
HAL Id: hal-00997044
https://hal.science/hal-00997044v1

Submitted on 27 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Principal component analysis and perturbation
theory-based robust damage detection of multifunctional

aircraft structure
Rafik Hajrya, Nazih Mechbal

To cite this version:
Rafik Hajrya, Nazih Mechbal. Principal component analysis and perturbation theory-based robust
damage detection of multifunctional aircraft structure. Structural Health Monitoring, 2013, 12( (3),
pp.263-277. �10.1177/1475921713481015�. �hal-00997044�

https://hal.science/hal-00997044v1
https://hal.archives-ouvertes.fr


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8199

To cite this version :

Rafik HAJRYA, Nazih MECHBAL - Principal component analysis and perturbation theory–based
robust damage detection of multifunctional aircraft structure - Structural Health Monitoring - Vol.
12(, n°3, p.263–277 - 2013

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/8199
mailto:archiveouverte@ensam.eu


1 

Principal Component Analysis and Perturbation Theory Based Robust Damage 

Detection of Multifunctional Aircraft Structure 

 
Rafik Hajrya and Nazih Mechbal 

Process and Engineering in Mechanics and Materials Laboratory (PIMM) CNRS-UMR 8006-Arts 

et Métiers ParisTech (ENSAM) 

Address: 151 Boulevard de l'hôpital, 75013, Paris, France 

Corresponding authors: Tel:+33 144246458 

E-mail: rafik.hajrya@ensam.eu, nazih.mechbal@ensam.eu 

Abstract 

A fundamental problem in structural damage detection is to define an efficient feature to 

calculate a damage index (DI). Furthermore, due to perturbations from various sources, we 

need also to define a rigorous threshold whose overtaking indicates the presence of damages. 

In this paper, we develop a robust damage detection methodology based on Principal 

Component Analysis (PCA). We present first an original DI based on the projection on the 

separation matrix, and then we drive a novel adaptive threshold that doesn't rely on statistical 

assumptions. This threshold is analytic and is based on matrix perturbation theory (MPT). The 

efficiency of the method is illustrated using simulations on a composite smart structure with 

PZT and experimental results performed on a Conformal Load-Bearing Antenna Structure 

(CLAS) laboratory test. 

Keywords: Damage detection, blind source separation, principal component analysis, 

information theory, angle between subspaces, matrix perturbation theory, analytic bound, 

robustness, Conformal Load-Bearing Antenna Structure, temperature effect. 

Nomenclature 

CLAS  = Conformal Load-Bearing Antenna Structure 

MAS  = Multifunctional Aircraft Structure 

BSS  = Blind Source Separation 

PCA  = Principal Component Analysis 

SVD  = Singular Value Decomposition 

MPT  = Matrix Perturbation Theory 

FPA  = False Positive Alarm 

ULM  = Unsupervised Learning Mode        = Damage index based on PCA         = Mean value of the bound     = Number of sensors of the smart structure    = Number of samples  ሺ ሻ  = Measurements vector at instant    ሺ ሻ  = Sources vector at instant   
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 ሺ ሻ  = Estimated sources vector    = Measurements matrix    = Mixing matrix    = Separation matrix    = Transpose of matrix       = Measurements matrix of the structure in a healthy state  ̃   = Measurements matrix of a second experiment     = Measurements matrix of the structure at unknown state      = Matrix which reflect the effect of disturbances    = Matrix of left singular vectors    = Matrix of right singular vectors Variance    = Matrix of right singular vectors Variance     = Matrix of right singular vectors Variance    = Eigenvalue   and   = Numbers associated to the matrix perturbation theory (subsection 3.3) 

1. Introduction  

The aerospace industry is aiming, more than ever, to reduce their energy consumptions and 

emissions. Despite recent advances in aircraft engines, the determinant energy-saving factors 

are reducing weight and optimizing the aerodynamic performances. Moreover, the aerospace 

companies have also to satisfy safety constraints, structural integrity (mechanical stiffness and 

strength) and some customer requests (integration new features as for example, multimedia 

and private communications). As shown in figure 1, a present commercial aircraft is 

composed of many antennas located on the structure and used for communication, navigation 

and radar activity. Furthermore, in a near future, the number of these antennas is expected to 

increase in order to improve comfort customers by allowing multimedia private 

communications and internet accesses. Taken into account of these customer requests will 

result into to an increase of weight, and a decrease in the aerodynamic performances due to 

the huge number of antennas that will protrude from the outer mould line (OML) of the 

aircraft. 

