in this section as well. Further improvements are discussed in Section 5, while the conclusion in Section 6 summarizes the main findings of this study.

GENERAL SPATIO-TEMPORAL REGIONAL FREQUENCY ANALYSIS

FRAMEWORK

The general frequency analysis framework aims to take advantage of spatial and temporal information (e.g. climate information in ENSO) to enhance the predictions of the hydrometeorological variable of interest. In this framework, data are assumed to follow a distribution, whose parameters are linked to temporal or/and spatial covariates using regression models. In the first part, an at-site (local) model that uses temporal covariates is described. In the second part, the framework is generalized to a regional scale. Since data at different sites are used, both spatial and temporal covariates are involved. The spatial dependency of the data is considered with elliptical copulas. The last part of this section describes criteria for model selection. The RFortran software library [START_REF] Thyer | The open source RFortran library for accessing R from Fortran, with applications in environmental modelling[END_REF], was used as part of this framework to enable fast and efficient debugging, diagnosis and analysis of results.

At-site (local) model with temporal covariates

Parent distribution

The basis of the at-site (local) model is to assume that data follows a time-varying distribution, conditioned on temporally varying covariates, such as climate information. More precisely, let ( ) Y t be the observation at time t and ( )

1 2 ( ), ( ),..., ( ) n Y t Y t Y t = Y
be the collection of observations of a site at n time steps. A local model is defined as:

( ) ~( ( )) Y t D t β (1)
where D is the assumed distribution of Y and ( )

( ) ( ) ( ) ( ) 1 2 , , , m t t t β β β = … β β β β t
is the collection of all m distribution parameters at time t (m=2 for a Gaussian distribution, m=3 for a generalized extreme value distribution (GEV), etc.).

Regression models with temporal covariates

The parameters β directly characterize the distribution, such as its location, scale and shape. These parameters may depend on different covariates, like time, pressure and some climate indices. Thus a regression function is defined for each distribution parameter as follows:

( ) ( ; ) {1, 2,..., } i i t h (t) i m β = = i x θ (2)
where h i is the regression function of ( )

i t β , (t)
x is the collection of temporal covariates and θ i is the collection of all parameters used in the regression function h i .

To avoid confusion with the D-parameters β(t), we call

( ) (4) 
In equation ( 4), a time independence assumption is applied:

1 2 t t ∀ ≠ , ( ) 1 Y t is independent of ( ) 2 Y t conditionally on 1 2 ( ), ( ) t t β β .
The posterior pdf in Eq(3) is estimated using a Markov chain Monte Carlo (MCMC) sampler described in Renard et al. (2006a).
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Regression models with spatio-temporal covariates

Similar to the local model, regressions are used to describe spatio-temporal variations in the parameters ( ) , i s t β . However, three different kinds of covariates are considered in the regional model:

• Temporal covariates ( )

x t : e.g. time, SOI (Southern Oscillation Index), NAO (North Atlantic oscillation)…

•

Spatial covariates ( ) ω ω ω ω s : e.g. altitude, coordinates...

•

Spatio-temporal covariates ( , ) z s t : e.g. temperature... Temporal covariates only change over time (but are common to all sites), and spatial covariates only change over sites (but do not change in time). Spatio-temporal covariates change over both these dimensions.
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The regional regression is then established in two steps: specification and spatialization. The first step establishes site-specific regressions with temporal and spatio-temporal covariates. The second step establishes a spatial model with the spatial covariates (see Figure 2): 1) Specification step: specify the time model using at-site regressions for a distribution parameter ( , ) i s t β :

For a given site s:

( , ) ( ( ), ( , ); ( ))

Then, the slope of this linear trend line may be allowed to vary across sites according to elevation (step 2, spatialization).

Spatial dependence

In a region, the observations from different stations are in general not completely independent. The dependence is expected to increase with decreasing distance.

There exist several ways to model this dependence. In this paper, we opt for the use of copulas.

Max-stable processes are an interesting alternative, especially in the context of extremes [START_REF] Davison | Statistical modeling of spatial extremes[END_REF][START_REF] Padoan | Likelihood-based inference for Max-stable processes[END_REF]. An illustration in hydroclimatic context was described by [START_REF] Westra | Detection of non-stationarity in precipitation extremes using a max-stable process model[END_REF]. However, they are not considered in the proposed framework for the following reasons:

1) Max-stable processes are only suitable for extreme data, but the framework we propose is not restricted to extreme value distributions and leaves the choice of the marginal distribution open (see Eq (5)): in this respect, using max-stable processes would result in an important loss of generality.

2) Estimation of max-stable processes is challenging due to the difficulty of computing the whole likelihood. Pragmatic solutions based on the use of "composite likelihoods" have been proposed within a maximum-likelihood estimation context (see [START_REF] Padoan | Likelihood-based inference for Max-stable processes[END_REF] for further discussion), including a quantification of estimation uncertainties. However, we chose to use a Bayesian inference framework, within which max-stable processes estimation remains a work in progress (see e.g. [START_REF] Reich | A hierarchical max-stable spatial model for extreme precipitation[END_REF]).

