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A fundamental problem in structural damage detection is to define an efficient feature to calculate a damage index (DI). Furthermore, due to perturbations from various sources, we need also to define a rigorous threshold whose overtaking indicates the presence of damages.

In this paper, we develop a robust damage detection methodology based on Principal Component Analysis (PCA). We present first an original DI based on the projection on the separation matrix, and then we drive a novel adaptive threshold that doesn't rely on statistical assumptions. This threshold is analytic and is based on matrix perturbation theory (MPT). The efficiency of the method is illustrated using simulations on a composite smart structure with PZT and experimental results performed on a Conformal Load-Bearing Antenna Structure (CLAS) laboratory test.

Nomenclature

Introduction

The aerospace industry is aiming, more than ever, to reduce their energy consumptions and emissions. Despite recent advances in aircraft engines, the determinant energy-saving factors are reducing weight and optimizing the aerodynamic performances. Moreover, the aerospace companies have also to satisfy safety constraints, structural integrity (mechanical stiffness and strength) and some customer requests (integration new features as for example, multimedia and private communications). As shown in figure 1, a present commercial aircraft is composed of many antennas located on the structure and used for communication, navigation and radar activity. Furthermore, in a near future, the number of these antennas is expected to increase in order to improve comfort customers by allowing multimedia private communications and internet accesses. Taken into account of these customer requests will result into to an increase of weight, and a decrease in the aerodynamic performances due to the huge number of antennas that will protrude from the outer mould line (OML) of the aircraft.

To respond to these antagonist criteria, ongoing research and development programs have come up with the concept of multifunctional aircraft structure (MAS). The principle is to take the advantage of composite materials to integrate airframe structure with a functional system.

The objective is to perform a number of tasks such as transmit/receive (T/R) function, structural health monitoring (SHM), active control [START_REF] Mechbal | Damage Tolerant Active Control: Concept and State of the Art[END_REF], shape control and Conformal Load-Bearing Antenna Structure (CLAS) [2;3]. The concept of CLAS is to replace existing antennas, particularly blades and wires that protrude from the OML of aircraft with airframe structure, that: (i) supports primary structural loads, (ii) conforms to the OML and (iii) can perform the transmit/receive function of the existing antennas [START_REF] Callus | Conformal Load-Bearing Antenna Structure for Australian Defence Force Aircraft[END_REF]. CLAS will then reduce drag and have the potential to reduce weight and enhance the electromagnetic performance. However, the electromagnetic performances of this CLAS depend of their structural health, which can be clobbered by mechanical stress, impact damage or by delamination of a part of the antenna network from the host structure. Therefore, monitoring the health of the CLAS is a mandatory necessity.

In this paper, a methodology is proposed to achieve SHM on a CLAS composite structure.

Our study is a part of a more global project (Smart Materials and Structures for Electromagnetics, MSIE) supported by the Aerosapce Paris Région [START_REF] Msie | State of the Art for the Projet MSIE: Smart Materials and Structures for Electromagnetics[END_REF]. The MSIE project aims to demonstrate the practical use of metamaterials in CLAS and to monitor their performances by performing in the case of damage, SHM for restorative maintenance tasks and shape control compensation.

SHM is the most widely known form of MAS. It has been driven by recent developments in sensor technology [START_REF] Giurgiutiu | Development and Testing of High-Temperature Piezoelectric Wafer Active Sensors for Extreme Environments[END_REF], manufacturing, signal processing [START_REF] Staszewski | Time-Frequency and Time-Scale Analyses for Structural Health Monitoring[END_REF], applied mechanics and material sciences. SHM has led to a variety of efficient methods to detect, locate, classify, quantifying varying degrees of damage and estimating the remaining useful life of the structure [START_REF] Chang | A Potential Link from Damage Diagnostics to Health Prognostics of Composites Through Built-in Sensors[END_REF].

