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Abstract 8 

There is increasing evidence that the distribution of hydrometeorological variables such as average 9 

or extreme rainfall/runoff is modulated by modes of climate variability in many regions of the 10 

world. This paper presents a general spatio-temporal regional frequency analysis framework that 11 

allows quantifying the effect of climate variability on the distribution of at-site hydrometeorological 12 

variables. Climate effects are described through the parameters of a pre-specified distribution, by 13 

using regression models linking parameter values with time-varying covariates, such as climate 14 

indices. For the regional model copulas are used to incorporate spatial dependency. A Bayesian 15 

framework is used for inference and prediction, which enables quantification of parameter and 16 

predictive uncertainties. A regional approach enables better identification of climate effects which 17 

can be subject to high uncertainty using only at-site (local) analysis. Lastly, model comparison tools 18 

enable considering competing statistical hypotheses on the nature of climate effects and selecting 19 

the most relevant one. 20 

 21 

This modelling framework is applied to two case studies assessing the effect of El Niño Southern 22 

Oscillation (ENSO) on summer rainfall in Southeast Queensland. The first case study focuses on 23 

summer rainfall totals while the second analysis focuses on extremes using summer daily rainfall 24 

maxima. The Southern Oscillation Index (SOI), a measure of ENSO, is considered as a time-25 

varying covariate. In order to account for different effects during La Niña and El Niño episodes, an 26 

asymmetric piecewise-linear regression is used to analyse the rainfall data using both local and 27 

regional models. During La Niña episodes, SOI has a significant effect on both summer rainfall 28 

totals and maxima. Conversely, during El Niño episodes, the SOI has little effect on rainfall. It is 29 

found that, during a strong La Niña, the most likely 1 in 100 year summer maximum daily rainfall 30 

for different sites estimated with the local asymmetric model can be 5% to 33% higher than the 31 
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estimates from a local symmetric linear model and 20% to 50% higher than the estimates from a 32 

stationary model, albeit with significant uncertainty. Results from regional and local models are 33 

also compared: the former shows a great advantage in terms of uncertainty reduction and allows a 34 

better quantification of the ENSO effect on summer rainfall totals and maxima. 35 

 36 

Keywords: regional frequency analysis, spatio-temporal extremes, climate-informed 37 
model, ENSO, precipitation, Australia38 

1 INTRODUCTION  39 

Extreme precipitations and their consequences (floods) are one of the most threatening natural 40 

disasters for human beings. In engineering design, Frequency Analysis (FA) techniques are an 41 

integral part of risk assessment and mitigation. FA uses statistical models to estimate the probability 42 

of extreme hydrometeorological events which provides information for designing hydraulic 43 

structures. However, standard FA methods commonly rely on the assumption of ‘identical 44 

distribution’ (Brockwell and Davis, 2006): the distribution of observations does not vary with time. 45 

As will be reviewed subsequently, there is now a substantial body of evidence that large-scale 46 

modes of climate variability (e.g. El-Niño Southern Oscillation (ENSO); North Atlantic oscillation 47 

(NAO); Indian Ocean Dipole (IOD); Pacific Decadal Oscillation (PDO); etc.) exert a significant 48 

influence on rainfall in various regions worldwide (e.g. Gershunov and Cayan (2003); Haylock et 49 

al. (2006); Henley et al. (2011); Kamruzzaman et al. (2013); Schreck and Semazzi (2004); Willems 50 

(2013a); (2013b)). Furthermore, climate change is likely to have an influence on hydrology, thus 51 

further challenging the assumption of stationarity (Milly et al., 2008). Therefore, FA techniques 52 

need to move beyond this assumption. In order to provide a more accurate risk assessment, it is 53 

important to understand and predict the effect of climate variability/change on the severity and 54 
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frequency of hydrometeorological events (especially extremes). This paper provides an important 55 

step towards this goal, by developing a rigorous regional frequency analysis (RFA) framework for 56 

incorporating the effects of climate variability on hydrometeorological events. 57 

 58 

Climate variability influences hydrology worldwide. ENSO is one of the prominent modes of 59 

climate variability and has global impact on hydrometeorological variables (Hoerling et al., 1997). 60 

For example, during winter (summer) season in northern (southern) hemisphere, during El Niño 61 

phase, positive anomalies were found in Southwest U.S (Castello and Shelton, 2004; Cayan et al., 62 

1999; Gershunov and Barnett, 1998; Meehl et al., 2007), Southern South America (Grimm and 63 

Tedeschi, 2009) and Southern China (Wu et al., 2003); while during La Niña phase, positive 64 

anomalies were found in Northwest U.S (Castello and Shelton, 2004; Cayan et al., 1999; Gershunov 65 

and Barnett, 1998; Meehl et al., 2007), South Africa (Kruger, 1999; Vanheerden et al., 1988) and 66 

Southeast Queensland, Australia (Cai et al., 2010).  67 

 68 

In order to overcome the assumption of identical distribution and enable the inclusion of climate 69 

information, innovative FA methods have been recently developed. At the local scale (i.e. for a 70 

single site), Renard et al. (2006b) built a non-stationary FA model by estimating time-varying 71 

parameters from a pre-specified distribution. Micevski et al. (2006) used the Inter-decadal Pacific 72 

Oscillation (IPO) to characterize the flood hazard. Ouarda and El-Adlouni (2011) discussed non-73 

stationary FA models within the Bayesian approach. More generally, Khaliq et al. (2006) reviewed 74 

non-stationary local FA methods. While local FA methods enabling the inclusion of climate 75 

information or non-stationarity are becoming common, such at-site models remain limited by two 76 

important drawbacks:  77 

1) Local analysis cannot be applied to ungauged sites.  78 
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2) Uncertainty in parameter estimates (and hence predictive estimates) tends to be very large 79 

due to the limited number of observations at one location. In addition, if climate information is 80 

included and more complex models are proposed, these observations may not be enough to identify 81 

the parameters (Thyer et al., 2006). 82 

 83 

This motivates the development of regional frequency analysis (RFA) models that use information 84 

from multiple sites to overcome these shortcomings. Many RFA methodologies have been 85 

developed over the years. Cooley et al. (2007) and Ghosh and Mallick (2011) used Bayesian spatial 86 

models for extreme precipitation, but still under the identical distribution assumption. Cunderlik and 87 

Burn (2003) described a second-order non-stationary approach to pooled flood FA, and Hanel et al. 88 

(2009) introduced a non-stationary index-flood model for extreme precipitation. Recently, several 89 

authors (Aryal et al., 2009; Lima and Lall, 2010; Sang and Gelfand, 2009) started investigating 90 

spatio-temporal models using hierarchical approaches. In the same vein, Gregersen et al. (2013) 91 

also used Poisson regression models to describe the frequency of extreme rainfall in both space and 92 

time. A common difficulty for all these approaches is the treatment of the spatial dependency 93 

existing between data. 94 

 95 

The main contribution of this paper is the construction of a rigorous spatio-temporal framework that 96 

enables the quantification of the effect of climate variability on the severity/frequency of 97 

hydrometeorological events. This framework builds on the previous works referenced in this 98 

introduction section: it brings together several components separately developed in previous studies 99 

(in particular spatio-temporal regression models, copula-based modeling of spatial dependence, 100 

Bayesian inference, model comparison tools) to derive a general and flexible modeling platform.  101 

This paper has two main objectives: 102 
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1) Model Development, Inference and Comparison: the construction of the model, using 103 

regressions with spatial and temporal covariates to describe the spatio-temporal variability of the 104 

parameters, is described. Inference accounts for spatial dependence between data and uses a 105 

Bayesian framework, thereby enabling a direct quantification of estimation uncertainty and 106 

predictive uncertainty. In addition, within this general framework, different climate-informed 107 

regression models can be compared (for instance, linear vs. non-linear regression). This helps 108 

identifying the most suitable regression to link climate variability and spatio-temporal 109 

hydrometeorological variability. 110 

2) Model Application: Two case studies illustrate the application of the framework to quantify 111 

the ENSO effect on the summer total and extreme rainfall in Southeast Queensland (SEQ), 112 

Australia. The flexibility of the framework enables several competing statistical hypotheses to be 113 

rigorously compared, e.g. to assess whether the effect of ENSO on summer maximum daily rainfall 114 

is symmetric or asymmetric. 115 

 116 

Similar studies on the summer total and maximum rainfall over SEQ were described by Cai et al. 117 

(2010) and King et al. (2013). In particular, these authors highlighted the existence of an 118 

asymmetric relationship between ENSO and precipitation in Eastern Australia. With reference to 119 

Cai et al. (2010) a simplified physical interpretation for this asymmetric relationship, is as follows: 120 

