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Dzyaloshinskii-Moriya interactions effects on the entanglement dynamics of a two

qubit xxz spin system in non-Markovian environment

Georges Collince Fouokeng, Martin Tchoffo, Edwine Tendong, Lukong Cornelius Fai
Mesoscopic and Multilayer Structure Laboratory, Department of Physics,

Faculty of Science, University of Dschang, Cameroon.

We investigate the exact entanglement dynamics of a two-qubit Heisenberg XXZ chain with
Dzyaloshinskii-Moriya (DM) interactions, interacting with an anisotropic spin bath in thermal equi-
librium at a temperature T , driven by an external magnetic field B along the z-axis. We establish
that, for an initially entangled qubit pair, the DM interactions generate entanglement and enhance
the entanglement in the revival region. The effects of the DM interaction are also seen to be very
important at high temperatures and for weak coupling between the two qubits where it is seen to
preserve entanglement. These effects are weakened when the magnetic field B and the Heisenberg
coupling are switched on. If the two-qubits are prepared in an initially separable state, the DM in-
teraction instead has a negative effect on their entanglement. On a whole entanglement can better
be preserve in the spin chain even at high temperatures by increases the external magnetic field B
and the Heisenberg couplings, and by tuning the strength of the DM interaction.

PACS numbers: 03.65.Ud, 03.67.a,03.65.Yz, 02.70.Rw.

I. INTRODUCTION

Entanglement also called the quantum non-local con-
nection [1] has been studied intensely in recent years due
to its potential applications in quantum communication
and information processing tasks [2] such as quantum
teleportation [3], super-dense coding [4] quantum key
distribution, and telecoloning. It has also been recog-
nized as an essential resource in quantum information
processing [5]. Quantum entanglement also plays a fun-
damental role in the quantum phase transitions that oc-
cur in interacting lattice systems at zero temperature [6].
These Potential applications of entanglement have stimu-
lated research on ways to quantify and control it. Differ-
ent physical systems have been proposed as reliable can-
didates for the underlying technology of quantum com-
puting and quantum information processing [7] [8]. The
basic idea in each one of these systems is to choose a cer-
tain quantum degree of freedom to serve as a qubit, such
as the charge, orbital, or spin angular momentum. This
is usually followed by finding a controllable mechanism to
form entanglement between a two-qubit system in such
a way as to produce a fundamental quantum computing
gate such as an exclusive OR (XOR) gate. In addition,
one should be able to manipulate coherently such an en-
tangled state to provide an efficient computational pro-
cess. Such coherent manipulation of entangled states has
been realized in different systems such as isolated trapped
ions [9] and superconducting junctions [9]. The coherent
control of a two-electron spin state in a coupled quantum
dot has been achieved experimentally, in which the cou-
pling mechanism is the Heisenberg exchange interaction
between the electron spins [11] [12]. Heisenberg spin
chains are among one of the major quantum systems,
which have been proposed for the physical realization of
good qubits needed in the implementation of the quan-
tum computer [13] [14]. [15]. However spin systems