Several techniques have been employed to perform structural monitoring [START_REF] Boller | Encyclopedia of Structural Health Monitoring[END_REF], and various damage indices have been proposed to characterize the change in dynamic characteristics caused by damage. Some of these DIs are based on extracting features from the observed output vector , using numerous tools such as short Fourier transform [START_REF] Ihn | Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-In Pizoelectric Sensor/Actuator Network[END_REF], wavelet [START_REF] Sohn | Wavelet-Based Active Sensing for Delamination Detection in Composite structures[END_REF] and Hilbert-Huang transform [START_REF] Yang | Hilbert-Huang Based Approach for Structural Damage Detection[END_REF].

To perform SHM, the structure has to be smart. Smartness supposes spatial information which is obtained by network of sensors/actuators built in/on the host structure. This spatial diversity are achieved through multivariate and magavariate analysis to reduce data and to extract some simplified and hidden pattern [START_REF] Friswell | Sensor Validation for Smart Structures[END_REF][START_REF] De Boe | Principal Component Analysis of a Piezosensor Array for Damage Localization[END_REF][START_REF] Hajrya | Proper Orthogonal Decomposition Applied to Structural Health Monitoring[END_REF]. As the name implies, multivariate analysis is concerned with the analysis of multiple variables or measurements, but treats them as a single entity.

Blind separation source (BSS) is a family of techniques, which belong to multivariate statistics. BSS attempts to reveal hidden variables, named sources and mixing/separating matrices, only from their dynamical measured vectors . Among the methods of the BSS family, one can cite: Principal Component Analysis (PCA) [START_REF] Jolliffe | Principal Component Analysis[END_REF], Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent Component Analysis: Algorithms and Applications[END_REF], Second-Order Blind Identification (SOBI) [START_REF] Comon | Handbook of Blind Source Separation[END_REF]. In this paper, we focus on PCA.

PCA has been used to extract damage features. Friswell and Inman [START_REF] Friswell | Sensor Validation for Smart Structures[END_REF] proposed a damage index based on the angle between subspaces. [START_REF] De Boe | Principal Component Analysis of a Piezosensor Array for Damage Localization[END_REF] have used the same approaches to detect a piezoelectric faulty sensor. Recently, [START_REF] Mujica | Q-Statistic and T2-Statistic PCA-Based Measures for Damage Assessment in Structures[END_REF] have explored the use of PCA and T 2 and Qstatistics to detect damage.

The key issue in damage detection is to ascertain with confidence if damage is present even if the structure is subject to environmental perturbations. In the above references, the threshold associated to the proposed damage indices are defined manually [START_REF] Mujica | Q-Statistic and T2-Statistic PCA-Based Measures for Damage Assessment in Structures[END_REF], or following the assumption of Gaussian distribution of the damage index [START_REF] Kerschen | Sensor Validation Using Principal Component Analysis[END_REF].

In this study, we propose to develop a new robust analytical threshold (bound) that handle the effect of noise measurements, temperature changes and ensure the presence of damage. Our approach uses singular value decomposition (SVD) and matrix perturbation theory (MPT).

MPT considers how the features of a matrix namely singular values, singular vectors and subspaces change, when the matrix is subject to perturbations [START_REF] Stewart | Matrix Perturbation Theory[END_REF]. In the proposed approach, we study perturbations that could rise in the subspaces of the separation matrix to define an analytic threshold to the damage index proposed in this paper.

The remainder of this paper is organized as follows. In preliminary, we introduce the BSS problem and the principal component analysis technique. In section 3, the damage detection procedure is described, and it is divided into four subsections; the first and second subsections are devoted respectively toward the development of feature extraction and our proposed damage index; in subsection 3.3, we present our new approach to define the threshold. We outline in subsection 3.4 a framework. In section 4, finite element simulation's results on a composite plate are presented. In section 5, we present the experimental study of a conformal load-bearing antenna structure (CLAS), and the damage detection results are presented in section 6. Finally, conclusions and further directions will be drawn in section 7.