During La Nina events the warm pool of Pacific Ocean sea surface temperature anomaly’s (SSTA) 121 

moves westward, closer to the Eastern Australia coast, producing higher rainfall in SEQ. The 122 

stronger the La Nina event, the further the warm pool moves west and the higher the rainfall in 123 

SEQ. During El Nino events, the warm pool of Pacific SSTA’s moves east, producing reduced 124 

rainfall in SEQ. Once this warm pool moves sufficiently east away from the coast of Australia, the 125 

intensity of the El Nino event is irrelevant. Thus while an El Nino event produces reduced rainfall, 126 

the intensity of the El Nino event does not impact on rainfall in SEQ.    127 

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 



7 

 

In this paper, we do not attempt to discuss or discover new physical understanding for the reasons 128 

behind this relationship. Instead, we focus on developing a framework that can provide local multi-129 

site predictions of this effect of ENSO on rainfall and rainfall extremes, which is of prime 130 

importance for engineering design and operations. More precisely, we aim at addressing the 131 

following shortcomings of previous studies: 132 

1) The aforementioned studies are based on precipitation totals or maxima spatially averaged 133 

over a large region (South-East Queensland or Eastern Australia). From an engineering perspective 134 

this type of analysis is inadequate. Practical applications require estimates of the ENSO effects on 135 

rainfall at individual sites, rather than spatially averaged regions. This framework aims to provide 136 

predictions of multi-site local scale climate effects.   137 

2) The use of simple statistical approaches such as least-square linear regression may suffice to 138 

estimate an overall ENSO effect over a given region, but is not sufficient for engineering 139 

applications. Indeed, such applications require predicting the full distribution of the target 140 

precipitation variable conditionally on the ENSO state, which in turn allows estimation of extreme 141 

rainfall conditioned on ENSO. 142 

 143 

As such, this paper aims to complement and build on previous studies that have demonstrate ENSO 144 

effects using spatially averaged data, by providing multi-site local predictions of hydro-over spatial 145 

regions suitable for practical engineering applications.  146 

 147 

The paper is organized as follows. Section 2 describes the framework for building general climate-148 

informed models at both local and regional levels. Section 3 and Section 4 present the case study 149 

with ENSO effect on summer rainfall in Southeast Queensland. Different regression models are 150 

compared in this section as well. Further improvements are discussed in Section 5, while the 151 

conclusion in Section 6 summarizes the main findings of this study.  152 
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2 GENERAL SPATIO-TEMPORAL REGIONAL FREQUENCY ANALYSIS 153 

FRAMEWORK 154 

The general frequency analysis framework aims to take advantage of spatial and temporal 155 

information (e.g. climate information in ENSO) to enhance the predictions of the 156 

hydrometeorological variable of interest. In this framework, data are assumed to follow a 157 

distribution, whose parameters are linked to temporal or/and spatial covariates using regression 158 

models. In the first part, an at-site (local) model that uses temporal covariates is described. In the 159 

second part, the framework is generalized to a regional scale. Since data at different sites are used, 160 

both spatial and temporal covariates are involved. The spatial dependency of the data is considered 161 

with elliptical copulas. The last part of this section describes criteria for model selection. The 162 

RFortran software library (Thyer et al., 2011), was used as part of this framework to enable fast and 163 

efficient debugging, diagnosis and analysis of results. 164 

2.1 At-site (local) model with temporal covariates 165 

2.1.1 Parent distribution  166 

The basis of the at-site (local) model is to assume that data follows a time-varying distribution, 167 

conditioned on temporally varying covariates, such as climate information.  More precisely, let 168 

( )Y t  be the observation at time t and ( )1 2( ), ( ),..., ( )nY t Y t Y t=Y  be the collection of observations of 169 

a site at n time steps. A local model is defined as: 170 

 ( ) ~ ( ( ))Y t D tβ   (1) 171 

where D is the assumed distribution of Y and ( ) ( ) ( ) ( )( )1 2,  , ,  mt t tβ β β= …ββββ t  is the collection of 172 

all m distribution parameters at time t (m=2 for a Gaussian distribution, m=3 for a generalized 173 

extreme value distribution (GEV), etc.). 174 
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2.1.2 Regression models with temporal covariates 175 

The parameters β directly characterize the distribution, such as its location, scale and shape. These 176 

parameters may depend on different covariates, like time, pressure and some climate indices. Thus a 177 

regression function is defined for each distribution parameter as follows: 178 

 ( ) ( ; ) {1,2,..., }i it h (t) i mβ = =ix θ   (2) 179 

where hi is the regression function of ( )i tβ , (t)x  is the collection of temporal covariates and θi is 180 

the collection of all parameters used in the regression function hi.  181 

 To avoid confusion with the D-parameters β(t), we call ( ) , ,= …1 mθθθθ θ θ , the parameters we are 182 

going to estimate, the regression parameters. Figure 1 illustrates the construction of the local model. 183 

2.1.3 Parameter estimation 184 

With a pre-specified distribution D and the regression functions h, regression parameters θ are 185 

estimated in a Bayesian framework. The posterior probability distribution function (pdf) of the 186 

regression parameters is computed as follows: 187 

 ( | ) ( | ) ( )f f f∝θ θ θθ θ θθ θ θθ θ θY Y   (3) 188 

where f(θ) is the prior pdf of regression parameters and f(Y|θ) is the likelihood function: 189 

 ( )1 2( | ) ( ) | ( ), ( ),..., ( )mt
f f Y t t t tβ β β= ∏Y θθθθ  190 

 ( )1 1 2 2( ) | ( , ), ( , ),..., ( , )m mt
f Y t h h h= ∏ t t tx x xθ θ θθ θ θθ θ θθ θ θ   (4) 191 

In equation (4), a time independence assumption is applied: 1 2t t∀ ≠ , ( )1Y t  is independent of 192 

( )2Y t conditionally on 1 2( ), ( )t tβ β . 193 

The posterior pdf in Eq(3) is estimated using a Markov chain Monte Carlo (MCMC) sampler 194 

described in Renard et al. (2006a).  195 
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2.2 Regional model with spatio-temporal covariates 196 

2.2.1 Parent distribution 197 

Let ( , )Y s t  be the observation at site s and time t and { } { }( )( , ), , ,..., , , ,...,j kY s t j 1 2 p k 1 2 n= = =Y  198 

be the collection of the observed data at all p observation sites for n time steps. Similar to the local 199 

model, a common distribution D is assumed for all sites, but with parameters varying in both space 200 

and time: 201 

 ( , ) ~ ( ( , ))Y s t D s tβ   (5) 202 

where { }( )( , ), , ,...,i(s,t) s t i 1 2 mβ= =ββββ  is the collection of all distribution parameters. m is the 203 

number of distribution parameters of D. ( ),i s tβ   is the i th distribution parameter at time t and site s. 204 

2.2.2 Regression models with spatio-temporal covariates 205 

Similar to the local model, regressions are used to describe spatio-temporal variations in the 206 

parameters ( ),i s tβ . However, three different kinds of covariates are considered in the regional 207 

model: 208 

• Temporal covariates ( )x t  : e.g. time, SOI (Southern Oscillation Index), NAO (North 209 

Atlantic oscillation)… 210 

• Spatial covariates ( )ωωωω s : e.g. altitude, coordinates... 211 

• Spatio-temporal covariates ( , )z s t  : e.g. temperature... 212 

Temporal covariates only change over time (but are common to all sites), and spatial covariates 213 

only change over sites (but do not change in time). Spatio-temporal covariates change over both 214 

these dimensions.  215 
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The regional regression is then established in two steps: specification and spatialization. The first 216 

step establishes site-specific regressions with temporal and spatio-temporal covariates. The second 217 

step establishes a spatial model with the spatial covariates (see Figure 2):  218 

1) Specification step: specify the time model using at-site regressions for a distribution 219 

parameter ( , )i s tβ  : 220 

For a given site s:  221 

 ( , ) ( ( ), ( , ); ( ))i is t hβ = x t z s t sθθθθ   (6) 222 

where ih  is the regression function, x and z are temporal and spatio-temporal covariates, and ( )sθθθθ  223 

are the regression parameters.    224 

 225 

2) Spatialization step: regression parameters ( )sθθθθ  are split into two groups: 226 