suffer from decoherence effects due to the influences of
the environmental degrees of freedom on the dynamics
of the system. In such spin systems the unavoidable
interactions between the qubits and their environment
causes the decay of qubit superposition states (entangled
states) into a classical, statistical mixture of states; [16]
a phenomenon known as decoherence, and this can seri-
ously hinder the various quantum information processing
tasks. Decoherence effects have therefore in recent years
attracted extensive research attention. In the dynamics
of a quantum spin system, one of the major spin inter-
actions inducing decoherence, which play an important
role in the entanglement dynamics of spin qubits is the
Dzyaloshinskii-Moriya (DM) interaction [17] [18]. It is
an anisotropic anti-symmetric interaction between spins,
which arises from the consideration of spin orbit coupling
effects in Anderson’s super-exchange interaction theory.
The effects of the DM interactions have been widely con-
sidered in research [19] [20] [21] . Recently, the influence
of the anisotropic Dzialoshinski-Moriya (DM) interaction
on the entanglement of two qubits in various magnetic
spin models, including the XX, XY, XXX, XXZ and the
most general XYZ Heisenberg models have been studied
[22].The XXZ model encompasses the XX model, XY
model, the isotropic Ising model and the XXX model
which are all relevant for QIP. Understanding, quantify-
ing and exploring entanglement dynamics may provide
an answer for many questions regarding the decoherence
behaviour of quantum spin systems. In the Heinsenberg
spin chain, the interaction with the spin bath system of-
ten leads to strong non-Markovian behavior. That is, to
study the dynamics of such a problem, the usual Marko-
vian quantum master equations, which are widely used in
the area of atomic physics and quantum optics, may fail
for many spin bath models. Therefore, it becomes more
and more important to develop methods that are capable
of going beyond the Markovian approximation. Recently
[22], the exact dynamics of a two qubit chain in an XY
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environment have been studied using a simple mathemat-
ical technique based on a unitary linear transformation.
The authors have shown the behavior of the system was
extremely non Markovian. H. P. Breuer, D. Burgarth
et al [24] have studied the dynamics of a single spin in
a spin star environment, using exact methods and var-
ious approximation techniques, and they show that the
Markovian approximations perform poorly. In this pa-
per, our objective is to study analytically and numerically
the exact entanglement dynamics of a two qubit Heisen-
berg XXZ spin chain with DM interactions interacting
with a spin bath in the presence of an external magnetic
field using a simple mathematical technique based on a
unitary linear transformation [22] [25] [26]. We ex-
amine the effects of the external magnetic field strength,
temperature, intra-bath coupling strength, system bath
coupling and anisotropy of the two qubit spin chain, on
the entanglement dynamics, considering the interactions
of the qubit systems with the environment, and we cal-
culates the concurrence of a qubit pair, for an initially
disentangled state and for an initially maximally entan-
gled state. The organization of the paper is as follows:
in section 2 we present a brief description of the theo-
retical approach used and the model for simulation the
two qubit XXZ spin chain with Dyaloshinski-Moriya in-
teractions interacting with a spin bath. In section 3,
to study the entanglement dynamics of the model sys-
tem presented in section 2, we evaluate the concurrence
that quantifies the degree of the pair-wise entanglement
between the two central qubits and then conclude with
discussions our findings in Section 4.

II. THEORETICAL APPROACH AND THE

MODEL HAMILTONIAN

The model used here describes two coupled spin qubit
interacting with a spin bath in the presence of an exter-
nal magnetic field in the z-direction via interactions of
Heisenberg XXZ type alongside DM interactions, which
are considered both within the spin chain and also in the
spin bath. The environment is modeled here as a one
dimensional Heisenberg XY chain with nearest neighbor
spin couplings [22]. The total Hamiltonian of the system
described above together with the DM interactions can
be written in the form

H = HS +HSB +HB (1)

with

HS =µ0(S
z
01 + Sz
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Here µ0 represents the strength of the coupling of the
two spin qubits to the external magnetic field, Ω is the
coupling strength between the two spin qubits while Jz
represents the coupling strength in the z-direction of the
XXZ chain. S±

0i(i = 1, 2), represent the spin creation
and annihilation operators for the two qubit spin chain
while S±

i (i = a, b) represent the spin creation and anni-
hilation operators for the bath spins. γ, represents the
strength of coupling of the bath spins with the external
magnetic field, g0 and g are respectively the spin system-
bath coupling strength and the and the intra-bath cou-
pling strength. Dz and dz represent the z-component
of the DM coupling vector between the bath spins and
between the two spin qubits. Finally N represents the
number of spins in the bath. All the coupling strengths
are rescaled so that the free energy of the system remains
finite when N −→ ∞ . We choose the above Hamiltonian
due to its relevance for various QIP tasks and it models
the environment as closely as possible so that the effects
of the environment on the dynamics of the central spin
can fully be taken into account. The XXZ model en-
compasses the XX model, XY model, the isotropic Ising
model and the XXX model which are all relevant for QIP.
A similar Hamiltonian has been examined recently in [27]
. By introducing the collective angular momentum oper-
ators

J± =

N
∑

a=1

S±
a ; Jz =

N
∑

a=1

Sz
a (5)

we rewrite the Hamiltonians (3) and (4) as

HSB =
g√
N

{(S+
01 + S+

02)J
− + (S−

01 + S−
02)J

+} (6)

HB =
g

N
{(J+J− + J−J+) + i

Dz

N
(J+J− + J−J+)}

+ 2
γ

N
Jz − g − i

Dz

N
Jz

(7)

The low temperature excitation spectrum of the
system can be obtained by introducing the following
Holstein-Primakoff transformation

J+ = b+
√

(2∆− b+b); J− =
√

(2∆− b+b)b

Jz = ∆− b+b
(8)

Where ∆ denotes the length of the collective environment
pseudo-spin N

2 . Thus;