BSS problem and PCA algorithm

BSS problem

In blind source separation, the goal is to recover unknown source signals from their linear measured mixtures without any information on the mixing coefficients [START_REF] Comon | Handbook of Blind Source Separation[END_REF]. We suppose in the sequel a linear mixture. Hence, let be a zero mean measurement vector from sensors at time index :

[ ] (1) 
The measurement matrix gathering samples is defined as follows:

[ ] (2) 
The linear BSS problem is defined as [START_REF] Comon | Handbook of Blind Source Separation[END_REF]:

(

where is the mixing matrix, [ ] is the sources vector and [ ] represents all the uncertainties and perturbation effects (modeling uncertainty and noises). In our study, we will consider the noise-free model (4), dealing with uncertainties and perturbations will be done by generating a robust bound for detection decision:

BSS is an estimation problem, and it is accomplished by finding simultaneously an estimated sources vector ̂ and a separation matrix noted only from the observed data :

̂ (5)
where [ ] and are respectively the estimated sources vector at instant and the separation matrix. Equation ( 5) is called the separation model.

Clearly, without additional assumptions, the BSS problem (equation ( 5)) is ill-posed. Cardoso [START_REF] Cardoso | The Three Easy Routes to Independent Component Analysis, Contrasts And Geometry[END_REF] has shown that the BSS problem can be resolved using assumptions done on the nature of sources. In this paper, we assume that the sources are temporally identically and independently distributed (iid) and Gaussian, which leads to the principal component analysis method.

Principal component analysis

The separation of sources relies on the basic knowledge of the mutual independence of source components. It is then natural to resolve the BSS problem by minimizing a dependence criterion between these components. In our study, we adopt the mutual information as the separation criterion [START_REF] Cover | Elements of Information Theory[END_REF]. From equation ( 5), the solution is to find the matrix , so that the mutual information is zero. In the case where the sources are assumed to follow Gaussian distribution, the mutual information ( ) is given by [START_REF] Hyvärinen | Independent Component Analysis Using Mutual Information[END_REF]:

( ) ∏ ( ) (6) 
If the components of the vector have to be statistically independent, mutual information defined in ( 6) is equivalent to:

( ) ∏ ( ) (7) 
Knowing that covariance matrix is symmetric, equality ( 7) is satisfied if the covariance matrix is diagonal: the sources are uncorrelated and statistically independent [START_REF] Jolliffe | Principal Component Analysis[END_REF].

Principal component analysis of a measurement vector is defined as a pair of matrices { } such that the covariance matrix is factorized:

(8)
where [ ] is the matrix of eigenvectors and is a diagonal matrix of eigenvalues.

The separation matrix, noted now , is given by:

In order to reduce the number of principal components, we use the cumulative percent variance CPV [START_REF] Valle | Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods[END_REF]. It is a measure of the percent variance captured by the first PCs:

∑ ∑ (10) 

Damage detection procedure

Feature extraction

We seek to detect changes in the structure by monitoring specific features estimated from baseline observation set (referred by the exponent "s") and observation set of a current or unknown state (referred by the exponent "u"). We note , , respectively, the measurement matrix of the structure in a healthy and unknown state.

To define the feature, we use the separation matrices and . From ( 9), we have:

(11) (12) 
If the reduction using a fixed CPV is possible (see subsection 2.2), the separating matrix and are rewritten as follows:

[ ( )] [ ] [ ] (13) 
where: In the same way, we define the matrix using the following equation:

[ ( )] [ ] [ ] (14) 
The presence of a damage will modify the measurement matrix , and consequently the separation matrix , compared to the matrix . Therefore, the subspaces generated by are deflected to those of . The idea here is to monitor changes of specific subspaces.

Let, { }, { } be respectively the range subspace of a matrix and its transpose. { } , { } correspond to the orthogonal projection of the range subspace { } and { }. One way to define orthogonal projections is to use SVD, i.e.

(

) 15 
The orthogonal projections { } , { } are respectively defined as follow [START_REF] Golub | Matrix Computation[END_REF]:

{ } { } (16) 
From the definition of the separating matrices and , the matrix of left singular vectors is equal to the identity matrix:

Therefore, no information can be derived from the matrix of left singular vectors, thus we will use the matrix of right singular vectors as a feature. To build our proposed damage index, we will use projections on the transpose of matrices and as a damage feature. This is the subject of the following subsection.