( )( ) { ; ( )}= s
locs sθ θ λθ θ λθ θ λθ θ λ . ( )s

locθθθθ  is the collection of purely local parameters, whose value remains specific to 227 

each site s. ( )λλλλ s represents all the parameters waiting to be spatialized. For each of its 228 

component ( )sλ , we apply a spatial regression function. This spatial regression is time-invariant: 229 

neither spatial regression parameters nor covariates change over time. Hence, at this step, only 230 

regional parameters and spatial covariates are used. Thus a spatial regression function g is 231 

introduced: 232 

 ( ) ( ( ); )s gλ = regsω θω θω θω θ   (7) 233 

where ( )ωωωω s   is a vector of spatial covariates and θθθθreg  is a vector of regional parameters (identical 234 

for all sites). 235 

This two-step mechanism is very general and corresponds to standard regionalization reasoning. As 236 

an illustration, consider the following “trend analysis” situation: the mean of some 237 

hydrometeorological variable is assumed to be a linear function of time (step 1, specification). 238 
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Then, the slope of this linear trend line may be allowed to vary across sites according to elevation 239 

(step 2, spatialization). 240 

2.2.3 Spatial dependence 241 

In a region, the observations from different stations are in general not completely independent. The 242 

dependence is expected to increase with decreasing distance. 243 

There exist several ways to model this dependence. In this paper, we opt for the use of copulas. 244 

Max-stable processes are an interesting alternative, especially in the context of extremes (Davison 245 

et al., 2012; Padoan et al., 2010). An illustration in hydroclimatic context was described by Westra 246 

and Sisson (2011). However, they are not considered in the proposed framework for the following 247 

reasons: 248 

1) Max-stable processes are only suitable for extreme data, but the framework we propose is 249 

not restricted to extreme value distributions and leaves the choice of the marginal distribution open 250 

(see Eq (5)): in this respect, using max-stable processes would result in an important loss of 251 

generality. 252 

2) Estimation of max-stable processes is challenging due to the difficulty of computing the 253 

whole likelihood. Pragmatic solutions based on the use of “composite likelihoods” have been 254 

proposed within a maximum-likelihood estimation context (see (Padoan et al., 2010) for further 255 

discussion), including a quantification of estimation uncertainties. However, we chose to use a 256 

Bayesian inference framework, within which max-stable processes estimation remains a work in 257 

progress (see e.g. Reich and Shaby (2012)).  258 

 259 

Copulas are used to build a joint distribution from a set of marginal distributions (Sklar, 1959). For 260 

a p-dimensional multivariate random variable 1 2, ,( ),  pY Y Y= …Y  with marginal cumulative 261 

distribution functions (cdf) F1,F2,…,Fp, a copula is a function C : 262 
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1 1 2 2 1 2

: [0,1] [0,1]

( ( ), ( ),..., ( )) ( , ,..., )

p

p p p

C

F y F y F y F y y y

→
a

  (8) 263 

where F is the joint cdf of the random variable Y. 264 

 265 

Sklar (1959) showed the existence of such a function and pointed out that if the marginal 266 

distributions are continuous, then the copula C is unique. Applications of copulas in an 267 

hydrometeorological context have been described by e.g.  Favre et al. (2004), Bardossy and Li 268 

(2008), Bardossy and Pegram (2009) , Renard and Lang (2007), AghaKouchak et al. (2010) and 269 

Haslauer et al. (2010). Due to their convenience in highly dimensional setups (typically the case 270 

with spatial datasets) (Renard, 2011), elliptical copulas are favored in this paper. The elliptical 271 

copulas are linked to elliptical distributions (Genest et al., 2007). The two most commonly used are 272 

the Gaussian copula and the Student copula. Renard and Lang (2007) showed that some 273 

multivariate datasets could be correctly described by a Gaussian copula, which allows to account 274 

for spatially dependent data. It helps improving the estimation of parameter uncertainties, which are 275 

always under-estimated when incorrectly assuming spatially independent data. In practice, these 276 

two copulas are very convenient since the modeling of spatial dependence is related to the 277 

properties of multivariate Gaussian and Student distributions (respectively asymptotically 278 

independent and dependent), which are already well known (Fang et al., 2002; Genest et al., 2007). 279 

In particular, both copulas are parameterized by a symmetric matrix Σ representing pairwise 280 

dependence between sites. The appendix section provides all needed formula for these two 281 

particular copulas. 282 

 283 

In this study, the dependence matrix Σ is a function of the inter-site distance: for any  i js s≠ , 284 

 ( , ) (|| , ||, )i j i js s s sψΣ = ηηηη   (9) 285 
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where ||.|| is the distance function and ψ is the correlation function whose variables are the distance 286 

and the dependence parameters η. 287 

2.2.4 Parameter estimation 288 

Similar to equation(3), the posterior pdf of the regression parameters is given as follows: 289 

 ( , , ) ( | , , ) ( )f f f| ∝θ θ η θ θ η θ ,θ ,ηθ θ η θ θ η θ ,θ ,ηθ θ η θ θ η θ ,θ ,ηθ θ η θ θ η θ ,θ ,ηloc reg loc reg loc regY Y   (10) 290 

where f(θloc ,θreg ,η) is the prior joint pdf. If the priors are assumed to independent (as in both case 291 

studies below) this simplifies to f(θloc ,θreg ,η)= f(θloc )f(θreg)f(η). The posterior pdf of θloc, θreg ,η is 292 

estimated by a MCMC sampler (Renard et al., 2006b). More detailed formulas for the likelihood 293 

function ( | , , )f loc regY θ θ ηθ θ ηθ θ ηθ θ η
 
are given in the Appendix. 294 

2.3 Model comparison tools 295 

The general framework allows analyzing the effect of different covariates on hydrometeorological 296 

data by using the regression models. Thus, a comparison tool is introduced to judge the 297 

performance of these models. 298 

 299 

The Akaike Information Criterion (AIC) (Akaike, 1974), its modified version AICc (Burnham and 300 

Anderson, 2002) and Bayesian Information Criterion (BIC) (Schwarz, 1978) are three criteria based 301 

on parameter point-estimates (e.g. maximum likelihood). However, these criteria ignore parameter 302 

uncertainties. In the context of short records of extreme rainfall, parameter uncertainty is 303 

significant. 304 

 305 

Bayesian Model Selection (BMS) techniques (Kass and Raftery, 1995) and Deviance Information 306 

Criterion (DIC) (Spiegelhalter et al., 2002) are two approaches based on posterior distribution of 307 

parameters, which include the parameter uncertainties. Further discussion and interpretation of the 308 
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BMS tools were described by Frost (2004). However, the use of BMS tools often requires using 309 

informative priors which are not always available in the context of climate-informed rainfall 310 

modeling. Therefore, the DIC criterion is used as a general criterion, because it accounts for the 311 

effect of prior information when available but remains usable with non-informative or improper 312 

priors (provided the posterior is well-posed). 313 

 314 

For one given parameter vector θ, the deviance is defined as follow: 315 

 ( ) 2 log( ( | ))D f y= −θ θθ θθ θθ θ   (11) 316 

The DIC criterion is then computed by: 317 

 DDIC D p= +   (12) 318 

where [ ]( )D E D= θθθθ θθθθ  is the expectation of the deviance (with respect to the posterior distribution) 319 

and ( )Dp D D= − θθθθ is the model complexity penalty. Models with small DIC values are preferred. 320 

3 CASE STUDY 1: QUANTIFYING THE EFFECT OF ENSO ON SUMMER 321 

RAINFALL TOTALS USING LOCAL MODELS  322 

Two case studies are considered in this paper. In both cases, we focus on the summer rainfall over 323 

Southeast Queensland (SEQ), Australia (Figure 3). This area was chosen because Cai et al. (2010) 324 

found that there is an asymmetric impact of ENSO on the summer rainfall in SEQ: La Niña 325 

episodes correspond to marked positive rainfall anomalies in SEQ, and the anomalies are direct 326 

function of the strength of the La Niña, while El Niño episodes do not appear to have any noticeable 327 

effects on rainfall. Cai et al. (2010) focused on spatially averaged rainfall over a large region, while 328 

in this paper, we will investigate if this effect is evident in the individual rainfall sites. This first 329 

case study uses a local model to verify and quantify such asymmetric effect on summer rainfall 330 

totals over SEQ. 331 
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3.1 Data and covariates 332 

Rainfall data are provided by the Australian Bureau of Meteorology (BOM). High quality summer 333 

(Dec, Jan, Feb) totals (Lavery et al., 1997) are available over 16 observation sites until 2011, with 334 

the record starting year among these sites ranging from 1870 to 1913 with most having a record 335 

longer than one hundred years. An assessment of autocorrelation was performed by computing the 336 

autocorrelation functions of at-site data: 9 of the 10 sites had lag-one autocorrelation that was not 337 

statistically significant. Overall, the autocorrelation in the data is quite low. Thus data can be 338 

considered to be temporally independent. Figure 3 shows the location of the rain gauges. 339 