To respond to these antagonist criteria, ongoing research and development programs have 

come up with the concept of multifunctional aircraft structure (MAS). The principle is to take 

the advantage of composite materials to integrate airframe structure with a functional system. 

The objective is to perform a number of tasks such as transmit/receive (T/R) function, 

structural health monitoring (SHM), active control [1], shape control and Conformal Load-

Bearing Antenna Structure (CLAS) [2;3]. The concept of CLAS is to replace existing 

antennas, particularly blades and wires that protrude from the OML of aircraft with airframe 

structure, that: (i) supports primary structural loads, (ii) conforms to the OML and (iii) can 
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perform the transmit/receive function of the existing antennas [4]. CLAS will then reduce 

drag and have the potential to reduce weight and enhance the electromagnetic performance. 

 

Figure 1: Antenna of the AIRBUS A318 [5] 

However, the electromagnetic performances of this CLAS depend of their structural health, 

which can be clobbered by mechanical stress, impact damage or by delamination of a part of 

the antenna network from the host structure. Therefore, monitoring the health of the CLAS is 

a mandatory necessity. 

In this paper, a methodology is proposed to achieve SHM on a CLAS composite structure. 

Our study is a part of a more global project (Smart Materials and Structures for 

Electromagnetics, MSIE) supported by the Aerosapce Paris Région [5]. The MSIE project 

aims to demonstrate the practical use of metamaterials in CLAS and to monitor their 

performances by performing in the case of damage, SHM for restorative maintenance tasks 

and shape control compensation. 

SHM is the most widely known form of MAS. It has been driven by recent developments in 

sensor technology [6], manufacturing, signal processing [7], applied mechanics and material 

sciences. SHM has led to a variety of efficient methods to detect, locate, classify, quantifying 

varying degrees of damage and estimating the remaining useful life of the structure [8]. 

Several techniques have been employed to perform structural monitoring [9], and various 

damage indices have been proposed to characterize the change in dynamic characteristics 

caused by damage. Some of these DIs are based on extracting features from the observed 

output vector   ሺ ሻ, using numerous tools such as short Fourier transform [10], wavelet [11] 

and Hilbert-Huang transform [12]. 

To perform SHM, the structure has to be smart. Smartness supposes spatial information which 

is obtained by network of sensors/actuators built in/on the host structure. This spatial diversity 

are achieved through multivariate and magavariate analysis to reduce data and to extract some 
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simplified and hidden pattern [13-15]. As the name implies, multivariate analysis is concerned 

with the analysis of multiple variables or measurements, but treats them as a single entity. 

Blind separation source (BSS) is a family of techniques, which belong to multivariate 

statistics. BSS attempts to reveal hidden variables, named sources   and mixing/separating 

matrices, only from their dynamical measured vectors   . Among the methods of the BSS 

family, one can cite: Principal Component Analysis (PCA) [16], Independent Component 

Analysis (ICA) [17], Second-Order Blind Identification (SOBI) [18]. In this paper, we focus 

on PCA. 

PCA has been used to extract damage features. Friswell and Inman [13] proposed a damage 

index based on the angle between subspaces. [14] have used the same approaches to detect a 

piezoelectric faulty sensor. Recently, [19] have explored the use of PCA and T2 and Q-

statistics to detect damage. 

The key issue in damage detection is to ascertain with confidence if damage is present even if 

the structure is subject to environmental perturbations. In the above references, the threshold 

associated to the proposed damage indices are defined manually [19], or following the 

assumption of Gaussian distribution of the damage index [20]. 

In this study, we propose to develop a new robust analytical threshold (bound) that handle the 

effect of noise measurements, temperature changes and ensure the presence of damage. Our 

approach uses singular value decomposition (SVD) and matrix perturbation theory (MPT). 

MPT considers how the features of a matrix namely singular values, singular vectors and 

subspaces change, when the matrix is subject to perturbations [21]. In the proposed approach, 

we study perturbations that could rise in the subspaces of the separation matrix to define an 

analytic threshold to the damage index proposed in this paper. 