Damage index

Following the work of [START_REF] De Boe | Principal Component Analysis of a Piezosensor Array for Damage Localization[END_REF], the proposed damage index is constructed using the calculation of the principal angle vectors between the range subspace of the matrix and .

We note [ { } { }], the principal angle vectors between the range subspace { } and { }. Using the SVD tool, the Euclidean norm of the sinus angle of these vectors is defined as follow [START_REF] Davis | The Rotation of Eigenvectors by a Perturbation[END_REF]:

‖ [ { } { }]‖ ‖ {( ) } {( ) } ‖ ‖( {( ) } ) {( ) } ‖ (18) 
In [START_REF] De Boe | Principal Component Analysis of a Piezosensor Array for Damage Localization[END_REF], the principal angle vectors are calculated using the QR decomposition and the cosines of the principal angles. Their damage index is given by the largest angle. Here, we propose the following damage index:

Proposal 1: Damage index

Let be a smart structure with sensors, and define equations (13), ( 14) and [START_REF] Comon | Handbook of Blind Source Separation[END_REF].

Damage could be detected by monitoring the following damage index:

‖ [ { } { }]‖ (19) 
where is the number of principal components retained.

In the absence of disturbances and when the structure at an unknown state is healthy, the damage index is zero. Otherwise, the structure is damaged. However, as the measurements are corrupted by noises and unknown perturbations, the detection decision could be biased. Moreover, these perturbations might also affect the distinguishability between damage and environmental disturbances and consequently the isolationability of damages. To deal with this problem, we propose using matrix perturbation theory, to calculate an analytical upper bound of these small perturbations. This is the aim of the next subsection.

Analytic threshold

As stated previously, the proposed damage index is based on subspace projections and decompositions. Due to various perturbation sources such as finite data effect, measurement noises and temperature change, perturbations arise in subspaces. Therefore, false alarms could appear.

To handle these perturbations, we propose to use matrix perturbation analysis that can result in defining an analytical bound with no rely of statistical assumptions usually performed for damage detection. Matrix perturbation theory considers how matrix functions such as subspaces change when the matrix is subject to perturbations.

In this work, we consider that separation matrix obtained from the baseline, is slightly perturbed, i.e.

̃ ( 20 
)
where ̃ is a perturbed version of with perturbation .

Then, we propose to define a robustness measure that estimates how much the damage index (defined in [START_REF] Mujica | Q-Statistic and T2-Statistic PCA-Based Measures for Damage Assessment in Structures[END_REF]) is affected. The overtaking of this rigorous threshold will indicate the presence of damage. It will also minimize false-positive and false-negative alarms.

To drive the proposed analytical bound, we use early work of Wedin [START_REF] Wedin | Perturbation Bounds in Connection with Singular value Decomposition[END_REF] on perturbed matrices in connection with SVD. The idea is to estimate ‖ ‖ by performing several tests or simulations on the healthy structure and to evaluate the gap between specific singular values in order to find an upper bound for . Background materials on matrix perturbation theory and Wedin framework results can be provided in [21;26]. It is to be noted that our approach is an unsupervised learning mode (ULM), which implies that data from a damaged state are not used to build this bound. This ULM is mandatory necessary for realworld application.

The proposed analytic bound is derived following three major steps:

First step: testing the healthy structure Consider the variation that the separation matrix is subject due to the environmental disturbances. To describe this variation , we perform a second test on the healthy structure, we apply the PCA method and we determine the new separation matrix noted ̃ . The matrix is defined by the following relationship:

̃ ( 21 
)
The SVD of the matrix ̃ is given by:

̃ [ ( )] [ ̃ ̃ ] [ ̃ ̃ ] ̃ ̃ (22) 
We first define the following residual matrices and norms:

̃ ̃ ̃ ̃ ̃ [( ̃ ) ̃ ̃ ] ̃ (23) 
̃ ̃ ( ̃ ) ̃ (24) 
And then evaluate their two norm, i.e.:

‖ ‖ ‖ ̃ ‖ ‖ {( ̃ ) } ‖ (25) 
‖ ‖ ‖ ‖ ‖ { ̃ } ‖ (26) 
where

{ ̃ } and {( ̃
) } are respectively the orthogonal projection of the matrix ̃ and its transpose.