Copulas are used to build a joint distribution from a set of marginal distributions [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] where F is the joint cdf of the random variable Y. [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] showed the existence of such a function and pointed out that if the marginal distributions are continuous, then the copula C is unique. Applications of copulas in an hydrometeorological context have been described by e.g. [START_REF] Favre | Multivariate hydrological frequency analysis using copulas[END_REF], [START_REF] Bardossy | Geostatistical interpolation using copulas[END_REF], [START_REF] Bardossy | Copula based multisite model for daily precipitation simulation[END_REF] , [START_REF] Renard | Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology[END_REF], AghaKouchak et al. ( 2010) and [START_REF] Haslauer | Application of Copulas in Geostatistics[END_REF]. Due to their convenience in highly dimensional setups (typically the case with spatial datasets) [START_REF] Renard | A Bayesian hierarchical approach to regional frequency analysis RID G-1524-2011[END_REF], elliptical copulas are favored in this paper. The elliptical copulas are linked to elliptical distributions [START_REF] Genest | Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data[END_REF]. The two most commonly used are the Gaussian copula and the Student copula. [START_REF] Renard | Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology[END_REF] showed that some multivariate datasets could be correctly described by a Gaussian copula, which allows to account for spatially dependent data. It helps improving the estimation of parameter uncertainties, which are always under-estimated when incorrectly assuming spatially independent data. In practice, these two copulas are very convenient since the modeling of spatial dependence is related to the properties of multivariate Gaussian and Student distributions (respectively asymptotically independent and dependent), which are already well known [START_REF] Fang | The meta-elliptical distributions with given marginals[END_REF][START_REF] Genest | Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data[END_REF].

In particular, both copulas are parameterized by a symmetric matrix Σ representing pairwise dependence between sites. The appendix section provides all needed formula for these two particular copulas.

In this study, the dependence matrix Σ is a function of the inter-site distance: for any i j s s ≠ , ( , ) (|| , ||, )

i j i j s s s s ψ Σ = η η η η (9)
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loc reg loc reg loc reg Y Y ( 10 
)
where f(θ loc ,θ reg ,η) is the prior joint pdf. If the priors are assumed to independent (as in both case studies below) this simplifies to

f(θ loc ,θ reg ,η)= f(θ loc )f(θ reg )f(η).
The posterior pdf of θ loc , θ reg , η is estimated by a MCMC sampler (Renard et al., 2006b). More detailed formulas for the likelihood

function ( | , , ) f loc reg Y θ θ η θ θ η θ θ η θ θ η are given in the Appendix.

Model comparison tools

The general framework allows analyzing the effect of different covariates on hydrometeorological data by using the regression models. Thus, a comparison tool is introduced to judge the performance of these models.

The Akaike Information Criterion (AIC) [START_REF] Akaike | New look at statistical-model identification[END_REF], its modified version AICc [START_REF] Burnham | Model selection and multimodel inference : a practical information-theoretic approach[END_REF] and Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF] are three criteria based on parameter point-estimates (e.g. maximum likelihood). However, these criteria ignore parameter uncertainties. In the context of short records of extreme rainfall, parameter uncertainty is significant.

Bayesian Model Selection (BMS) techniques [START_REF] Kass | Bayes Factors[END_REF] and Deviance Information Criterion (DIC) [START_REF] Spiegelhalter | Bayesian measures of model complexity and fit[END_REF] are two approaches based on posterior distribution of parameters, which include the parameter uncertainties. Further discussion and interpretation of the

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 BMS tools were described by [START_REF] Frost | Spatio-temporal hidden markov models for incorporating interannual variability in rainfall[END_REF]. However, the use of BMS tools often requires using informative priors which are not always available in the context of climate-informed rainfall modeling. Therefore, the DIC criterion is used as a general criterion, because it accounts for the effect of prior information when available but remains usable with non-informative or improper priors (provided the posterior is well-posed).

For one given parameter vector θ, the deviance is defined as follow:

( ) 2 log( ( | ))
θ θ θ θ is the expectation of the deviance (with respect to the posterior distribution) and ( )

D p D D = -θ θ θ
θ is the model complexity penalty. Models with small DIC values are preferred.

CASE STUDY 1: QUANTIFYING THE EFFECT OF ENSO ON SUMMER RAINFALL TOTALS USING LOCAL MODELS

Two case studies are considered in this paper. In both cases, we focus on the summer rainfall over Southeast Queensland (SEQ), Australia (Figure 3). This area was chosen because [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] found that there is an asymmetric impact of ENSO on the summer rainfall in SEQ: La Niña episodes correspond to marked positive rainfall anomalies in SEQ, and the anomalies are direct function of the strength of the La Niña, while El Niño episodes do not appear to have any noticeable effects on rainfall. [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] focused on spatially averaged rainfall over a large region, while in this paper, we will investigate if this effect is evident in the individual rainfall sites. This first case study uses a local model to verify and quantify such asymmetric effect on summer rainfall totals over SEQ.

Data and covariates

Rainfall data are provided by the Australian Bureau of Meteorology (BOM). High quality summer (Dec, Jan, Feb) totals [START_REF] Lavery | An extended high-quality historical rainfall dataset for Australia[END_REF] are available over 16 observation sites until 2011, with the record starting year among these sites ranging from 1870 to 1913 with most having a record longer than one hundred years. An assessment of autocorrelation was performed by computing the autocorrelation functions of at-site data: 9 of the 10 sites had lag-one autocorrelation that was not statistically significant. Overall, the autocorrelation in the data is quite low. Thus data can be considered to be temporally independent. Figure 3 shows the location of the rain gauges.