N = 2∆ (9)
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The above transformation transforms the spin operators
J+, J− and Jz into bosonic creation and annihilation
operators b+ and b− obeying the commutation relation
[b+b] = 1. After the transformation and in the thermo-
dynamic limit (N −→ ∞) the Hamiltonians (6) and (7)
become

HSB = g0[(S
+
01 + S+

02)b+ (S−
01 + S−

02)b
+] (10)

HB = 2gb+b− 2iDz + γ (11)

The equations (2); (10) and (11) are effectively the
Hamiltonian of a two coupled spin qubits system in-
teracting with a single-mode thermal bosonic bath with
Dzyaloshinski-Moriya interactions both in the bath and
in the two qubit chain. We note here that due to the high
symmetry of the model, the coupling to the environment
is actually represented by a coupling to a single collec-
tive environment spin. The effect of this single-mode
environment on the dynamics of the two coupled qubits
is extremely non-Markovian hence the traditional master
equations used in describing the Markovian dynamics of
open quantum systems, cannot be used in this case. We
assume that the initial state of the system-bath is a sep-
arable state so its initial density matrix can be written
in the form

ρ(0) = |ϕ(0)〉〈ϕ(0)| ⊗ ρB (12)

The density matrix of the spin bath ρB satisfies the Boltz-
mann distribution, i.e ;

ρB =
1

Z
e−

HB
T (13)

where Z = Tr(e−
HB
T

) is the partition function. Here Tr
denotes the trace and T = KBτ where τ is the temper-
ature and KB is the Boltzmann constant (subsequently
we simply refer to T as the temperature). The partition
function Z is given by;

Z = e2iDz−γ
( 1

1− e−
2g

T

)

(14)

At absolute zero temperature, no excitation will exist.
The bath is in a thoroughly polarized state with all spins
down. With the increase of temperatures, the number of
spin-up atoms increases and the bath is no longer in a
polarized state. The most general form of an initial pure
state of the two-qubit system can be written as:

|ϕ(0)〉 = α|00〉+ ε|01〉+ δ|10〉+ β|11〉 (15)

With the normalization condition yielding

|α|2 + |ε|2 + |δ|2 + |β|2 = 1 (16)

For analytic simplicity, we set ε = δ = 0. So the initial
state can be written as

|ϕ(0)〉 = α|00〉+ β|11〉 (17)

and the initial density matrix of the system plus bath
takes the form:

ρ(0) = (α|00〉+β|11〉)(〈00|α∗+〈11|β∗)⊗ 1

Z
(e−

HB
T ) (18)

We note that the time dependent density matrix of the
system coupled to the bath obeys to the folowing relation

ρs(t) = TrB(ρ(t)) (19)

where U(t) = eiHt , is the unitary time evolution opera-
tor. The qubit system alone does not evolve in a unitary
manner. We can obtain the dynamics of the qubit system
alone by tracing over the bath modes in order to obtain
the reduced density matrix of the qubit system ρs(t)

ρ(t) = U∗(t)ρ(0)U(t) (20)

where TrB denotes the partial trace of the density ma-
trix taken over the bath modes. We obtain the reduced
density matrix of the form:

ρs(t) =TrB

{

(
1

Z
)
(

|α|2e−iHt|00〉e−
HB
T 〈00|eiHt

+ αβ∗e−iHt|00〉e−
HB
T 〈11|eiHt

+ α∗βe−iHt|11〉e−
HB
T 〈00|eiHt

+ |β|2e−iHt|11〉e−
HB
T 〈11|eiHt

)}

(21)

In order to obtain the full form of the reduced density
matrix, we need to evaluate the time evolution of the
initial qubit state: e−iHt|00〉 , and e−iHt|11〉 . We ob-
serve that by applying the time dependent Schrodinger
equation,

i
d

dt
|ϕ(t)〉 = H |ϕ(t)〉 (22)

where

|ϕ(t)〉 = U(t)(α|00〉+ β|11〉) (23)

From the total HamiltonianH , we can see that it consists
of operators of the form S0i

+ , S0i
− (i=1,2) which change

the state of the ith spin from |0〉 to |1〉and from |1〉, to |0〉
respectively. Thus, the qubit will evolve from the initial
pure state into the most general mixed state as follows

e−iHt|11〉 = A|00〉+B|01〉+ C|10〉+D|11〉 (24)

e−iHt|00〉 = E|00〉+ F |01〉+G|10〉+Q|11〉 (25)

where A,B,C,D,E, F,G,Q are functions of b+, b and t
. Thus:

|ϕ(t)〉 =αe−iHt|00〉+ βe−iHt|11〉
=α(E|00〉+ F |01〉+G|10〉+Q|11〉)
+β(A|00〉+B|01〉+ C|10〉+D|11〉)