From these relations, we introduce the number :

‖ ‖ ‖ ‖ (27) 
This number quantifies the magnitude of the environmental disturbances.

We are now going to matrix perturbation theory through the work of Wedin and its principal results.

Second step: Matrix perturbation theory [START_REF] Wedin | Perturbation Bounds in Connection with Singular value Decomposition[END_REF] Our aim is to find an analytic upper bound to (see [START_REF] Mujica | Q-Statistic and T2-Statistic PCA-Based Measures for Damage Assessment in Structures[END_REF]). Consequently, when we have estimates ‖ ‖ and the gap between the least singular value of ̃ and the largest singular value of .

Assume now, that , such that :

‖ ‖ ( 28 
) ( ̃ ) ‖ ̃ ‖ (29) 
So:

̃ ‖ [ { ̃ } { }]‖ ̃ (30) 
̃ ‖ [ {( ̃ ) } { }]‖ ̃ (31)

Third step: elaboration of the bound

Recall that the damage index (see [START_REF] Mujica | Q-Statistic and T2-Statistic PCA-Based Measures for Damage Assessment in Structures[END_REF] ) is calculated from the separation matrix of the healthy state and of the structure in an unknown state, while the term ̃ is calculated from the separation matrix and ̃ from a second healthy test.

As the matrix of singular vectors of separation matrices equals the identity matrix, the term ̃ . Consequently, the term ̃ satisfies:

̃ ( 32 
)

Proposal 2: Analytic bound

The proposed bound is defined as follow:

(33)

where:

quantifies the magnitude of the environmental disturbances and it is defined in [START_REF] Davis | The Rotation of Eigenvectors by a Perturbation[END_REF], and are defined respectively in [START_REF] Wedin | Perturbation Bounds in Connection with Singular value Decomposition[END_REF] and [START_REF] Hajrya | Contrôle Santé des Structures Composites : Approche Expérimentale et Statistique[END_REF],

is the number of principal components retained, is a tuning parameter adjusting the bound.

The proof of this proposal is sketched in [START_REF] Hajrya | Contrôle Santé des Structures Composites : Approche Expérimentale et Statistique[END_REF] and is quite straightforward, from results in [START_REF] Wedin | Perturbation Bounds in Connection with Singular value Decomposition[END_REF].

Our proposed damage index and its associated bound are quantified numerically, so we can calculate a detection rate , which is defined as follow:

(34) if then the structure is damaged, otherwise it is healthy.

Framework of the damage detection procedure

For practical implementation, we outline in this subsection the following framework. We assume that the measurements have been scaled (zero mean and unity variance).

Step 1: Tests of the healthy structure state 

Example through FE simulations

Before applying our damage detection methodology on a conformal load-bearing antenna structure (CLAS), we have first applied it through a finite element (FE) model of a composite plate.

Consider a rectangular carbone epoxy plate with dimensions and made up of 16 layers. The layer sequences are: (0°2, 45°2, -45°2, 90°2, 90°2, -45°2, 45°2, 0°2)

and the mechanical properties of the composite material in nominal conditions are illustrated in table 1. In our case, nominal condition means that effects of temperature change are not taken into account. Using the controllability and observability gramians, we have performed in a previous work [START_REF] Hajrya | Active Damage Detection and Localization Applied to a Composite Structure Using Piezoceramic Patches[END_REF], an optimal placement of piezoceramic patches with dimensions . These piezoceramic patches belong to the PZ 29 family, table 2 depicts the mechanical and electrical properties of these PZT. The FE model of the composite plate equipped with its piezoceramics was developed using Structural Dynamic toolbox [START_REF] Balmes | Structural Dynamics Toolbox User's Guide[END_REF].

We have chosen a model with 195 elements, each element has dimension of .

The plate is under free-free boundary conditions. Figure 2 shows the composite plate model with the optimal placement of the PZT.