The Southern Oscillation Index (SOI) is an index computed from the Mean Sea Level Pressure difference between Tahiti and Darwin. SOI is considered as a measure of ENSO. A positive (resp.

negative) value of SOI corresponds to the La Niña (resp. El Niño) episode. The SOI data (1877-2011) were obtained from BOM (http://www.bom.gov.au/climate/current/soi2.shtml). The summer average SOI is used in this case study.

Alternative indices that quantify the variability of ENSO were considered as covariates. In preliminary analyses for the period 1950-2011 (not shown here), two indices were compared as potential covariates: SOI (1877-2011) and Niño 3.4 (1950Niño 3.4 ( -2011)). Similar results were found on each site for both indices. The SOI index was therefore preferred as a covariate in this study due to the availability of a longer series.

Local model for the summer rainfall totals

The previous study by [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] suggested separating the effect of La Niña (positive SOI)

and El Niño (negative SOI) episodes on the summer rainfall in SEQ. Thus the specific
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( ) ~log ( ( ), ( )) Y t N t t µ σ (13)
where the mean µ(t) is asymmetric with respect to the positive and negative phases of the SOI, while the standard deviation is assumed to be constant:

0 1 0 1 * ( ); ( ) 0 ( ) * ( ); ( ) 0 SOI t SOI t t SOI t SOI t µ µ µ µ µ - +  + <  =  + >   (14) 0 ( ) t σ σ = ( 15 
)
where 0 1 1 , , µ µ µ -+ and 0 σ are the regression parameters.

The asymmetric regression model applied to µ(t) in Eq ( 14) could also be applied to σ(t) in Eq (15).

However, preliminary analyses (not shown) suggested no noticeable effect of the SOI on this parameter.

In this study, independent flat priors are used for the regression parameters.

Results

The goodness-of-fit of the at-site marginal distribution of the model to the observed data from individual sites is evaluated graphically by using a probability-probability plot (pp-plot). The idea behind the pp-plot is that if ( ) 1, 

i i n Y = are random variables with cdf ( ) 1, i i n F = , then ( ) 1, ( ) i i i n F Y =
1 i n i n =     +   . If the fit is good, this
plot should be close to the diagonal. More explanations and usage of pp-plot in a non-identicallydistributed context can be found in [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF] and [START_REF] Renard | Bayesian methods for non-stationary extreme value analysis[END_REF]. In this study, the pp-plot of each site is close to the diagonal (not shown), which indicates that the lognormal distribution is compatible with the observations.

The effect of El Niño (negative SOI) and La Niña (positive SOI) on the summer rainfall is characterized by 1 µ -and 1 µ + respectively. If such effect is significant, the posterior pdf of 1 1 , µ µ -+ should be significantly different from zero. Figure 4 indicates that most sites are significantly influenced by La Niña, whereas El Niño influence is not detected.

To further illustrate the effect of La Niña and El Niño, the p-value of 0 is calculated for the regression parameters 1 µ -and 1 µ + . This p-value is equal to

[ 0 | ] µ ≤ Y Prob
, which refers to the probability of the posterior distribution of 1 µ -or 1 µ + being smaller than 0. Figure 5 illustrates the p- value of all 16 sites on a map. During El Niño episodes, the majority of sites show little effect.

However, during the La Niña episodes, the significance is quite clear.

Considering the effect of ENSO on summer rainfall, we concentrate on the slope of rainfall quantiles with respect to the SOI value. Figure 6 indicates that during the La Niña episodes, each unit of SOI value increases the summer rainfall by almost 5mm for the 0.5-quantile and by 10mm for the 0.99-quantile (1 in 100 year rainfall). However, during the El Niño episodes, no clear trend is found.

Summary

The analysis of summer totals shows a clear effect of La Niña but no strong effect of El Niño, thereby confirming the results of [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF]. This effect can be detected even using a local model. In the remainder of this case study, we assess whether a similar relationship can be detected for extreme summer daily rainfall.
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CASE STUDY 2: QUANTIFYING THE EFFECT OF ENSO ON SUMMER MAXIMUM DAILY RAINFALLS USING LOCAL AND REGIONAL MODELS

The second case study focuses on the summer maximum daily rainfall over SEQ. [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF] used a linear regression analysis between spatially averaged annual maxima (of 5-day totals) and SOI, and found that the asymmetry in ENSO-rainfall teleconnection over SEQ also exists in the extreme rainfall, or at least in spatially-averaged extremes, which are quite different from local extremes recorded at rain gauges. In this study, we focus on investigating if the asymmetric effect of ENSO (that was evident in the summer total rainfalls) is also found in the observed summer maximum daily rainfalls, as well as the intensity of the effect. For this case study, the analysis is extended to include both local and regional models. In the case of extreme rainfall, there is considerably more uncertainty in the parameter estimates (cf. summer rainfall totals) -this uncertainty may mask the effect of ENSO. The use of regional model to reduce parameter uncertainty and better identify the effect of ENSO is highlighted. Furthermore, comparison of different models is undertaken to answer questions, such as: "Is the effect of ENSO on summer maximum daily rainfall symmetric or asymmetric?"