The remainder of this paper is organized as follows. In preliminary, we introduce the BSS 

problem and the principal component analysis technique. In section 3, the damage detection 

procedure is described, and it is divided into four subsections; the first and second subsections 

are devoted respectively toward the development of feature extraction and our proposed 

damage index; in subsection 3.3, we present our new approach to define the threshold. We 

outline in subsection 3.4 a framework. In section 4, finite element simulation's results on a 

composite plate are presented. In section 5, we present the experimental study of a conformal 

load-bearing antenna structure (CLAS), and the damage detection results are presented in 

section 6. Finally, conclusions and further directions will be drawn in section 7. 
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2. BSS problem and PCA algorithm 

2.1. BSS problem 

In blind source separation, the goal is to recover unknown source signals   ሺ ሻ from their 

linear measured mixtures  ሺ ሻ without any information on the mixing coefficients [18]. We 

suppose in the sequel a linear mixture. Hence, let  ሺ ሻ be a zero mean measurement vector 

from    sensors at time index  :  ሺ ሻ  [  ሺ ሻ     ሺ ሻ]  (1) 

The measurement matrix         gathering   samples  ሺ ሻሺ       ሻ is defined as 

follows:   [ ሺ ሻ  ሺ ሻ] (2) 

The linear BSS problem is defined as [18]:  ሺ ሻ    ሺ ሻ   ሺ ሻ (3) 

where   is the mixing matrix,  ሺ ሻ  [  ሺ ሻ     ሺ ሻ] is the sources vector and  ሺ ሻ  [  ሺ ሻ     ሺ ሻ] represents all the uncertainties and perturbation effects (modeling 

uncertainty and noises). In our study, we will consider the noise-free model (4), dealing with 

uncertainties and perturbations will be done by generating a robust bound for detection 

decision:  ሺ ሻ    ሺ ሻ (4) 

BSS is an estimation problem, and it is accomplished by finding simultaneously an estimated 

sources vector  ̂ሺ ሻ and a separation matrix noted   only from the observed data  ሺ ሻ:  ሺ ሻ   ̂ሺ ሻ    ሺ ሻ (5) 

where  ሺ ሻ  [      ]        and          are respectively the estimated sources 

vector at instant   and the separation matrix. Equation (5) is called the separation model.  

Clearly, without additional assumptions, the BSS problem (equation (5)) is ill-posed. Cardoso 

[22] has shown that the BSS problem can be resolved using assumptions done on the nature of 

sources. In this paper, we assume that the sources are temporally identically and 
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independently distributed (iid) and Gaussian, which leads to the principal component analysis 

method. 

2.2. Principal component analysis 

The separation of sources relies on the basic knowledge of the mutual independence of source 

components. It is then natural to resolve the BSS problem by minimizing a dependence 

criterion between these components. In our study, we adopt the mutual information as the 

separation criterion [23]. From equation (5), the solution is to find the matrix  , so that the 

mutual information is zero. In the case where the sources are assumed to follow Gaussian 

distribution, the mutual information  ( ) is given by [24]: 

 ( )      ∏             (  ) (6) 

If the components    of the vector   have to be statistically independent, mutual information 

defined in (6) is equivalent to: 

 ( )             ∏      
       (  ) (7) 

Knowing that covariance matrix    is symmetric, equality (7) is satisfied if the covariance 

matrix    is diagonal: the sources are uncorrelated and statistically independent [16]. 

Principal component analysis of a measurement vector   is defined as a pair of matrices {     } such that the covariance matrix    is factorized:           (8) 

where   [      ]         is the matrix of eigenvectors and is a diagonal matrix of 

eigenvalues. 

The separation matrix, noted now     , is given by: 

               (9) 

In order to reduce the number of principal components, we use the cumulative percent 

variance CPV [25]. It is a measure of the percent variance captured by the first    PCs: 

   ሺ  ሻ     ∑         ∑          (10) 
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3. Damage detection procedure 

3.1. Feature extraction 

We seek to detect changes in the structure by monitoring specific features estimated from 

baseline observation set (referred by the exponent "s") and observation set of a current or 

unknown state (referred by the exponent "u"). We note   ,   , respectively, the measurement 

matrix of the structure in a healthy and unknown state. 

To define the feature, we use the separation matrices       and      . From (9), we have: 

             ሺ  ሻ      (11) 

             ሺ  ሻ      (12) 

If the reduction using a fixed CPV is possible (see subsection 2.2), the separating matrix       and       are rewritten as follows: 

              ሺ  ሻ  [          (     )] [        ] [      ]                
(13) 

where:         (      ),     [          ]         and               are respectively the 

matrix of singular values, the matrix of right singular vectors and the separation matrix 

associated to the principal subspace of the healthy structure.         ቀ         ቁ ,     [  ሺ    ሻ       ]      (     )  and                are 

respectively the matrix of singular values, the matrix of right singular vectors and the 

separation matrix associated to the residual subspace of the healthy structure. 