 340 

The Southern Oscillation Index (SOI) is an index computed from the Mean Sea Level Pressure 341 

difference between Tahiti and Darwin. SOI is considered as a measure of ENSO. A positive (resp. 342 

negative) value of SOI corresponds to the La Niña (resp. El Niño) episode. The SOI data (1877-343 

2011) were obtained from BOM (http://www.bom.gov.au/climate/current/soi2.shtml). The summer 344 

average SOI is used in this case study. 345 

 346 

Alternative indices that quantify the variability of ENSO were considered as covariates. In 347 

preliminary analyses for the period 1950-2011 (not shown here), two indices were compared as 348 

potential covariates: SOI (1877-2011) and Niño 3.4 (1950-2011). Similar results were found on 349 

each site for both indices. The SOI index was therefore preferred as a covariate in this study due to 350 

the availability of a longer series. 351 

3.2 Local model for the summer rainfall totals 352 

The previous study by Cai et al. (2010) suggested separating the effect of La Niña (positive SOI) 353 

and El Niño (negative SOI) episodes on the summer rainfall in SEQ. Thus the specific 354 

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 



17 

 

implementation of Eq (1) and (2) for this is to use a lognormal model for the summer total rainfall, 355 

as follows:  356 

 ( ) ~ log ( ( ), ( ))Y t N t tµ σ   (13) 357 

where the mean µ(t) is asymmetric with respect to the positive and negative phases of the SOI, 358 

while the standard deviation is assumed to be constant: 359 

 0 1

0 1

* ( ); ( ) 0
( )

* ( ); ( ) 0

SOI t SOI t
t

SOI t SOI t

µ µ
µ

µ µ

−

+

 + <= 
+ >

  (14) 360 

 0( )tσ σ=   (15) 361 

where 0 1 1, ,µ µ µ− +  and 0σ  are the regression parameters. 362 

 363 

The asymmetric regression model applied to µ(t) in Eq (14) could also be applied to σ(t) in Eq (15). 364 

However, preliminary analyses (not shown) suggested no noticeable effect of the SOI on this 365 

parameter. 366 

 367 

In this study, independent flat priors are used for the regression parameters. 368 

3.3 Results 369 

The goodness-of-fit of the at-site marginal distribution of the model to the observed data from 370 

individual sites is evaluated graphically by using a probability-probability plot (pp-plot). The idea 371 

behind the pp-plot is that if ( ) 1,i i n
Y

=
 are random variables with cdf ( ) 1,i i n

F
=

, then ( ) 1,
( )i i i n

F Y
=

 are 372 

identically distributed according to a uniform distribution Unif[0,1]. Therefore the sorted values of 373 

1 1 2 2( ), ( ),..., ( )n nF y F y F y  are plotted against empirical frequencies 
1,1 i n

i

n =

 
 + 

. If the fit is good, this 374 

plot should be close to the diagonal. More explanations and usage of pp-plot in a non-identically-375 

distributed context can be found in Coles (2001) and Renard et al. (2013). In this study, the pp-plot 376 
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of each site is close to the diagonal (not shown), which indicates that the lognormal distribution is 377 

compatible with the observations. 378 

 379 

The effect of El Niño (negative SOI) and La Niña (positive SOI) on the summer rainfall is 380 

characterized by 1µ −  and 1µ +   respectively. If such effect is significant, the posterior pdf of 1 1,µ µ− +  381 

should be significantly different from zero. Figure 4 indicates that most sites are significantly 382 

influenced by La Niña, whereas El Niño influence is not detected.  383 

 384 

To further illustrate the effect of La Niña and El Niño, the p-value of 0 is calculated for the 385 

regression parameters 1µ −  and 1µ + . This p-value is equal to [ 0 | ]µ ≤ YProb , which refers to the 386 

probability of the posterior distribution of 1µ −  or 1µ +  being smaller than 0. Figure 5 illustrates the p-387 

value of all 16 sites on a map. During El Niño episodes, the majority of sites show little effect. 388 

However, during the La Niña episodes, the significance is quite clear. 389 

 390 

Considering the effect of ENSO on summer rainfall, we concentrate on the slope of rainfall 391 

quantiles with respect to the SOI value. Figure 6 indicates that during the La Niña episodes, each 392 

unit of SOI value increases the summer rainfall by almost 5mm for the 0.5-quantile and by 10mm 393 

for the 0.99-quantile (1 in 100 year rainfall). However, during the El Niño episodes, no clear trend 394 

is found. 395 

3.4 Summary 396 

The analysis of summer totals shows a clear effect of La Niña but no strong effect of El Niño, 397 

thereby confirming the results of Cai et al. (2010). This effect can be detected even using a local 398 

model. In the remainder of this case study, we assess whether a similar relationship can be detected 399 

for extreme summer daily rainfall. 400 
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4 CASE STUDY 2: QUANTIFYING THE EFFECT OF ENSO ON SUMMER 401 

MAXIMUM DAILY RAINFALLS USING LOCAL AND REGIONAL MODELS  402 

The second case study focuses on the summer maximum daily rainfall over SEQ. King et al. (2013) 403 

used a linear regression analysis between spatially  averaged  annual maxima (of 5-day totals) and 404 

SOI, and found that the asymmetry in ENSO-rainfall teleconnection over SEQ also exists in the 405 

extreme rainfall, or at least in spatially-averaged extremes, which are quite different from local 406 

extremes recorded at rain gauges. In this study, we focus on investigating if the asymmetric effect 407 

of ENSO (that was evident in the summer total rainfalls) is also found in the observed summer 408 

maximum daily rainfalls, as well as the intensity of the effect. For this case study, the analysis is 409 

extended to include both local and regional models. In the case of extreme rainfall, there is 410 

considerably more uncertainty in the parameter estimates (cf. summer rainfall totals) – this 411 

uncertainty may mask the effect of ENSO. The use of regional model to reduce parameter 412 

uncertainty and better identify the effect of ENSO is highlighted. Furthermore, comparison of 413 

different models is undertaken to answer questions, such as: “Is the effect of ENSO on summer 414 

maximum daily rainfall symmetric or asymmetric?”  415 

4.1 Data and covariates 416 

Among the 16 high quality sites (Figure 3), daily rainfall data is available in 10 sites. The record 417 

starting years among these sites are ranging from 1880 to 1906. Summer maximum daily rainfall is 418 

extracted from the daily data of these 10 rain gauges. The same covariate (SOI) as in Section 3.1 is 419 

used in this section. 420 
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4.2 Models for summer rainfall maximum 421 

4.2.1 Local model with temporal covariates 422 

Annual/seasonal maxima are often modelled with a generalized extreme value (GEV) distribution. 423 

The relevant theory was introduced by Fisher and Tippett (1928). In this study, the specific 424 

implementation of Eq (1) is a GEV model for the summer maximum daily rainfall (Coles et al., 425 

2003; Katz et al., 2002): 426 

 ( ) ~ ( ( ), ( ), ( ))Y t GEV t t tµ σ ξ   (16) 427 

To consider the ENSO effect on the location (µ(t)) and scale (σ(t)) of the GEV distribution, these 428 

parameters are assumed to be dependent on SOI, while the shape parameter is assumed to be 429 

constant. This is because the shape parameter ξ is difficult to estimate at a local scale (Coles, 2001, 430 

p106) even in the stationary context.  431 

 432 

To determine whether the asymmetric effect of ENSO found in the summer rainfall totals is also 433 

observed in the summer maximum daily rainfall, two different regression models are considered. 434 

The first one is a symmetric linear model and the other one is an asymmetric piecewise-linear 435 

model. To distinguish these two models, the asymmetric model uses the same symbols as in 436 

equations (14) and (15), and the symmetric model parameters are denoted with a tilde.  437 

Model 1 (Symmetric linear model) 438 

 0 1( ) * ( )t SOI tµ µ µ= +% % %   (17) 439 

 0 1( ) * ( )t SOI tσ σ σ= +% % %   (18) 440 

 0( )tξ ξ=% %   (19) 441 

Model 2 (Asymmetric piecewise-linear model) 442 

 0 1

0 1

* ( ); ( ) 0
( )

* ( ); ( ) 0

SOI t SOI t
t

SOI t SOI t

µ µ
µ

µ µ

−

+

 + <= 
+ >

  (20) 443 
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 0 1

0 1

* ( ); ( ) 0
( )

* ( ); ( ) 0

SOI t SOI t
t

SOI t SOI t

σ σ
σ

σ σ

−

+

 + <= 
+ >

 (21) 444 

 0( )tξ ξ=  (22) 445 

where 
1 20 1 0 1 0 0 1 1 0 1 1 0{ , , , , }, { , , , , , , }M Mµ µ σ σ ξ µ µ µ σ σ σ ξ− + − +%% % % %θ = θ =θ = θ =θ = θ =θ = θ = are the regression parameters of 446 