Data and covariates

Among the 16 high quality sites (Figure 3), daily rainfall data is available in 10 sites. The record starting years among these sites are ranging from 1880 to 1906. Summer maximum daily rainfall is extracted from the daily data of these 10 rain gauges. The same covariate (SOI) as in Section 3.1 is used in this section.
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4.2

Models for summer rainfall maximum

Local model with temporal covariates

Annual/seasonal maxima are often modelled with a generalized extreme value (GEV) distribution.

The relevant theory was introduced by [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF]. In this study, the specific implementation of Eq ( 1) is a GEV model for the summer maximum daily rainfall [START_REF] Coles | A fully probabilistic approach to extreme rainfall modeling[END_REF][START_REF] Katz | Statistics of extremes in hydrology[END_REF]:

( ) ~( ( ), ( ), ( )) Y t GEV t t t µ σ ξ (16) 
To consider the ENSO effect on the location (µ(t)) and scale (σ(t)) of the GEV distribution, these parameters are assumed to be dependent on SOI, while the shape parameter is assumed to be constant. This is because the shape parameter ξ is difficult to estimate at a local scale (Coles, 2001, p106) even in the stationary context.

To determine whether the asymmetric effect of ENSO found in the summer rainfall totals is also observed in the summer maximum daily rainfall, two different regression models are considered.

The first one is a symmetric linear model and the other one is an asymmetric piecewise-linear model. To distinguish these two models, the asymmetric model uses the same symbols as in equations ( 14) and ( 15), and the symmetric model parameters are denoted with a tilde.

Model 1 (Symmetric linear model)

0 1 ( ) * ( ) t SOI t µ µ µ = + % % % (17) 0 1 ( ) * ( ) t SOI t σ σ σ = + % % % (18) 0 ( ) t ξ ξ = % % (19) 
Model 2 (Asymmetric piecewise-linear model)

0 1 0 1 * ( ); ( ) 0 ( ) * ( ); ( ) 0 SOI t SOI t t SOI t SOI t µ µ µ µ µ - +  + <  =  + >   (20) 0 1 0 1 * ( ); ( ) 0 ( ) * ( ); ( ) 0 SOI t SOI t t SOI t SOI t σ σ σ σ σ - +  + <  =  + >   (21) 0 ( ) t ξ ξ = ( 22 
)
where

1 2 0 1 0 1 0 0 1 1 0 1 1 0 { , , , , }, { , , , , , , } M M µ µ σ σ ξ µ µ µ σ σ σ ξ - + - + % % % % % θ = θ = θ = θ = θ = θ = θ = θ =
are the regression parameters of Model 1 and Model 2. Independent flat priors are used in this study as well.

Regional models

In order to better identify the parameters quantifying the effect of ENSO, regional models are applied in this case study. Following the two-step construction introduced in Section 2.2, in the first step, the time-varying structure at each site is prescribed using the same regression functions as in the equations ( 17)-( 19) and ( 20)-( 22). In the second step, two sets of parameters are spatialized. The first set comprises the ENSO effect parameters (e.g. for the asymmetric model, 1 1 1 1 , , and

µ µ σ σ - + - + ).
Indeed, climate indices, like ENSO, are expected to have similar effects on all the observation sites within a region. We also assume a regional shape parameter 0 ξ . Thus we assume these parameters are the same over the region. Conversely, all other parameters are assumed purely local. The regionalized equations for the asymmetric model thus become:

0 1 0 1 ( ) ( ) * ( ); ( ) 0 ( , ) * ( ); ( ) 0 s loc reg s loc reg SOI t SOI t s t SOI t SOI t µ µ µ µ µ - +  + <  =  + >   (23) 0 1 0 1 ( ) ( ) * ( ); ( ) 0 ( , ) * ( ); ( ) 0 s loc reg s loc reg SOI t SOI t s t SOI t SOI t σ σ σ σ σ - +  + <  =  + >   (24) 0 ( , ) reg s t ξ ξ = ( 25 
)
where For all the models considered therein, a Gaussian copula is used to describe the spatial dependence.

1 2 1 2 0 0 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( 
The distance-dependence relationship is characterized by the following function:

1 2 ( , ) *exp( * || , ||)

i j i j s s s s η η Σ = - (26) 
where η 1 and η 2 are the dependence parameters.

Assessing statistical hypotheses of ENSO effect on summer maximum daily rainfalls

In this case study, we consider three competing statistical hypotheses in terms of the relationship between ENSO and summer maximum rainfall which lead to different regression models used in the framework, as follows:

1) There is no ENSO influence on the maximum rainfall, leading to a time-invariant model. This hypothesis will be used as baseline, to compare the predictions of summer maximum rainfall from the other two hypotheses which include an ENSO effect.

2)

The ENSO influence on rainfall is symmetric linear with respect to the SOI values. The physical interpretation of this hypothesis is that the strength of the El Nino event and the strength of the La Nina event (as measured by the SOI) have a "symmetric" impact on maximum rainfall.