In the same way, we define the matrix       using the following equation: 

              ሺ  ሻ  [          (     )] [        ] [      ]                
(14) 

The presence of a damage will modify the measurement matrix   , and consequently the 

separation matrix      , compared to the matrix      . Therefore, the subspaces generated by       are deflected to those of      . The idea here is to monitor changes of specific 

subspaces. 
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Let,  { },  {  } be respectively the range subspace of a matrix          and its 

transpose.   { },   {  } correspond to the orthogonal projection of the range subspace  { } 
and  {  }. One way to define orthogonal projections is to use SVD, i.e.            ቀ      ቁ (15) 

The orthogonal projections   { },   {  } are respectively defined as follow [26]:   { }          {  }      (16) 

From the definition of the separating matrices       and      , the matrix of left singular 

vectors is equal to the identity matrix:           (17) 

Therefore, no information can be derived from the matrix of left singular vectors, thus we will 

use the matrix of right singular vectors as a feature. To build our proposed damage index, we 

will use projections on the transpose of matrices        and        as a damage feature. This 

is the subject of the following subsection. 

3.2. Damage index  

Following the work of [14], the proposed damage index is constructed using the calculation of 

the principal angle vectors between the range subspace of the matrix ሺ      ሻ  and ሺ      ሻ . 

We note  [ {ሺ      ሻ }  {ሺ      ሻ }], the principal angle vectors between the range 

subspace  {ሺ      ሻ } and  {ሺ      ሻ }. Using the SVD tool, the Euclidean norm of the 

sinus angle of these vectors is defined as follow [27]: 

‖    [ {ሺ      ሻ }  {ሺ      ሻ }]‖  ‖  {(      ) }   {(      ) }‖  ‖(      {(      ) })  {(      ) }‖  (18) 

In [14], the principal angle vectors are calculated using the QR decomposition and the  cosines of the principal angles. Their damage index is given by the largest angle. Here, we 

propose the following damage index: 
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Proposal 1: Damage index 

Let be a smart structure with    sensors, and define equations (13), (14) and (18). 

Damage could be detected by monitoring the following damage index: 

      ‖    [ {ሺ      ሻ }  {ሺ      ሻ }]‖    (19) 

where    is the number of principal components retained.  

In the absence of disturbances and when the structure at an unknown state is healthy, the 

damage index       is zero. Otherwise, the structure is damaged. However, as the 

measurements are corrupted by noises and unknown perturbations, the detection decision 

could be biased. Moreover, these perturbations might also affect the distinguishability 

between damage and environmental disturbances and consequently the isolationability of 

damages. To deal with this problem, we propose using matrix perturbation theory, to calculate 

an analytical upper bound of these small perturbations. This is the aim of the next subsection. 

3.3. Analytic threshold 

As stated previously, the proposed damage index is based on subspace projections and 

decompositions. Due to various perturbation sources such as finite data effect, measurement 

noises and temperature change, perturbations arise in subspaces. Therefore, false alarms could 

appear. 

To handle these perturbations, we propose to use matrix perturbation analysis that can result 

in defining an analytical bound with no rely of statistical assumptions usually performed for 

damage detection. Matrix perturbation theory considers how matrix functions such as 

subspaces change when the matrix is subject to perturbations. 

In this work, we consider that separation matrix obtained from the baseline, is slightly 

perturbed, i.e.  ̃                  (20) 

where  ̃     is a perturbed version of       with perturbation       . 

Then, we propose to define a robustness measure that estimates how much the damage index 

(defined in (19)) is affected. The overtaking of this rigorous threshold will indicate the 

presence of damage. It will also minimize false-positive and false-negative alarms.  
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To drive the proposed analytical bound, we use early work of Wedin [28] on perturbed 

matrices in connection with SVD. The idea is to estimate ‖      ‖ by performing several 

tests or simulations on the healthy structure and to evaluate the gap between specific singular 

values in order to find an upper bound for      . Background materials on matrix 

perturbation theory and Wedin framework results can be provided in [21;26]. It is to be noted 

that our approach is an unsupervised learning mode (ULM), which implies that data from a 

damaged state are not used to build this bound. This ULM is mandatory necessary for real-

world application. 

The proposed analytic bound is derived following three major steps: 

First step: testing the healthy structure 

Consider the variation        that the separation matrix       is subject due to the 

environmental disturbances. To describe this variation       , we perform a second test on 

the healthy structure, we apply the PCA method and we determine the new separation matrix 

noted  ̃    . The matrix        is defined by the following relationship:  ̃                  (21) 

The SVD of the matrix  ̃     is given by: 

 ̃     [          (     )] [ ̃     ̃  ] [ ̃   ̃  ]   ̃       ̃      (22) 

We first define the following residual matrices and norms:           ̃    ̃   ̃         ̃    ̃  [( ̃  )  ̃     ̃  ]          ̃   (23) 

    ሺ     ሻ  ̃    ̃  ( ̃  )   ሺ      ሻ  ̃    ሺ      ሻ  (24) 

And then evaluate their two norm, i.e.: ‖   ‖  ‖       ̃  ‖  ‖        {( ̃     ) }‖  (25) 

‖   ‖  ‖ሺ      ሻ       ‖  ‖  { ̃     }      ‖  (26) 

where   { ̃     } and   {( ̃     ) } are respectively the orthogonal projection of the matrix  ̃      and its transpose. 