Model 1 and Model 2. Independent flat priors are used in this study as well. 447 

4.2.2  Regional models  448 

In order to better identify the parameters quantifying the effect of ENSO, regional models are 449 

applied in this case study. Following the two-step construction introduced in Section 2.2, in the first 450 

step, the time-varying structure at each site is prescribed using the same regression functions as in 451 

the equations (17)-(19) and (20)-(22). In the second step, two sets of parameters are spatialized. The 452 

first set comprises the ENSO effect parameters (e.g. for the asymmetric model, 1 1 1 1, ,  and µ µ σ σ− + − + ). 453 

Indeed, climate indices, like ENSO, are expected to have similar effects on all the observation sites 454 

within a region. We also assume a regional shape parameter0ξ . Thus we assume these parameters 455 

are the same over the region. Conversely, all other parameters are assumed purely local. The 456 

regionalized equations for the asymmetric model thus become: 457 
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  (24) 459 

 
0

( , ) regs tξ ξ=   (25) 460 

where  461 

1 2 1 2

0 0 0 0 0 0

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( , ) (( , ,..., ), ( , ,..., ))p ps ss s s s
loc loc loc loc loc loc loc loc locµ µ µ σ σ σ= =θ µ σθ µ σθ µ σθ µ σs s s

 are local regression parameters. 462 

1 1 1 1 0
( , , , , )reg reg reg reg reg regµ µ σ σ ξ− + − +=θθθθ

 
are the regional regression parameters. 463 
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 464 

For all the models considered therein, a Gaussian copula is used to describe the spatial dependence. 465 

The distance-dependence relationship is characterized by the following function: 466 

 1 2( , ) *exp( * || , ||)i j i js s s sη ηΣ = −   (26) 467 

where η1 and η2 are the dependence parameters. 468 

4.3 Assessing statistical hypotheses of ENSO effect on summer maximum daily rainfalls  469 

In this case study, we consider three competing statistical hypotheses in terms of the relationship 470 

between ENSO and summer maximum rainfall which lead to different regression models used in 471 

the framework, as follows: 472 

1) There is no ENSO influence on the maximum rainfall, leading to a time-invariant model.  473 

This hypothesis will be used as baseline, to compare the predictions of summer maximum rainfall 474 

from the other two hypotheses which include an ENSO effect. 475 

2) The ENSO influence on rainfall is symmetric linear with respect to the SOI values. The 476 

physical interpretation of this hypothesis is that the strength of the El Nino event and the strength of 477 

the La Nina event (as measured by the SOI) have a “symmetric” impact on maximum rainfall. 478 

Assuming a symmetric linear relationship between rainfall and ENSO indices is a common 479 

approach used in several previous studies (e.g.  Chiew et al. (1998); Nicholls and Kariko (1993); 480 

Pui et al. (2012); Risbey et al. (2009)). Thus a symmetric linear regression model is trialed (Eq. (17) 481 

and (18)). 482 

3) The third statistical hypothesis is that ENSO has an asymmetric effect during two different 483 

phases (El Niño and La Niña). The physical interpretations of this hypothesis are that the impact of 484 

the strength of the La Nina is different from the impact of the strength of an El Nino event.  485 

This was motivated by the results of Cai et al. (2010) (who provide evidence of the physical 486 

mechanisms, outlined in the introduction) and King et al. (2013), and the results from the analysis 487 
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of the multi-site summer rainfall totals. Therefore an asymmetric linear regression model is trialed 488 

(Eq. (23) and (24)).  489 

 490 

Furthermore, an important research question we are interested in is whether the multi-site 491 

information from regional analysis provides improved identification of the effect of ENSO. Hence, 492 

we are interested in comparing local and regional versions of the same models.  493 

 494 

Table 1 gives an overview of the different local and regional models. To simplify the notation, we 495 

use “L” for local and “R” for regional. The name of the models is denoted by their regression 496 

functions on the location and scale parameter (<location regression function>_<scale regression 497 

function>). Stat is for the identical (stationary) function. Sym is for the symmetric function. Asy1 is 498 

for the asymmetric function as in equations (23) and (24). Asy2 is another asymmetric function in 499 

which the slope during negative SOI episode is fixed at 0 since the El Niño effect is not significant 500 

for summer total rainfall as shown in Section 3.4.  501 

 502 

4.4 Results 503 

4.4.1 Goodness-of -fit 504 

Similar to the first case study, the goodness of fit of the at-site marginal distribution of the model to 505 

the observed data from individual sites is evaluated using a probability-probability plot described in 506 

Section 3.3. Figure 7 shows the results for the local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) 507 

asymmetric models for all ten sites. The lines are all close to the diagonal, which indicates that both 508 

GEV local and regional asymmetric models have good fit with the observation data. The spatial 509 

dependence is also acceptably captured with the dependence-distance relationship assumed in eq. 510 
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(26) (Figure 8). However, this relationship is certainly perfectible: there is a non-negligible scatter 511 

around the red curve, suggesting that inter-site distance only explains a part of spatial dependence. 512 

4.4.2 Identifying the effect of ENSO on summer maximum daily rainfall: None, Symmetric 513 

or Asymmetric? Local analysis 514 

The symmetric model (LSym_LSym) does not separate El Niño and La Niña episodes. The p-value 515 

shown in the Figure 9 (a) and (b) indicates that 6 out of 10 sites detect a significant ENSO effect on 516 

location or scale parameter or both. The asymmetric model (LAsy1_LAsy1) separates the effect of 517 

El Niño and La Niña episodes. Similar to the result of the summer total rainfall, the El Niño effect 518 

is found neither on the location nor on the scale parameter (not shown) for almost all sites. 519 

However, the La Niña effect is detected on either location or scale parameter or both (Figure 9 (c) 520 

(d)). The significance on the scale parameter indicates that La Niña also increases the variability of 521 

the summer maximum rainfall over the majority of sites. With both models, summer maximum 522 

rainfall is found to be affected by ENSO, at least during the La Niña episode. 523 

 524 

Compared with the asymmetric model, the symmetric model has two main differences. One is the 525 

value of the slope (with respect to SOI) and the other is the significance of the effect. An overview 526 

of all ten sites (Figure 10) indicates that 8 out of 10 sites have significant positive slope for the 1 in 527 

100 year rainfall for the asymmetric model during the La Niña episode, and values of the slope are 528 

ranging from 4 to 10 mm/unit SOI. In comparison for the symmetric linear model, only half of the 529 

sites show a significant effect, and values of the slope are much lower ranging from 1 to 5 mm/unit 530 

SOI. From the asymmetric model, a significant effect is found during the La Niña episodes, but not 531 

during El Niño episodes, which explains why the analysis based on the symmetric model leads to 532 

less significant results.   533 

 534 
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This result is consistent with the physical mechanism postulated by Cai et al. (2010), whereby the 535 

strength of the La Nina event has an effect on summer maximum rainfall, while the strength of a El 536 

Nino event does not.   537 

4.4.3 ENSO-conditional predictions for summer maximum extreme rainfall: Local analysis 538 

Figure 11 illustrates the relationship between the 1 in 100 year rainfall (0.99-quantile) and the SOI 539 

index for site 16. The large slope of the asymmetric model (red) indicates that, for the positive SOI, 540 

each incremental unit increase in the SOI value will increase the 1 in 100 year rainfall by nearly 541 

5mm, whereas the negative SOI does not have a statistically significant effect. Figure 11 also 542 

illustrates that these estimations are affected by very large uncertainties. During a strong La Niña, 543 

the asymmetric model estimates the posterior median of the 1 in 100 year rainfall is almost 25% 544 

higher than the symmetric model and 45% higher than a stationary model (Figure 11). Over all sites 545 

(not shown here), these two values can be up to 33 % and 50% respectively.  546 

 547 

Although the asymmetric model detects a significant ENSO effect during La Niña, the ENSO-548 

conditional predictions are affected by large uncertainties. This is due to the difficulty of precisely 549 

identifying the parameters with a local analysis. The regional analysis aims to reduce parameter 550 

uncertainties, hence better quantify the effect of El Niño and La Niña.  551 

4.4.4 Does regional analysis improve the identification of the effect of ENSO on summer 552 

maximum daily rainfall?  553 

Figure 12 gives the distributions of the La Niña effect parameters on the GEV location parameter in 554 

local (LAsy1_LAsy1) and regional (RAsy1_RAsy1) models. There is a significant reduction of the 555 

distribution width for the regional model. Figure 13 illustrates that, for the asymmetric model 556 