Assuming a symmetric linear relationship between rainfall and ENSO indices is a common approach used in several previous studies (e.g. [START_REF] Chiew | El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting[END_REF]; [START_REF] Nicholls | East Australian rainfall events: Interannual variations, trends, and relationships with the Southern Oscillation[END_REF]; [START_REF] Pui | Impact of the El Niño-Southern Oscillation, Indian Ocean Dipole, and Southern Annular Mode on Daily to Subdaily Rainfall Characteristics in East Australia[END_REF]; [START_REF] Risbey | On the remote drivers of rainfall variability in Australia[END_REF]). Thus a symmetric linear regression model is trialed (Eq. ( 17) and ( 18)).

3)

The third statistical hypothesis is that ENSO has an asymmetric effect during two different phases (El Niño and La Niña). The physical interpretations of this hypothesis are that the impact of the strength of the La Nina is different from the impact of the strength of an El Nino event.

This was motivated by the results of [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] (who provide evidence of the physical mechanisms, outlined in the introduction) and [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF], and the results from the analysis

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 of the multi-site summer rainfall totals. Therefore an asymmetric linear regression model is trialed (Eq. ( 23) and ( 24)).

Furthermore, an important research question we are interested in is whether the multi-site information from regional analysis provides improved identification of the effect of ENSO. Hence, we are interested in comparing local and regional versions of the same models.

Table 1 gives an overview of the different local and regional models. To simplify the notation, we use "L" for local and "R" for regional. The name of the models is denoted by their regression functions on the location and scale parameter (<location regression function>_<scale regression function>). Stat is for the identical (stationary) function. Sym is for the symmetric function. Asy1 is for the asymmetric function as in equations ( 23) and ( 24). Asy2 is another asymmetric function in which the slope during negative SOI episode is fixed at 0 since the El Niño effect is not significant for summer total rainfall as shown in Section 3.4.

Results

Goodness-of -fit

Similar to the first case study, the goodness of fit of the at-site marginal distribution of the model to the observed data from individual sites is evaluated using a probability-probability plot described in Section 3.3. Figure 7 shows the results for the local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) asymmetric models for all ten sites. The lines are all close to the diagonal, which indicates that both GEV local and regional asymmetric models have good fit with the observation data. The spatial dependence is also acceptably captured with the dependence-distance relationship assumed in eq.

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 (26) (Figure 8). However, this relationship is certainly perfectible: there is a non-negligible scatter around the red curve, suggesting that inter-site distance only explains a part of spatial dependence.

Identifying the effect of ENSO on summer maximum daily rainfall: None, Symmetric or Asymmetric? Local analysis

The symmetric model (LSym_LSym) does not separate El Niño and La Niña episodes. The p-value shown in the Figure 9 (a) and (b) indicates that 6 out of 10 sites detect a significant ENSO effect on location or scale parameter or both. The asymmetric model (LAsy1_LAsy1) separates the effect of El Niño and La Niña episodes. Similar to the result of the summer total rainfall, the El Niño effect is found neither on the location nor on the scale parameter (not shown) for almost all sites.

However, the La Niña effect is detected on either location or scale parameter or both (Figure 9 (c) (d)). The significance on the scale parameter indicates that La Niña also increases the variability of the summer maximum rainfall over the majority of sites. With both models, summer maximum rainfall is found to be affected by ENSO, at least during the La Niña episode.

Compared with the asymmetric model, the symmetric model has two main differences. One is the value of the slope (with respect to SOI) and the other is the significance of the effect. An overview of all ten sites (Figure 10) indicates that 8 out of 10 sites have significant positive slope for the 1 in 100 year rainfall for the asymmetric model during the La Niña episode, and values of the slope are ranging from 4 to 10 mm/unit SOI. In comparison for the symmetric linear model, only half of the sites show a significant effect, and values of the slope are much lower ranging from 1 to 5 mm/unit SOI. From the asymmetric model, a significant effect is found during the La Niña episodes, but not during El Niño episodes, which explains why the analysis based on the symmetric model leads to less significant results.

Author-produced version of the article published in Journal of Hydrology,vol. 512, The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j. jhydrol.2014.02.025 This result is consistent with the physical mechanism postulated by [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF], whereby the strength of the La Nina event has an effect on summer maximum rainfall, while the strength of a El Nino event does not.

ENSO-conditional predictions for summer maximum extreme rainfall: Local analysis

Figure 11 illustrates the relationship between the 1 in 100 year rainfall (0.99-quantile) and the SOI index for site 16. The large slope of the asymmetric model (red) indicates that, for the positive SOI, each incremental unit increase in the SOI value will increase the 1 in 100 year rainfall by nearly 5mm, whereas the negative SOI does not have a statistically significant effect. Figure 11 also illustrates that these estimations are affected by very large uncertainties. During a strong La Niña, the asymmetric model estimates the posterior median of the 1 in 100 year rainfall is almost 25% higher than the symmetric model and 45% higher than a stationary model (Figure 11). Over all sites (not shown here), these two values can be up to 33 % and 50% respectively.

Although the asymmetric model detects a significant ENSO effect during La Niña, the ENSOconditional predictions are affected by large uncertainties. This is due to the difficulty of precisely identifying the parameters with a local analysis. The regional analysis aims to reduce parameter uncertainties, hence better quantify the effect of El Niño and La Niña.