From these relations, we introduce the number  : 
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     ሺ‖   ‖  ‖   ‖ ሻ (27) 

This number quantifies the magnitude of the environmental disturbances. 

We are now going to matrix perturbation theory through the work of Wedin and its principal 

results. 

Second step: Matrix perturbation theory [28] 

Our aim is to find an analytic upper bound to       (see (19)). Consequently, when we have 

estimates ‖      ‖ and the gap between the least singular value of   ̃      and the largest singular value of       . 

Assume now, that              , such that :       ሺ      ሻ  ‖      ‖  (28)         ( ̃     )   ‖ ̃       ‖  (29) 

So: 

  ̃     ‖    [ { ̃     }  {      }]‖       ̃        (30) 

  ̃     ‖    [ {( ̃     ) }   {ሺ      ሻ }]‖       ̃        (31) 

Third step: elaboration of the bound  

Recall that the damage index       (see (19) ) is calculated from the separation matrix        

of the healthy state and        of the structure in an unknown state, while the term   ̃     is 

calculated from the separation matrix       and  ̃      from a second healthy test. 

As the matrix of singular vectors of separation matrices equals the identity matrix, the term   ̃      . Consequently, the term   ̃     satisfies:   ̃          (32) 

Proposal 2: Analytic bound  

The proposed bound is defined as follow:        ሺ   ሻ   (33) 

where: 
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  quantifies the magnitude of the environmental disturbances and it is defined in (27),    and   are defined respectively in (28) and (29),    is the number of principal components retained,     is a tuning parameter adjusting the bound. 

The proof of this proposal is sketched in [29] and is quite straightforward, from results in 

[28]. 

Our proposed damage index and its associated bound are quantified numerically, so we can 

calculate a detection rate     , which is defined as follow: 

               (34) 

if         then the structure is damaged, otherwise it is healthy. 

3.4. Framework of the damage detection procedure 

For practical implementation, we outline in this subsection the following framework. We 

assume that the measurements have been scaled (zero mean and unity variance). 

Step 1: Tests of the healthy structure state  

1.1 Make a first test of the healthy structure, 

1.2 Make   other tests of the healthy structure with enough time lag between tests, 

1.3. Build the measurement matrix     of the healthy structure, 

1.4. Build the   measurement matrices  ̃           of the healthy structure. 

Step 2: Test of the structure at unknown state  

2.1. Make one test of the structure at unknown state, 

2.2. Build the measurement matrix    of the structure at unknown state. 

Step 3: Calculate the damage index       

3.1. Apply PCA to the measurement matrix    , 
3.2. Calculate the separating matrix       following equation (11), 

3.3. Apply SVD to the       following equation (13), 

3.4. Calculate the separating matrix       following equation (12),  

3.5. Apply SVD to the       following equation (14), 

3.6. Calculate the damage index       following the proposal 1 (see equation (19)). 

Step 4: Calculate the bound        associated to the damage index       

4.1. Take back the result of step 3.2, and repeat for i=1 to   the following steps: 
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4.1.1. Calculate the separating matrix ( ̃    ) ,        , following (11), 

4.1.2. Apply SVD to the matrix  ̃     
 following equation (13), 

4.1.3. Calculate the variation  ሺ     ሻ using the following equation:                ̃     
 

4.1.4. Calculate the analytic bound        following (33) (see proposal 2), 

4.2. Calculate the mean of the bound       : 

          ∑            

Step 5: Decision-making 

Check if       . If it is the case, then the structure is damaged, otherwise it is healthy. 

4. Example through FE simulations 

Before applying our damage detection methodology on a conformal load-bearing antenna 

structure (CLAS), we have first applied it through a finite element (FE) model of a composite 

plate. 