To apply the damage detection methodology described in subsection 3.4, we have first built the baseline of the healthy plate model in nominal conditions (see table 1). For this purpose, we have used PZT 7 as an actuator, while the others PZT are sensors ( , then the continuous state space of the model was calculated with modes. The damping was assumed to be equal to 0.05% for all modes. Once the continuous state space calculated, we have discretized it with sampling frequency . The excitation of actuator PZT 7 consists in a signal pulse with 1ms width, signal sensors were recorded with time samples.

In section 2, we have stated that PCA can allow use to reduce the dimension of the measurement matrix. According to a fixed CPV of 98%, we have retained seven principal components ( ). 

Perturbation by measurement noises

We have first simulated the effect of environmental perturbations as a noise disturbance acting on the dynamic response data: 56 simulations were achieved using the composite plate model in different conditions of measurement noises. Table 3 summarizes these simulations. The first reflects the composite model in a healthy state with 0.25% variance noise of the energy contained in the simulated data sensors, simulations n°2 to 50 correspond to the healthy state, but with different values of noise variance (from 0.26% to 0.75% with a step of 0.01%). These simulations will allow us to build the analytic bound . It is to be noted, that in the nominal conditions, the value of coefficient defined in proposal 2 (see relation (33)) is equal to 1.

Simulations 51-55 correspond to damaged states of the composite plate model. These simulations are associated respectively to a reduced stiffness of 5% for element 17, 56, 140, 37 and 184 (see figure 2), with a variance noise of 0.5%. Figure 3 depicts the time response of sensor PZT 1 for simulations n°1 (healthy state) and n°56 (damaged state: reduced stiffness of 5% for the element 17), only the 512 first samples are displayed.

Table 4 depicts the results of the damage detection through these simulations. One can see that for the damaged states, the associated damage index is upper than the proposed bound , so the damaged states are well detected. Figure 4 is a visualization manner for the decision making. 

Perturbation by temperature change

The main of this subsection is to study through the FE model, the effect of temperature in the decision making regarding alarm false.

With the inherent anisotropy of composite materials, any attempt to simulate the effect of environmental factors like temperature requires relevant experimental data from the structure in an enclosed heated space. These data will feed the FE model to yield reasonably accurate prediction. However, it is expected that first order thermal effects in an instrumented composite will be associated with the difference between the evolution of constitutive behavior of the composite matrix, its fibers and the piezoelectric. As a rough approximation, one can consider varying moduli for the composite plate with fixed mechanical properties for the piezoelectric material.

In order to mimic the temperature effects, we have modified the moduli by a percentage [ ] . Table 5 presents the basis of the modification under certain temperature change. According to this rough approximation, simulations were achieved. It is to be noted that for each simulation, 0.25% variance noise measurement was added to each dynamic response. The damage indices associated to these simulations are depicted in table 6. The results depicted in this above table show that the damage index is greater than the analytic bound. Knowing that these simulations concern a healthy model, false positive alarms (FPA) were detected. So, we have to deal with these FPA.

Handling the effect of the temperature

Our strategy to handle the effect of temperature was to adapt the value of the bound by a judicious choice of the coefficient , defined in (33).

Let, ( ̃ ) , , be the perturbed separation matrices, obtained respectively from simulation 56 to 60. Each of these matrices captures the temperature effect through their singular values. According to this reasoning, we define as:

( ̃ ) , (35) 
In order to test this strategy, we have simulated the temperature effect for the healthy and damaged models. Table 7 summarizes the studying model states in this subsection.

Table 8 shows the value of the updated bound, and the damage index associated to the different conditions of the composite model (see table 7). One can see that for the damaged states, the associated damage index is upper than updated bound . Moreover, in the case of temperature effect of the healthy state model, the damage index is less than the bound, so the false positive alarms presented in table 6 were entirely removed. In order to have visualization for the decision making, we have plotted in figure 5, the damage rate versus the simulation number (according to table 7); we can obverse that the healthy and damaged model states are well separated, even if the temperature is present in our modeling manner. According to these results, we can assure that if the temperature change belongs to a certain interval, no false positive alarms will be detected. 