RAsy1_RAsy1, 
1regµ +  and 

1regσ +  (associated to La Niña) are found significantly larger than 0, whereas 557 
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1regµ − and 
1regσ −  (associated to El Niño) are not. This regional analysis gives a more robust conclusion 558 

that the strength of the La Niña event has a significant influence on the summer maximum daily 559 

rainfall, whereas El Niño has not. Furthermore, the reduction of uncertainty on the La Niña effect 560 

parameters (
1regµ + ,

1regσ + ) and the shape parameter (
0regξ ) provides an important improvement to 561 

decrease the uncertainty on high quantiles. In Figure 14, the 1 in 100 year rainfall of the local and 562 

regional asymmetric models are compared. During a strong El Niño, the uncertainty of the regional 563 

model (measured by the interval width) is reduced by 50% compared with the local model, and 564 

during strong La Niña, this reduction is up to 60%. This clearly shows the benefit of regional 565 

analysis in better identifying the asymmetric effect of ENSO on extreme rainfall.  566 

4.4.5 Model comparison for summer rainfall maxima 567 

In this section, we use the DIC criterion to compare the following three pairs of models. A better 568 

model is denoted by a smaller DIC. 569 

i) Local vs. regional modelling 570 

Figure 15 illustrates the DIC values for the models in Table 1. The DIC values of at-site models 571 

(L_Stat_Stat, Lsym_Lsym, LAsy1_LAsy1) are much larger than the regional models (R_Stat_Stat, 572 

RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat, RAsy2_Stat). Compared with the regional 573 

models, the local models have many more parameters, which lead to a large penalty on the model 574 

complexity. Thus regional models are preferred (according to the DIC criterion) to at-site models. 575 

ii)  Stationary model vs. climate-informed model 576 

According to i), we assess this point with regional models. Among the six regional models 577 

(R_Stat_Stat, RSym_RSym, RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat, RAsy2_Stat), the DIC value 578 

of the stationary model (R_Stat_Stat) is the largest (Figure 15). Thus, this result shows once again 579 

that ENSO influences the summer maximum rainfall over SEQ and justifies the use of a climate-580 

informed model. 581 
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iii)  Symmetric vs. asymmetric effect of ENSO 582 

The comparison between the symmetric and asymmetric models is established with the regional 583 

models listed in Table 1. Table 2 summarizes the DIC difference between the regional models in the 584 

list and the preferred model (RAsy2_RAsy2) with the smallest DIC. This preferred model has 585 

asymmetric regressions on both location and scale parameters. The difference between 586 

RAsy2_RAsy2 and the remaining regional models suggests that the models with asymmetric ENSO 587 

effect are preferred. In particular, model R_Stat_Stat (no ENSO effect) is strongly discredited 588 

according to the DIC. Lastly, these results also suggest that modelling a trend on the scale 589 

parameter is preferable, since models RAsy1_Stat and RAsy2_Stat have a lesser performance than 590 

the reference model RAsy1_RAsy1 and RAsy2_RAsy2. 591 

4.4.6 Summary 592 

We use both at-site and regional models to analyze ENSO effects on the summer rainfall maximum 593 

over SEQ. The link between ENSO and summer maximum daily rainfall is strong during La Niña 594 

phase and weak during El Niño phase, confirming the results of Cai et al. (2010) and King et al. 595 

(2013). We demonstrate that using regional model helps to reduce the uncertainty and provides 596 

more robust results. With the DIC criterion, competing models are compared. It is found that the 597 

asymmetric regression on both location and scale parameters is the preferred representation of 598 

ENSO effect on summer maximum daily rainfall. 599 

5 DISCUSSION 600 

This section discusses key assumptions and current limitations of the modeling framework, and 601 

their consequences on the SEQ case study. It also proposes avenues for future improvements. 602 
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5.1 Assumption of homogeneous regions 603 

An assumption of the regional model is that all data should be subject to similar climate effects. 604 

This raises the question of defining such climatically homogenous regions. Ouarda et al. (2001) 605 

described some approaches to determine homogeneous hydrologic regions. Some Southeast 606 

Australian basins have also been classified into homogeneous regions by Bates et al. (1998). The 607 

SEQ is a relatively small area, thus SEQ is assumed to be inside a same climatic homogenous 608 

region. However, when studying larger areas, the classification of different homogeneous regions 609 

will play an important role. 610 

5.2 Spatial dependence modelling 611 

The reason for using simple copulas, like Gaussian and Student copulas, is that they are applicable 612 

to any marginal distribution, which is convenient in the context of the general framework proposed 613 

in this paper. Moreover the parameterization by a dependence matrix enables using geostatistical-614 

like models (pairwise dependence is a function of distance). Results in Figure 8 suggest that such a 615 

simple relationship, while perfectible, adequately captures spatial correlations. However, different 616 

copulas have different asymptotic behaviour: asymptotically dependent (e.g. Student copula) and 617 

asymptotically independent (e.g. Gaussian copula). The extrapolation of copula is risky because the 618 

asymptotic dependence properties exert a strong leverage on joint probability of exceedance, but the 619 

limited sample size is not enough to identify such asymptotic properties. Therefore, to make an 620 

informed decision between asymptotic dependent and independent copulas, more physical 621 

knowledge on the spatial extent of rainfall or meteorological events is required. Moreover, future 622 

work could also investigate alternatives to copula, in particular max-stables processes that may be 623 

more relevant for extreme data. 624 
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5.3 Spatial regression modelling 625 

Inside a homogenous region, the distribution of the rainfall may depend on the spatial information 626 

at each site. For example the ENSO effect could vary with elevation or distance to sea. However, in 627 

the case study, we simply assume the same ENSO effect and shape parameter for all sites. Note 628 

however that this does not imply that the rainfall distribution is the same at all sites: since location 629 

and scale parameters remain site-specific, the distribution will differ from site to site, which allows 630 

accounting for e.g. orographic effects. 631 

Spatial effects could be investigated in the case study in several aspects. First, some parameters are 632 

purely local, which prevents transferring quantile estimates to ungauged sites. This could be 633 

improved by spatializing these parameters using a spatial regression. Moreover, a more flexible 634 

model could be considered by allowing spatial variations in purely regional parameters (ENSO 635 

effects and shape parameter). This was not attempted in this case study because identifying such 636 

spatial effects is difficult with only ten sites: we therefore favoured the identification of ENSO 637 

effects. However, future case studies based on a spatially denser dataset will investigate in more 638 

depth the construction of such spatial models. 639 

5.4 Practical Implications: Utilising predictions of extreme rainfall distributions from the 640 

climate-informed framework 641 

One of the advantages of using a fully probabilistic model for extremes (as opposed to a simple 642 

linear regression between SOI and spatially averaged rainfall, as undertaken in Cai et al. (2010) and 643 

King et al. (2013)) is that it enables the prediction of the occurrence probability of extreme rainfall 644 

conditioned on climate variability indices. Figure 10, Figure 11 and Figure 14 all provide prediction 645 

of the 1 in 100 year rainfall conditional on values of SOI. For the preferred regional model 646 

(RAsy1_RAsy1), during strong La Niña phases (with high SOI), the 1 in 100 summer maximum 647 
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daily rainfall is about 33% higher than the corresponding estimate obtained with the stationary 648 

model for this particular site (e.g. Figure 14).  649 

 650 

From an operational perspective, the knowledge that the 1 in 100 year quantile is 33% higher during 651 

a strong La Niña could provide useful information for planners, engineers, water resource 652 

managers, emergency response organizations, in order to design operational/response strategies to 653 

mitigate the potential impact due to the increased risk of extreme rainfall. Consider the recent 654 

example of the summer of 2010-2011, when there was a strong La Niña (SOI = 27.1, in December) 655 

and a series of floods hit Queensland, which impacted on more than 70 towns and 200,000 people. 656 

The damage bill was over 5 billion $AUD (page 4, Operation Queenslander: the State Community, 657 

Economic and Environmental Recovery and Reconstruction Plan, 2011-2013). One of the major 658 

impact was a major flood in the city of Brisbane (a major Australian city with a population of 2.15 659 

million), caused by the release of water from the major Wivenhoe dam upstream of Brisbane (see 660 