Consider a rectangular carbone epoxy plate with dimensions ሺ             ሻ and 

made up of 16 layers. The layer sequences are: (0°2, 45°2, -45°2, 90°2, 90°2, -45°2, 45°2, 0°2) 

and the mechanical properties of the composite material in nominal conditions are illustrated 

in table 1. In our case, nominal condition means that effects of temperature change are not 

taken into account. Using the controllability and observability gramians, we have performed 

in a previous work [30], an optimal placement of piezoceramic patches with dimensions ሺ             ሻ. These piezoceramic patches belong to the PZ 29 family, table 2 

depicts the mechanical and electrical properties of these PZT. The FE model of the composite 

plate equipped with its piezoceramics was developed using Structural Dynamic toolbox [31]. 

We have chosen a model with 195 elements, each element has dimension of          . 
The plate is under free-free boundary conditions. Figure 2 shows the composite plate model 

with the optimal placement of the PZT. 

To apply the damage detection methodology described in subsection 3.4, we have first built 

the baseline of the healthy plate model in nominal conditions (see table 1). For this purpose, 

we have used PZT 7 as an actuator, while the others PZT are sensors (    ሻ, then the 

continuous state space of the model was calculated with       modes. The damping was 

assumed to be equal to 0.05% for all modes. Once the continuous state space calculated, we 

have discretized it with sampling frequency           . The excitation of actuator PZT 7 
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consists in a signal pulse with 1ms width, signal sensors were recorded with       time 

samples. 

In section 2, we have stated that PCA can allow use to reduce the dimension of the 

measurement matrix. According to a fixed CPV of 98%, we have retained seven principal 

components (    ). 

Table 1: Mechanical properties of the composite material 

Property    ሺ   ሻ       ሺ   ሻ         ሺ   ሻ     ሺ   ሻ                ሺ     ሻ 
Value 

 
                                           

Table 2: Mechanical and electrical properties of the PZ29 [32] 

Property   ሺ   ሻ     
(     )    (   ሻ     ሺ   ሻ Curie 

temperature C° 
Value 

 
                                         235  

4.1. Perturbation by measurement noises 

We have first simulated the effect of environmental perturbations as a noise disturbance 

acting on the dynamic response data: 

56 simulations were achieved using the composite plate model in different conditions of 

measurement noises. Table 3 summarizes these simulations. The first reflects the composite 

model in a healthy state with 0.25% variance noise of the energy contained in the simulated 

data sensors, simulations n°2 to 50 correspond to the healthy state, but with different values of 

noise variance (from 0.26% to 0.75% with a step of 0.01%). These simulations will allow us 

to build the analytic bound       . It is to be noted, that in the nominal conditions, the value 

of coefficient   defined in proposal 2 (see relation (33)) is equal to 1. 

Simulations 51-55 correspond to damaged states of the composite plate model. These 

simulations are associated respectively to a reduced stiffness of 5% for element 17, 56, 140, 

37 and 184 (see figure 2), with a variance noise of 0.5%. Figure 3 depicts the time response of 

sensor PZT 1 for simulations n°1 (healthy state) and n°56 (damaged state: reduced stiffness of 

5% for the element 17), only the 512 first samples are displayed. 

Table 4 depicts the results of the damage detection through these simulations. One can see 

that for the damaged states, the associated damage index       is upper than the proposed 

bound       , so the damaged states are well detected. Figure 4 is a visualization manner for 

the decision making. 
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Table 3: Simulation states for the composite plate model 

Simulation n° State 
1-50 Healthy state: used to build the analytic bound 
51 Damaged 1: Reduced stiffness of 5% for the element 17 
52 Damaged 2: Reduced stiffness of 5% for the element 56: 
53 Damaged 3: Reduced stiffness of 5% for the element 140 
54 Damaged 4: Reduced stiffness of 5% for the element 37 
55 Damaged 5: Reduced stiffness of 5% for the element 184 

 

Figure 2: Finite element model of a composite plate bounded with piezoceramic patches 

 

Figure 3: Impulse response of the healthy and damaged structure: composite plate model 

Table 4: Damage detection using the analytic bound: finite element model of a composite plate 
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Simulation n°                               
Decision                         Damaged                         Damaged                         Damaged                         Damaged                         Damaged 

 
Figure 4: Visualization manner of the damage decision: composite plate model 

4.2. Perturbation by temperature change  

The main of this subsection is to study through the FE model, the effect of temperature in the 

decision making regarding alarm false. 

With the inherent anisotropy of composite materials, any attempt to simulate the effect of 

environmental factors like temperature requires relevant experimental data from the structure 

in an enclosed heated space. These data will feed the FE model to yield reasonably accurate 

prediction. However, it is expected that first order thermal effects in an instrumented 

composite will be associated with the difference between the evolution of constitutive 

behavior of the composite matrix, its fibers and the piezoelectric. As a rough approximation, 

one can consider varying moduli for the composite plate with fixed mechanical properties for 

the piezoelectric material.  