Experimental test bench: Conformal load-bearing antenna structure

The CLAS employed in this study consists of a piece of a composite fuselage. The dimension of this structure is and it is made up with the same layers as the composite plate model. The mechanical proprieties of the composite material are presented in table 1. Figure 6, 7 and 8 show respectively the antenna network of the CLAS, the seven PZT bonded on it (dimensions , PZ29 family) and their locations.

Before applying the damage detection methodology, we have done simultaneously a radiation pattern and a measure of strain using the PZT sensors (figure 9) in order to check if there is coupling between the electromagnetic phenomena of the antenna network and the electrical information transmitted by the piezoelectric sensors. This study has shown that the two phenomena can coexist in the same time without any interaction.

The CLAS depicted in figure 8 was used first to build a baseline set. For that, we have used PZT 2 as an actuator, while the six others PZT are sensors ( ). The input excitation, and the data acquisition were done using a commercial system dSPACE®. This excitation consists in a signal pulse with 1ms width; signals were acquired with sampling frequency , and time samples were recorded for each channel: one corresponding to the excitation applied to the PZT actuator, and the others concern the measurements collected by the PZT sensors. Several baseline tests with enough time lag between them were done on the CLAS ( ) in order to calculate the analytic bound . It is to be noted that these tests were done under temperature of T=18°C and T=24°C. In these conditions, the coefficient was set to one. Using a buckling device (figure 10), we have provoked in a second time a delamination of the antenna part from the host structure (figure 11). 

Application of the damage detection to the CLAS

In this section, we proceed to the damage detection method within the framework of the CLAS. This method is governed by the damage index (see proposal 1), and by the analytic bound (see proposal 2).

The damage detection methodology illustrated in subsection 3.4 was applied to the CLAS to detect two kinds of damage. The first concerns the detection of a hole (damage 1 with diameter of ) located at the middle of the CLAS (see figure 10), the second damage concerns a delamination of an antenna network part, and it is separated from the host structure by a distance of (see figure 11). Let's begin by presenting the results of damage 1.

Damage detection result: damage 1

Table 9 depicts the result of our methodology to detect the hole of the CLAS. In this case, the damage index , and it is upper than the bound . Moreover the damage rate . This result allows us to assert that the first damage was well detected. Now, we present the result of damage 2.

Delamination of an antenna part

Conclusion

The important objective of a damage detection algorithm is to ascertain with efficiency the presence of damage. This decision can be done using a statistical model associated with the damage index. However, this model is an approximation due to the finite number of available baseline data. In this paper, we have explored the use of matrix perturbation theory (MPL) in the context of SHM.

Through this paper, we have proposed first a damage index based upon the change of the principal angle vectors between subspaces. This damage index does not require the knowledge of the mechanical model of the structure. So, it can be applied to more complex structures. To enhance the decision on the presence or not of damage, we have associated to this DI a bound. This later is entirely analytical, and it is suitable for adaptive damage diagnosis. This adaptability was tested to tackle the effect of temperature on a FE composite plate. Several changes of stiffness for the simulation setup and real delamination for the CLAS were well detected, with no false-positive alarms. Experiments on temperature effect (using enclosed heated space) and changes in boundary conditions are underway.
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 1 Figure 1: Antenna of the AIRBUS A318 [5]
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 2344 Figure 2: Finite element model of a composite plate bounded with piezoceramic patches
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 5 Figure 5: Results of handling the effect of temperature in a FE composite model
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 6 Figure 6: Antenna network of the CLAS Conformal load-bearing antenna structure Dimensions: 800 x 150 x2 mm3 PZT: 30 x20 x0.2 mm3
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 7891011 Figure 7: Location of the piezoceramic patches on the CLAS

  

  

Step 2: Test of the structure at unknown state 2

  