Chapter 16, Queensland Floods Commission of Inquiry). Armed with this knowledge of the effect 661 

of ENSO on extreme rainfall, planners/engineers/water resource managers, would be able to 662 

undertake better planning of emergency response, and potentially improve reservoir operating rules 663 

to better control floods, and reduce the impact of extreme rainfall during strong La Niña’s. On the 664 

other hand of the hydrologic spectrum, climate-informed frameworks have the same importance for 665 

predicting extreme droughts (Henley et al., 2011). 666 

 667 

From a design perspective, the unconditional marginal distribution of extreme rainfall would be 668 

needed (e.g. for designing a dam or other hydraulic structures). Evaluating the marginal 669 

probabilities involves integrating out the SOI. This requires determining the distribution of SOI. 670 

Historical information could be used to inform this distribution, or alternatively predictions of the 671 

future variation in SOI from climate changes models could also be used. This climate-informed 672 
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framework which provides a quantitative link between climate variability and rainfall provides far 673 

more useful information than that derived from a stationary model. The comparison of the extreme 674 

rainfall risk from a stationary model to the ones obtained by integrating out SOI in a climate-675 

informed model is an important question that will be investigated in future work. 676 

 677 

5.5 Stationarity or non-Stationarity? 678 

The distinction between the conditional and unconditional distributions introduced in section 5.4 is 679 

important with respect to the concept of stationarity. Indeed, a SOI-conditional model yields a 680 

distribution that varies in time simply because SOI values vary in time. Yet this does not necessarily 681 

imply non-stationarity: indeed, the unconditional distribution (after integrating out SOI) might not 682 

depend on time if the SOI values are themselves realizations from a stationary distribution. 683 

Conversely, if a temporal trend affects SOI, this trend will propagate to the unconditional 684 

distribution of rainfall, yielding a non-stationary unconditional distribution.   685 

 686 

Historically, there has been changes in the frequency of ENSO events, and under climate change, 687 

the changes to the frequency of ENSO events is unknown (Giese and Ray, 2011; Ray and Giese, 688 

2012). It is therefore difficult to decide whether the models used in this paper are stationary or not. 689 

This is why we favoured the expressions “climate-informed models” or “conditional models” over 690 

the expression “non-stationary models”. 691 

5.6 Perspective on hierarchical models 692 

In the regional model, we proposed two kinds of parameters: local and regional parameters. Local 693 

parameters are different for each site, which offers a good flexibility. Regional parameters are 694 

common for all sites, yielding reduced uncertainties (Figure 12 and 13). However, this distinction 695 

may be too “rigid”.  Some parameters may be different at each site, but still have some spatial 696 
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consistency. A possible improvement is to use hierarchical models to enable constrained variations 697 

of parameters in space. Wikle et al. (1998) described a general hierarchical Bayesian framework in 698 

a non-stationary context. Lima and Lall (2009) (2010) used hierarchical models to describe the 699 

daily rainfall occurrence and extreme runoff. Renard (2011) and Renard et al. (2013) proposed a 700 

general hierarchical approach to regional frequency analysis. The next step of this work could 701 

therefore be to generalize the model proposed in this paper to a hierarchical setup. 702 

6 CONCLUSIONS 703 

In this paper, we describe a general spatio-temporal regional frequency analysis framework, geared 704 

towards detecting and quantifying the effect of climate variability on hydrometeorological 705 

variables. This is undertaken by using temporal regression models where the parameters of the 706 

probability distribution of hydrometeorological events are a function of climate drivers (e.g. 707 

ENSO). A flexible framework is adopted, which allows testing different temporal regression 708 

functions to describe the effect of climate variability. This flexibility provides a convenient way to 709 

compare these models and to select the most relevant relationship between climate indices and 710 

hydrometeorological data. For the regional analysis, spatial dependency is incorporated using 711 

copulas and a Bayesian approach is used for inference to enable uncertainties to be easily 712 

quantified. The use of a Bayesian regional framework provides the opportunity to assess the value 713 

of regional information in better identifying the effect of climate variability on hydrometeorological 714 

extremes.   715 

 716 

The first case study with the dataset of summer rainfall totals in Southeast Queensland shows that 717 

La Niña exerts a significant influence in the region for summer rainfall totals, while the effect of El 718 

Niño is not significant.  719 
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 720 

In the second case study of summer daily rainfall maxima, the flexible framework enables 721 

comparing numerous models to incorporate the effect of ENSO on extreme rainfall over SEQ. 722 

Stationary, symmetric and asymmetric models in both local and regional setups are compared using 723 

a model selection criterion (in this case, the DIC). Overall, the use of regional models yielded better 724 

identification of the effect of ENSO on extreme rainfall over SEQ compared with using only local 725 

models, for which there was too much uncertainty to enable a clear identification. A variety of 726 

regional models, with different representations of the effect of ENSO (linear symmetric versus 727 

asymmetric) were also compared. Asymmetric models are found to be the best among them. More 728 

precisely, it is found that an asymmetric model, distinguishing between ENSO effect on location 729 

and scale parameters during the positive and negative phases of the SOI, is the most suitable in this 730 

case. These results corroborate the findings of other recent studies (Cai et al. (2010) and (King et 731 

al., 2013)). 732 

 733 

From a practical perspective, it was found that during a strong La Niña the mostly likely 1 in 100 734 

year rainfall for different sites can be 20% to 50% higher than estimates using a stationary model 735 

which ignores the influence of ENSO, albeit with significant uncertainty. This information has the 736 

potential to be used by engineers/planners to provide better informed flood response strategies.   737 

 738 

The framework developed in this paper is general, and in the future can be extended in several 739 

ways. Firstly, spatial effects can be included using spatial regression models with spatial covariates 740 

(e.g. elevation), while hierarchical approaches will also be developed to provide more flexibility for 741 

modeling the effect of spatio-temporal covariates on hydrometeorological variables.  742 
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8 APPENDIX 749 

For a fixed timekt , the joint pdf of ( )
1,

( , )j k j p
Y s t

=
 is given by the Gaussian copula formula (see e.g. 750 

Renard (2011)). This yields: 751 
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where 755 

( ( , ) | ( ( , ), {1,2,..., }))j j k i j kf y s t s t i mβ =  is the marginal pdf for site sj time tk; 756 

( )( )1
, ( , )j k j j ku F y s tγ −= ; 757 

( )uφ is the standard Gaussian pdf or Student pdf with ν degree of freedom (the latter being made 758 

implicit in the notation); 759 
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1, 2, ,( , ,..., )k k p ku u uΦ is the multivariate Gaussian pdf (with mean=0, correlation matrix Σ) or 760 

multivariate Student pdf (with mean=0, correlation matrix Σ and degree of freedom ν, the latter 761 

being made implicit in the notation) 762 

 763 

The derivation of the full likelihood uses a time independence assumption: 1 2,s t t∀ ∀ ≠ , Y(s,t1) is 764 

independent of Y(s,t2) conditionally on 1 2( , ), ( , )s t s tβ ββ ββ ββ β . Therefore, the likelihood 765 

function ( | , , )f loc regY θ θ ηθ θ ηθ θ ηθ θ η for all time and all sites is the product of equation(27) applied at all n time 766 

steps.  767 
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Figure 1: Schematic of the Local Model 919 

Figure 2: Schematic of the Regional Model 920 

Figure 3: Locations of the rain gauges. Summer rainfall totals are available in all 16 gauges. The 921 

blue dots are the gauges in which daily rainfall data are available, which are used to compute the 922 

summer daily maxima. 923 

Figure 4 Boxplot of the posterior distribution of (a)1µ −   (El Niño) and (b) 1µ +  (La Niña) for each site 924 

for the summer rainfall totals 925 

Figure 5: P-value of zero of (a) 1µ −  (El Niño) and (b) 1µ +  (La Niña) for each site for the summer 926 

rainfall totals.  A p-value smaller than 10% (blue dots) indicates that the parameter is significantly 927 

larger than 0. 928 

Figure 6: Quantiles of summer total rainfall with respect to SOI value for site 16. The blue, red and 929 

green lines are respectively the 0.05, 0.5 and 0.99 quantiles with 90% credibility intervals (grey 930 

shaded areas). Black dots are the observations with respect to the SOI value of each year. 931 

Figure 7: Probability-Probability plot of summer maximum daily rainfall with (a) local model 932 

LAsy1_LAsy1 and (b) regional model RAsy1_RAsy1. Each colour presents one site. 933 

Figure 9: summer maximum daily rainfall. P-value of zero of (a) 
1

( )s
locµ% and (b)

1

( )s
locσ% of each site for the 934 

symmetric model LSym_LSym, and p-value of zero of (c)
1

( )s
locµ + and (d) 