In order to mimic the temperature effects, we have modified the moduli ሺ               ሻ 
by a percentage   [          ]  . Table 5 presents the basis of the modification under 

certain temperature change. According to this rough approximation, simulations were 

achieved. It is to be noted that for each simulation, 0.25% variance noise measurement was 
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added to each dynamic response. The damage indices associated to these simulations are 

depicted in table 6. 

Table 5: Value of the simulated temperature under the perturbation of the moduli ሺ               ሻ 
Simulation n° Simulated temperature   [  ]             26              27              28              29              30 

Table 6: Effect of the temperature in the damage detection 

Simulation n°                               
Decision                                  false positive alarms                                   false positive alarms                                   false positive alarms                                   false positive alarms                                   false positive alarms 

The results depicted in this above table show that the damage index is greater than the 

analytic bound. Knowing that these simulations concern a healthy model, false positive 

alarms (FPA) were detected. So, we have to deal with these FPA. 

4.3. Handling the effect of the temperature  

Our strategy to handle the effect of temperature was to adapt the value of the bound by a 

judicious choice of the coefficient  , defined in (33). 

Let, ( ̃    ) ,           , be the perturbed separation matrices, obtained respectively from 

simulation 56 to 60. Each of these matrices captures the temperature effect through their 

singular values. According to this reasoning, we define   as:          ቀ( ̃    ) ቁ,            (35) 

In order to test this strategy, we have simulated the temperature effect for the healthy and 

damaged models. Table 7 summarizes the studying model states in this subsection.  

Table 8 shows the value of the updated bound, and the damage index associated to the 

different conditions of the composite model (see table 7). One can see that for the damaged 

states, the associated damage index       is upper than updated bound       . Moreover, in 

the case of temperature effect of the healthy state model, the damage index is less than the 

bound, so the false positive alarms presented in table 6 were entirely removed. In order to 
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have visualization for the decision making, we have plotted in figure 5, the damage rate 

versus the simulation number (according to table 7); we can obverse that the healthy and 

damaged model states are well separated, even if the temperature is present in our modeling 

manner. According to these results, we can assure that if the temperature change belongs to a 

certain interval, no false positive alarms will be detected. 

Table 7: Simulation sate of the composite plate model: temperature effect 

Simulation n° State of the composite model by taken into account of the 
temperature effect    Healthy state: α = 0.0105% and 0.75% variance noise    Healthy state: α = 0.0115% and 0.25% variance noise    Healthy state: α = 0.0125% and 0.25% variance noise    Healthy state: α = 0.0135% and 0.50% variance noise    Healthy state: α = 0.014% and 0.50% variance noise    Damaged 6: Reduced stiffness of 5% for the element 17, α = 

0.014% and 0.25% variance noise    Damaged 7: Reduced stiffness of 5% for the element 56, α = 
0.013% and 0.5% variance noise    Damaged 8: Reduced stiffness of 5% for the element 140, α = 
0.0125% and 0.75% variance noise    Damaged 9: Reduced stiffness of 5% for the element 37, α = 
0.0115% and 0.5% variance noise    Damaged 10: Reduced stiffness of 5% for the element 184, α = 
0.014% and 0.75% variance noise 

Table 8: Results of the damage detection by taken into account the temperature effect 

Simulation n°                               
Decision                          Healthy                          Healthy                         Healthy                         Healthy                         Healthy                         Damaged                         Damaged                         Damaged                         Damaged                         Damaged 
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Figure 5: Results of handling the effect of temperature in a FE composite model 

5. Experimental test bench: Conformal load-bearing antenna structure 

The CLAS employed in this study consists of a piece of a composite fuselage. The dimension 

of this structure is ሺ            ሻ and it is made up with the same layers as the 

composite plate model. The mechanical proprieties of the composite material are presented in 

table 1. Figure 6, 7 and 8 show respectively the antenna network of the CLAS, the seven PZT 

bonded on it (dimensions ሺ             ሻ, PZ29 family) and their locations. 

Before applying the damage detection methodology, we have done simultaneously a radiation 

pattern and a measure of strain using the PZT sensors (figure 9) in order to check if  there is 

coupling between the electromagnetic phenomena of the antenna network and the electrical 

information transmitted by the piezoelectric sensors. This study has shown that the two 

phenomena can coexist in the same time without any interaction. 