Does regional analysis improve the identification of the effect of ENSO on summer maximum daily rainfall?

Figure 12 gives the distributions of the La Niña effect parameters on the GEV location parameter in local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) models. There is a significant reduction of the distribution width for the regional model. Figure 13 illustrates that, for the asymmetric model RAsy1_RAsy1, 1 reg µ + and 1 reg σ + (associated to La Niña) are found significantly larger than 0, whereas Author-produced version of the article published in Journal of Hydrology,vol. 512, The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 1 reg µ -and 1 reg σ -(associated to El Niño) are not. This regional analysis gives a more robust conclusion that the strength of the La Niña event has a significant influence on the summer maximum daily rainfall, whereas El Niño has not. Furthermore, the reduction of uncertainty on the La Niña effect parameters ( 1 reg µ + , 1 reg σ + ) and the shape parameter ( 0 reg ξ ) provides an important improvement to decrease the uncertainty on high quantiles. In Figure 14, the 1 in 100 year rainfall of the local and regional asymmetric models are compared. During a strong El Niño, the uncertainty of the regional model (measured by the interval width) is reduced by 50% compared with the local model, and during strong La Niña, this reduction is up to 60%. This clearly shows the benefit of regional analysis in better identifying the asymmetric effect of ENSO on extreme rainfall.

Model comparison for summer rainfall maxima

In this section, we use the DIC criterion to compare the following three pairs of models. A better model is denoted by a smaller DIC.

i)

Local vs. regional modelling Figure 15 illustrates the DIC values for the models in Table 1. The DIC values of at-site models (L_Stat_Stat,Lsym_Lsym,LAsy1_LAsy1) are much larger than the regional models (R_Stat_Stat,RSym_RSym,RAsy1_RAsy1,RAsy2_RAsy2,RAsy1_Stat,RAsy2_Stat). Compared with the regional models, the local models have many more parameters, which lead to a large penalty on the model complexity. Thus regional models are preferred (according to the DIC criterion) to at-site models.

ii) Stationary model vs. climate-informed model

According to i), we assess this point with regional models. Among the six regional models (R_Stat_Stat,RSym_RSym,RAsy1_RAsy1,RAsy2_RAsy2,RAsy1_Stat,RAsy2_Stat), the DIC value of the stationary model (R_Stat_Stat) is the largest (Figure 15). Thus, this result shows once again that ENSO influences the summer maximum rainfall over SEQ and justifies the use of a climateinformed model.
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iii) Symmetric vs. asymmetric effect of ENSO

The comparison between the symmetric and asymmetric models is established with the regional models listed in Table 1. Table 2 summarizes the DIC difference between the regional models in the list and the preferred model (RAsy2_RAsy2) with the smallest DIC. This preferred model has asymmetric regressions on both location and scale parameters. The difference between

RAsy2_RAsy2 and the remaining regional models suggests that the models with asymmetric ENSO effect are preferred. In particular, model R_Stat_Stat (no ENSO effect) is strongly discredited according to the DIC. Lastly, these results also suggest that modelling a trend on the scale parameter is preferable, since models RAsy1_Stat and RAsy2_Stat have a lesser performance than the reference model RAsy1_RAsy1 and RAsy2_RAsy2.

Summary

We use both at-site and regional models to analyze ENSO effects on the summer rainfall maximum over SEQ. The link between ENSO and summer maximum daily rainfall is strong during La Niña phase and weak during El Niño phase, confirming the results of [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] and [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF]. We demonstrate that using regional model helps to reduce the uncertainty and provides more robust results. With the DIC criterion, competing models are compared. It is found that the asymmetric regression on both location and scale parameters is the preferred representation of ENSO effect on summer maximum daily rainfall.

DISCUSSION

This section discusses key assumptions and current limitations of the modeling framework, and their consequences on the SEQ case study. It also proposes avenues for future improvements.
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Assumption of homogeneous regions

An assumption of the regional model is that all data should be subject to similar climate effects.

This raises the question of defining such climatically homogenous regions. [START_REF] Ouarda | Regional flood frequency estimation with canonical correlation analysis[END_REF] described some approaches to determine homogeneous hydrologic regions. Some Southeast Australian basins have also been classified into homogeneous regions by [START_REF] Bates | Climatic and physical factors that influence the homogeneity of regional floods in southeastern Australia[END_REF]. The SEQ is a relatively small area, thus SEQ is assumed to be inside a same climatic homogenous region. However, when studying larger areas, the classification of different homogeneous regions will play an important role.

Spatial dependence modelling

The reason for using simple copulas, like Gaussian and Student copulas, is that they are applicable to any marginal distribution, which is convenient in the context of the general framework proposed in this paper. Moreover the parameterization by a dependence matrix enables using geostatisticallike models (pairwise dependence is a function of distance). Results in Figure 8 suggest that such a simple relationship, while perfectible, adequately captures spatial correlations. However, different copulas have different asymptotic behaviour: asymptotically dependent (e.g. Student copula) and asymptotically independent (e.g. Gaussian copula). The extrapolation of copula is risky because the asymptotic dependence properties exert a strong leverage on joint probability of exceedance, but the limited sample size is not enough to identify such asymptotic properties. Therefore, to make an informed decision between asymptotic dependent and independent copulas, more physical knowledge on the spatial extent of rainfall or meteorological events is required. Moreover, future work could also investigate alternatives to copula, in particular max-stables processes that may be more relevant for extreme data.