		4.1.1. Calculate the separating matrix ( ̃	) ,	, following (11),
		4.1.2. Apply SVD to the matrix ̃	following equation (13),
		4.1.3. Calculate the variation	using the following equation:
				̃
		4.1.4. Calculate the analytic bound	following (33) (see proposal 2),
	4.2. Calculate the mean of the bound	:
			∑
	Step 5: Decision-making	
	Check if	. If it is the case, then the structure is damaged, otherwise it is healthy.
	Step 3: Calculate the damage index	
	3.1. Apply PCA to the measurement matrix ,
	3.2. Calculate the separating matrix	following equation (11),
	3.3. Apply SVD to the	following equation (13),
	3.4. Calculate the separating matrix	following equation (12),
	3.5. Apply SVD to the	following equation (14),

1.1 Make a first test of the healthy structure, 1.2 Make other tests of the healthy structure with enough time lag between tests, 1.3. Build the measurement matrix of the healthy structure, 1.4. Build the measurement matrices ̃ of the healthy structure. .1. Make one test of the structure at unknown state, 2.2. Build the measurement matrix of the structure at unknown state. 3.6. Calculate the damage index following the proposal 1 (see equation (19)). Step 4: Calculate the bound associated to the damage index 4.1. Take back the result of step 3.2, and repeat for i=1 to the following steps:

Table 1 :

 1 Mechanical properties of the composite material

	Property
	Value

Table 2 :

 2 Mechanical and electrical properties of the PZ29[START_REF] Ferroperm | Material Data Based on Typical Values for Piezoceramic[END_REF] 

	Property	(	)	(	Curie temperature C°
	Value				235

Table 3 :

 3 Simulation states for the composite plate model

	Simulation n°	State
	1-50	Healthy state: used to build the analytic bound
	51	Damaged 1: Reduced stiffness of 5% for the element 17
	52	Damaged 2: Reduced stiffness of 5% for the element 56:
	53	Damaged 3: Reduced stiffness of 5% for the element 140
	54	Damaged 4: Reduced stiffness of 5% for the element 37
	55	Damaged 5: Reduced stiffness of 5% for the element 184

Table 5 :

 5 Value of the simulated temperature under the perturbation of the moduli

	Simulation n°	Simulated temperature [ ]
		26
		27
		28
		29
		30

Table 6 :

 6 Effect of the temperature in the damage detection

	Simulation n°

Table 7 :

 7 Simulation sate of the composite plate model: temperature effect

	Simulation n°	State of the composite model by taken into account of the
		temperature effect Healthy state: α = 0.0105% and 0.75% variance noise Healthy state: α = 0.0115% and 0.25% variance noise Healthy state: α = 0.0125% and 0.25% variance noise Healthy state: α = 0.0135% and 0.50% variance noise Healthy state: α = 0.014% and 0.50% variance noise Damaged 6: Reduced stiffness of 5% for the element 17, α =
		0.014% and 0.25% variance noise Damaged 7: Reduced stiffness of 5% for the element 56, α =
		0.013% and 0.5% variance noise Damaged 8: Reduced stiffness of 5% for the element 140, α =
		0.0125% and 0.75% variance noise Damaged 9: Reduced stiffness of 5% for the element 37, α =
		0.0115% and 0.5% variance noise Damaged 10: Reduced stiffness of 5% for the element 184, α =
		0.014% and 0.75% variance noise

Table 8 :

 8 Results of the damage detection by taken into account the temperature effect

	Simulation n°

Table 9 :

 9 Result of the damage detection of the CALS using PCA: damage 1

	Damage1 of the CLAS: hole	0.3159	0.0347
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Damage detection result: damage 2

Once the damage 1 detected, we have provoked a delamination of an antenna network part from the CLAS (figure 11), we have done tests of this structure state and we have applied the damage detection procedure (the result is depicted in table 10). In this case, the damage index , and it is upper than the bound . Moreover the damage rate . Then damage 2 is also well detected. In order to consolidate our results, we have performed other tests of the healthy and the damaged (damage 2) state of the CLAS using PZT 3 as an actuator. To test the damage detection methodology regarding the alarm false, we have done other tests of the healthy state (tests1-4); with enough time lags between them. Figure 12 depicts the damage rate versus the test number. We can observe that the damage rate is greater than one for the damaged states.

One can also see that no false-positive alarms (NFPA) were detected.