1

( )s
locσ + of each site (during La 935 

Niña episode) for the asymmetric model LAsy1_LAsy1. A p-value smaller than 10% (blue dots) 936 

indicates that the parameter is significantly larger than 0.  937 
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Figure 10: P-value of zero for the slope of 1 in 100 year summer maximum daily rainfall with (a) 938 

the symmetric model LSym_LSym and (b) the asymmetric model LAsy1_LAsy1 during the La Niña 939 

episode. 940 

Figure 11: 1 in 100 summer maximum daily rainfall at site 16. The blue line is based on the 941 

stationary model (L_Stat_Stat). The green and red lines are respectively based on the symmetric 942 

(LSym_LSym) and asymmetric (LAsy1_LAsy1) models. The solid lines are median and areas inside 943 

the dashed line are 90% credibility intervals of each model. Black dots are the observations with 944 

respect to the SOI value of each year. 945 

Figure 12: Boxplot of the posterior distribution of location parameter 1µ +  (
1locµ + in local model 946 

LAsy1_LAsy1 of each site and 
1regµ +

 in regional model RAsy1_RAsy1). 947 

Figure 13: Boxplot of the posterior distribution of the regional parameters of model RAsy1_RAsy1 948 

for the summer maximum daily rainfall  949 

Figure 14: 1 in 100 year summer maximum daily rainfall with local (L_Stat_Stat & LAsy1_LAsy1) 950 

and regional (RAsy1_RAsy1) models at site 16. The blue line is based on the stationary model 951 

(L_Stat_Stat). The red and green lines are respectively based on the local (LAsy1_LAsy1) and 952 

regional (RAsy1_RAsy1) models. The solid lines are median and areas inside the dashed line are 953 

90% credibility intervals of each model. Black dots are the observations with respect to the SOI 954 

value of each year.  955 

Figure 15: DIC value for the models in Table 1 for the summer maximum daily rainfall.  956 

L_Stat_Stat, LSym_LSym and LAsy1_LAsy1 are local models. R_Stat_Stat, RSym_RSym, 957 

RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat and RAsy2_Stat are regional models. 958 
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Table 1: Candidate models 959 

Models Regression functions for ( , )s tµ  Regression functions for ( , )s tσ  

Regression 

functions 

for ( , )s tξ  

Local models

 

L_Stat_Stat ( )s
locµ)  ( )s

locσ)

 

0

( )s
locξ
)

 

LSym_LSym 
0 1

( ) ( ) * ( )s s
loc loc SOI tµ µ+% %  

0 1

( ) ( ) * ( )s s
loc loc SOI tσ σ+% %

 

0

( )s
locξ%

 
LAsy1_LAsy1 

0 1

0 1

( ) ( )

( ) ( )

* ( ); ( ) 0

* ( ); ( ) 0

s s
loc loc

s s
loc loc

SOI t SOI t

SOI t SOI t

µ µ

µ µ

+

−

 + <


+ >

 
0 1

0 1

( ) ( )

( ) ( )

* ( ); ( ) 0

* ( ); ( ) 0

s s
loc loc

s s
loc loc

SOI t SOI t

SOI t SOI t

σ σ

σ σ

−

+

 + <


+ >
 

0

( )s
locξ

 Regional models 

R_Stat_Stat ( )s
locµ)  ( )s

locσ)

 

regξ
)

 
RSym_RSym ( ) * ( )s

loc reg SOI tµ µ+% %  ( ) * ( )s
loc reg SOI tσ σ+% %

 

regξ%

 

RAsy1_RAsy1 
0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s
loc reg

s
loc reg

SOI t SOI t

SOI t SOI t

µ µ

µ µ

−

+

 + <


+ >

 0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s
loc reg

s
loc reg

SOI t SOI t

SOI t SOI t

σ σ

σ σ

−

+

 + <


+ >

 

regξ
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0

0 1

( )

( )

; ( ) 0

* ( ); ( ) 0

s
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s
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SOI t

SOI t SOI t

µ

µ µ +
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

+ >

 0

0 1

( )

( )

; ( ) 0

* ( ); ( ) 0

s
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s
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SOI t SOI t

σ

σ σ +

 <

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regξ
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0 1

0 1

( )

( )

* ( ); ( ) 0

* ( ); ( ) 0

s
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s
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SOI t SOI t

SOI t SOI t

µ µ
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−

+
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

+ >
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s
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+ >

 
0
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  960 
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Table 2: DIC difference between the regional models listed on the table and RAsy2_RAsy2 model  962 

R_Stat_

Stat 

RSym_

RSym 

RAsy1_

RAsy1 

RAsy2_

RAsy2 

RAsy1_

Stat 

RAsy2_

Stat 

11.2 4.4 3.2 0 7.9 6.1 
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Figure 1: Schematic of the Local Model  964 
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Figure 2: Schematic of the Regional Model 965 
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Figure 3: Locations of the rain gauges. Summer rainfall totals are available in all 16 gauges. 966 

The blue dots are the gauges in which daily rainfall data are available, which are used to 967 

compute the summer daily maxima. 968 
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Figure 4 Boxplot of the posterior distribution of (a) 1µ −   (El Niño) and (b) 1µ +  (La Niña) for 969 

each site for the summer rainfall totals 970 
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Figure 5: P-value of zero of (a) 1µ −  (El Niño) and (b) 1µ +  (La Niña) for each site for the 971 

summer rainfall totals.  A p-value smaller than 10% (blue dots) indicates that the parameter 972 

is significantly larger than 0.  973 
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Figure 6: Quantiles of summer total rainfall with respect to SOI value for site 16. The blue, 974 

red and green lines are respectively the 0.05, 0.5 and 0.99 quantiles with 90% credibility 975 

intervals (grey shaded areas). Black dots are the observations with respect to the SOI value of 976 

each year. 977 
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Figure 7: Probability-Probability plot of summer maximum daily rainfall with (a) local model 978 

LAsy1_LAsy1 and (b) regional model RAsy1_RAsy1. Each colour presents one site.  979 
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Figure 8: Dependence-distance relationship of the transformed data. In the time-varying 980 

context, data y are transformed into Gaussian quantiles u according to Eq (27). Red lines are 981 

the estimated Dependence-distance with 90% credibility interval. Black circles are empirical 982 

correlation between transformed data, and their 90% credibility interval due to the marginal 983 

transformation is presented in green. 984 
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Figure 9: summer maximum daily rainfall. P-value of zero of (a) 
1

( )s
locµ% and (b)

1

( )s
locσ% of each site 985 

for the symmetric model LSym_LSym, and p-value of zero of (c)
1

( )s
locµ + and (d) 

1

( )s
locσ + of each site 986 
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(during La Niña episode) for the asymmetric model LAsy1_LAsy1. A p-value smaller than 987 

10% (blue dots) indicates that the parameter is significantly larger than 0.  988 

Author-produced version of the article published in Journal of Hydrology, vol. 512, p. 53-68 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jhydrol.2014.02.025 



52 

 

 

 

Figure 10: P-value of zero for the slope of 1 in 100 year summer maximum daily rainfall with 989 

(a) the symmetric model LSym_LSym and (b) the asymmetric model LAsy1_LAsy1 during the 990 

La Niña episode. 991 
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Figure 11: 1 in 100 summer maximum daily rainfall at site 16. The blue line is based on the 992 

stationary model (L_Stat_Stat). The green and red lines are respectively based on the 993 

symmetric (LSym_LSym) and asymmetric (LAsy1_LAsy1) models. The solid lines are median 994 

and areas inside the dashed line are 90% credibility intervals of each model. Black dots are 995 

the observations with respect to the SOI value of each year. 996 
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Figure 12: Boxplot of the posterior distribution of location parameter 1µ +  (
1locµ + in local model 997 

LAsy1_LAsy1 of each site and 
1regµ +

 in regional model RAsy1_RAsy1). 998 
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Figure 13: Boxplot of the posterior distribution of the regional parameters of model 999 

RAsy1_RAsy1 for the summer maximum daily rainfall  1000 
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Figure 14: 1 in 100 year summer maximum daily rainfall with local (L_Stat_Stat & 1001 

LAsy1_LAsy1) and regional (RAsy1_RAsy1) models at site 16. The blue line is based on the 1002 

stationary model (L_Stat_Stat). The red and green lines are respectively based on the local 1003 

(LAsy1_LAsy1) and regional (RAsy1_RAsy1) models. The solid lines are median and areas 1004 

inside the dashed line are 90% credibility intervals of each model. Black dots are the 1005 

observations with respect to the SOI value of each year.  1006 
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Figure 15: DIC value for the models in Table 1 for the summer maximum daily rainfall.  1007 

L_Stat_Stat, LSym_LSym and LAsy1_LAsy1 are local models. R_Stat_Stat, RSym_RSym, 1008 

RAsy1_RAsy1, RAsy2_RAsy2, RAsy1_Stat and RAsy2_Stat are regional models.  1009 
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