The CLAS depicted in figure 8 was used first to build a baseline set. For that, we have used 

PZT 2 as an actuator, while the six others PZT are sensors (    ). The input excitation, and 

the data acquisition were done using a commercial system dSPACE®. This excitation consists 

in a signal pulse with 1ms width; signals were acquired with sampling frequency           , and       time samples were recorded for each channel: one corresponding to 

the excitation applied to the PZT actuator, and the others concern the measurements collected 

by the PZT sensors. Several baseline tests with enough time lag between them were done on 
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the CLAS (    ) in order to calculate the analytic bound       . It is to be noted that these 

tests were done under temperature of T=18°C and T=24°C. In these conditions, the coefficient   was set to one. Using a buckling device (figure 10), we have provoked in a second time a 

delamination of the antenna part from the host structure (figure 11). 

 

Figure 6: Antenna network of the CLAS 

Conformal load-bearing antenna structure
Dimensions: 800 x 150 x2 mm3
PZT: 30 x20 x0.2 mm3

Origine

PZT2 x=45 mm
          y =30 mm

PZT3
x=45 mm
y= 130mm

PZT1
x=255 mm
y= 70 mm

PZT 6
x = 765 mm
y = 30 mm

PZT 7
x= 765 mm
y = 130 mm

PZT 4
x=490 mm
y=125 mm

PZT5
x= 675 mm
y = 30 mm

 

Figure 7: Location of the piezoceramic patches on the 

CLAS 

 

Figure 8: CLAS bounded with piezoceramic patches 

 

 

Figure 9: Test rig mounted in an anechoic chamber 

Antenna network 
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Figure 10: Buckling device [5] 

 

Figure 11: Delamination of an antenna part from the 

CLAS 

6. Application of the damage detection to the CLAS 

In this section, we proceed to the damage detection method within the framework of the 

CLAS. This method is governed by the damage index       (see proposal 1), and by the 

analytic bound (see proposal 2). 

The damage detection methodology illustrated in subsection 3.4 was applied to the CLAS to 

detect two kinds of damage. The first concerns the detection of a hole (damage 1 with 

diameter of     ) located at the middle of the CLAS (see figure 10), the second damage 

concerns a delamination of an antenna network part, and it is separated from the host structure 

by a distance of       (see figure 11). Let’s begin by presenting the results of damage 1. 

Damage detection result: damage 1  

Table 9 depicts the result of our methodology to detect the hole of the CLAS. In this case, the 

damage index             , and it is upper than the bound              . Moreover 

the damage rate                         . 

Table 9: Result of the damage detection of the CALS using PCA: damage 1 

              

Damage1 of the CLAS: hole 0.3159 0.0347 

This result allows us to assert that the first damage was well detected. Now, we present the 

result of damage 2. 

 

Delamination of 
an antenna part 
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Damage detection result: damage 2 

Once the damage 1 detected, we have provoked a delamination of an antenna network part 

from the CLAS (figure 11), we have done tests of this structure state and we have applied the 

damage detection procedure (the result is depicted in table 10). In this case, the damage index             , and it is upper than the bound              . Moreover the damage 

rate                          . Then damage 2 is also well detected.  

Table 10: Result of the damage detection of the CLAS using PCA: damage 2 

              

Damage2 of the CLAS: delamination 
of an antenna network 

              

In order to consolidate our results, we have performed other tests of the healthy and the 

damaged (damage 2) state of the CLAS using PZT 3 as an actuator. To test the damage 

detection methodology regarding the alarm false, we have done other tests of the healthy state 

(tests1-4); with enough time lags between them. Figure 12 depicts the damage rate versus the 

test number. We can observe that the damage rate is greater than one for the damaged states. 

One can also see that no false-positive alarms (NFPA) were detected. 

 

Figure 12: Application of the damage detection methodology using PCA and matrix perturbation  

for a CLAS structure 
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7. Conclusion  

The important objective of a damage detection algorithm is to ascertain with efficiency the 

presence of damage. This decision can be done using a statistical model associated with the 

damage index. However, this model is an approximation due to the finite number of available 

baseline data. In this paper, we have explored the use of matrix perturbation theory (MPL) in 

the context of SHM. 

Through this paper, we have proposed first a damage index based upon the change of the 

principal angle vectors between subspaces. This damage index does not require the 

knowledge of the mechanical model of the structure. So, it can be applied to more complex 

structures. To enhance the decision on the presence or not of damage, we have associated to 

this DI a bound. This later is entirely analytical, and it is suitable for adaptive damage 

diagnosis. This adaptability was tested to tackle the effect of temperature on a FE composite 

plate. Several changes of stiffness for the simulation setup and real delamination for the 

CLAS were well detected, with no false-positive alarms. Experiments on temperature effect 

(using enclosed heated space) and changes in boundary conditions are underway. 
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