Spatial regression modelling

Inside a homogenous region, the distribution of the rainfall may depend on the spatial information at each site. For example the ENSO effect could vary with elevation or distance to sea. However, in the case study, we simply assume the same ENSO effect and shape parameter for all sites. Note however that this does not imply that the rainfall distribution is the same at all sites: since location and scale parameters remain site-specific, the distribution will differ from site to site, which allows accounting for e.g. orographic effects.

Spatial effects could be investigated in the case study in several aspects. First, some parameters are purely local, which prevents transferring quantile estimates to ungauged sites. This could be improved by spatializing these parameters using a spatial regression. Moreover, a more flexible model could be considered by allowing spatial variations in purely regional parameters (ENSO effects and shape parameter). This was not attempted in this case study because identifying such spatial effects is difficult with only ten sites: we therefore favoured the identification of ENSO effects. However, future case studies based on a spatially denser dataset will investigate in more depth the construction of such spatial models.

Practical Implications: Utilising predictions of extreme rainfall distributions from the climate-informed framework

One of the advantages of using a fully probabilistic model for extremes (as opposed to a simple linear regression between SOI and spatially averaged rainfall, as undertaken in [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] and [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF]) is that it enables the prediction of the occurrence probability of extreme rainfall conditioned on climate variability indices. Figure 10, Figure 11 and Figure 14 all provide prediction of the 1 in 100 year rainfall conditional on values of SOI. For the preferred regional model (RAsy1_RAsy1), during strong La Niña phases (with high SOI), the 1 in 100 summer maximum daily rainfall is about 33% higher than the corresponding estimate obtained with the stationary model for this particular site (e.g. Figure 14).

From an operational perspective, the knowledge that the 1 in 100 year quantile is 33% higher during a strong La Niña could provide useful information for planners, engineers, water resource managers, emergency response organizations, in order to design operational/response strategies to mitigate the potential impact due to the increased risk of extreme rainfall. Consider the recent example of the summer of 2010-2011, when there was a strong La Niña (SOI = 27.1, in December) and a series of floods hit Queensland, which impacted on more than 70 towns and 200,000 people.

The damage bill was over 5 billion $AUD (page 4, Operation Queenslander: the State Community, Economic and Environmental Recovery and Reconstruction Plan, 2011-2013). One of the major impact was a major flood in the city of Brisbane (a major Australian city with a population of 2.15 million), caused by the release of water from the major Wivenhoe dam upstream of Brisbane (see Chapter 16, Queensland Floods Commission of Inquiry). Armed with this knowledge of the effect of ENSO on extreme rainfall, planners/engineers/water resource managers, would be able to undertake better planning of emergency response, and potentially improve reservoir operating rules to better control floods, and reduce the impact of extreme rainfall during strong La Niña's. On the other hand of the hydrologic spectrum, climate-informed frameworks have the same importance for predicting extreme droughts [START_REF] Henley | Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data[END_REF].

From a design perspective, the unconditional marginal distribution of extreme rainfall would be needed (e.g. for designing a dam or other hydraulic structures). Evaluating the marginal probabilities involves integrating out the SOI. This requires determining the distribution of SOI.

Historical information could be used to inform this distribution, or alternatively predictions of the future variation in SOI from climate changes models could also be used. This climate-informed

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www. sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 framework which provides a quantitative link between climate variability and rainfall provides far more useful information than that derived from a stationary model. The comparison of the extreme rainfall risk from a stationary model to the ones obtained by integrating out SOI in a climateinformed model is an important question that will be investigated in future work.

Stationarity or non-Stationarity?

The distinction between the conditional and unconditional distributions introduced in section 5.4 is important with respect to the concept of stationarity. Indeed, a SOI-conditional model yields a distribution that varies in time simply because SOI values vary in time. Yet this does not necessarily imply non-stationarity: indeed, the unconditional distribution (after integrating out SOI) might not depend on time if the SOI values are themselves realizations from a stationary distribution.

Conversely, if a temporal trend affects SOI, this trend will propagate to the unconditional distribution of rainfall, yielding a non-stationary unconditional distribution.

Historically, there has been changes in the frequency of ENSO events, and under climate change, the changes to the frequency of ENSO events is unknown [START_REF] Giese | El Niño variability in simple ocean data assimilation (SODA), 1871-2008[END_REF][START_REF] Ray | Historical changes in El Nino and La Nina characteristics in an ocean reanalysis[END_REF]. It is therefore difficult to decide whether the models used in this paper are stationary or not.

This is why we favoured the expressions "climate-informed models" or "conditional models" over the expression "non-stationary models".

Perspective on hierarchical models

In the regional model, we proposed two kinds of parameters: local and regional parameters. Local parameters are different for each site, which offers a good flexibility. Regional parameters are common for all sites, yielding reduced uncertainties (Figure 12 and 13). However, this distinction may be too "rigid". Some parameters may be different at each site, but still have some spatial

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 consistency. A possible improvement is to use hierarchical models to enable constrained variations of parameters in space. [START_REF] Wikle | Hierarchical Bayesian space-time models[END_REF] described a general hierarchical Bayesian framework in a non-stationary context. Lima andLall (2009) (2010) used hierarchical models to describe the daily rainfall occurrence and extreme runoff. [START_REF] Renard | A Bayesian hierarchical approach to regional frequency analysis RID G-1524-2011[END_REF] and [START_REF] Renard | Bayesian methods for non-stationary extreme value analysis[END_REF] proposed a general hierarchical approach to regional frequency analysis. The next step of this work could therefore be to generalize the model proposed in this paper to a hierarchical setup.

CONCLUSIONS

In this paper, we describe a general spatio-temporal regional frequency analysis framework, geared towards detecting and quantifying the effect of climate variability on hydrometeorological variables. This is undertaken by using temporal regression models where the parameters of the probability distribution of hydrometeorological events are a function of climate drivers (e.g.

ENSO)

. A flexible framework is adopted, which allows testing different temporal regression functions to describe the effect of climate variability. This flexibility provides a convenient way to compare these models and to select the most relevant relationship between climate indices and hydrometeorological data. For the regional analysis, spatial dependency is incorporated using copulas and a Bayesian approach is used for inference to enable uncertainties to be easily quantified. The use of a Bayesian regional framework provides the opportunity to assess the value of regional information in better identifying the effect of climate variability on hydrometeorological extremes.

The first case study with the dataset of summer rainfall totals in Southeast Queensland shows that La Niña exerts a significant influence in the region for summer rainfall totals, while the effect of El Niño is not significant.

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 The original publication is available at http://www. sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 In the second case study of summer daily rainfall maxima, the flexible framework enables comparing numerous models to incorporate the effect of ENSO on extreme rainfall over SEQ.

Stationary, symmetric and asymmetric models in both local and regional setups are compared using a model selection criterion (in this case, the DIC). Overall, the use of regional models yielded better identification of the effect of ENSO on extreme rainfall over SEQ compared with using only local models, for which there was too much uncertainty to enable a clear identification. A variety of regional models, with different representations of the effect of ENSO (linear symmetric versus asymmetric) were also compared. Asymmetric models are found to be the best among them. More precisely, it is found that an asymmetric model, distinguishing between ENSO effect on location and scale parameters during the positive and negative phases of the SOI, is the most suitable in this case. These results corroborate the findings of other recent studies [START_REF] Cai | Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact[END_REF] and [START_REF] King | Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability[END_REF]).

From a practical perspective, it was found that during a strong La Niña the mostly likely 1 in 100 year rainfall for different sites can be 20% to 50% higher than estimates using a stationary model which ignores the influence of ENSO, albeit with significant uncertainty. This information has the potential to be used by engineers/planners to provide better informed flood response strategies.

The framework developed in this paper is general, and in the future can be extended in several ways. Firstly, spatial effects can be included using spatial regression models with spatial covariates (e.g. elevation), while hierarchical approaches will also be developed to provide more flexibility for modeling the effect of spatio-temporal covariates on hydrometeorological variables.
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APPENDIX

For a fixed time k t , the joint pdf of ( ) 1, ( , )

j k j p Y s t =
is given by the Gaussian copula formula (see e.g. [START_REF] Renard | A Bayesian hierarchical approach to regional frequency analysis RID G-1524-2011[END_REF]). This yields: 

( ) ( ) 1 
β φ = Σ =   =     = Φ       ∏ ∏ η η η η ( ) 1 1, 2, , , 1 ( ( , ) | , ) ( , ,..., | ) ( ) p j j j k j k k p k p j k j f y s t u u u u φ = Σ =       = Φ       ∏ ∏ loc reg θ θ θ θ θ θ θ θ η η η η (27) 
where ( ( , ) | ( ( , ), {1, 2,..., }))

j j k i j k f y s t s t i m β = is the marginal pdf for site s j time t k ; ( ) ( ) 1 , ( , ) j k j j k u F y s t γ - = ;
( ) u φ is the standard Gaussian pdf or Student pdf with ν degree of freedom (the latter being made implicit in the notation); indicates that the parameter is significantly larger than 0.
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L_Stat_Stat, LSym_LSym and LAsy1_LAsy1 are local models. R_Stat_Stat, RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat and RAsy2_Stat are regional models.
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  are identically distributed according to a uniform distribution Unif[0,1]. Therefore the sorted values of
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025 2.2 Regional model with spatio-temporal covariates 2.2.1 Parent distribution
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	Let ( , ) Y s t be the observation at site s and time t and	Y	=	(	{ Y s t j 1 2 ( , ), , ,..., , } { j k p k 1 2 n } , ,..., = =	)
	be the collection of the observed data at all p observation sites for n time steps. Similar to the local
	model, a common distribution D is assumed for all sites, but with parameters varying in both space
	and time:							
										( , ) ~( ( , )) Y s t D s t β	(5)
	where	β β β β	(s,t)	=	(	β	i	{ s t i 1 2 m } ( , ), , ,..., =	)	is the collection of all distribution parameters. m is the
	number of distribution parameters of D. ( ) , i s t β	is the i th distribution parameter at time t and site s.
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