(26)
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To obtain the exact form of the reduced density ma-
trix ρs(t) we need to evaluate the form of the expres-
sions A,B,C,D,E, F,G,Q . From the time dependent
Schrdinger equation it follows that:

i
d

dt
(e−iHt|11〉) = H(e−iHt|11〉) (27)

and

i
d

dt
(e−iHt|00〉) = H(e−iHt|00〉) (28)

With the initial conditions from being A0) = B(0) =
C(0) = 0 and D(0) = 1 , and with the following set of
transformations

A = −b+be−i(2g(b+b+1)+u)tA1 (29)

B = −b+e−i(2g(b+b+1)+u)tB1 (30)

C = −b+e−i(2g(b+b+1)+u)tC1 (31)

D = e−i(2g(b+b+1)+u)tD1 (32)

the following first order four differentials equations de-
rives

i
d

dt
A1 = i(µ0 − 2g)A1 − ig0(B1 + C1) (33)

i
d

dt
B1 = 2iJzB1 − i(Ω− idz)C1 − ig0(n̂+ 2)A1 − ig0D1

(34)

i
d

dt
C1 = 2iJzC1 − i(Ω− idz)B1 − ig0(n̂+ 2)A1 − ig0D1

(35)

i
d

dt
D1 = i(µ0 − 2g)D1 − ig0(n̂+ 1)(B1 + C1) (36)

The solution of the coupled differential equations (27) is
obtained analytically through the initial conditions (29)
to (32) for the case dz = 0 with the resonant condition
µ0 = 2g ; the external magnetic field can easily be tuned
to satisfy this condition. However the numerical results
are present for the case where dz 6= 0 . Thus, the follow-
ing analytically solutions are obtained

A1(t) =
−1

3 + 2n̂

+
2g2o

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

{eiλ1t

λ1
− eiλ2t

λ2

}

(37)

B1(t) = C1(t) = − g2o
√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)
{eiλ1t−eiλ2t}

(38)

D1(t) =
2 + n̂

3 + 2n̂

+
2g2o(1 + n̂)

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

{eiλ1t

λ1
− eiλ2t

λ2

}

(39)

where U = γ − 2iDz + Jz , b+b = n̂ and

λ1,2 =
(2Jz − Ω)±

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

2
(40)

From Eq.(28), we find also that with the transformations

E = e−i(2g(b+b−1)+u)tE1 (41)

F = be−i(2g(b+b−1)+u)tF1 (42)

G = be−i(2g(b+b−1)+u)tG1 (43)

Q = bb+e−i(2g(b+b−1)+u)tQ1 (44)

we obtain

E1(t) =
n̂− 2

2n̂− 1

+
2g2on̂

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

{eiλ
′

1t

λ′1
− eiλ

′

2t

λ′2

}

(45)

Q1(t) =
−1

(2n̂− 1)

+
2g2on̂

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

{eiλ
′

1t

λ′1
− eiλ

′

2t

λ′2

}

(46)

F1(t) = G1(t) = − g2o
√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)
{eiλ′

1t−eiλ′

2t}

(47)
where

λ′1,2 =
(2Jz − Ω)±

√

(2Jz − Ω)2 + 8g2o(3 + 2n̂)

2
(48)

The exact form of the reduced density matrix is then
obtained by tracing over the bath modes and replacing
the operator n̂ by its Eigen value n as:

ρs(t) =







ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ∗14 0 0 ρ44






(49)

where

ρ11 =
( 1

Z

)

(

|α|2
∞
∑

n=0

E1E
∗
1e

−
2gn−2iDz+γ

T

+ |β|2
∞
∑

n=0

(n+ 1)(n+ 2)A1A
∗
1e

−
2gn−2iDz+γ

T

)

(50)
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ρ14 =
( 1

Z

)

(

αβ∗

∞
∑

n=0

E1D
∗
1e

−
2gn−2iDz+γ

T e4igt (51)

ρ22 = ρ23 =ρ32 = ρ33 =
( 1

Z

)

(

|α|2
∞
∑

n=0

F1F
∗
1 ne

−
2gn−2iDz+γ

T

+ |β|2
∞
∑

n=0

(n+ 1)B1B
∗
1e

−
2gn−2iDz+γ

T

)

(52)

ρ44 =
( 1

Z

)

(

|α|2
∞
∑

n=0

Q1Q
∗
1n(n− 1)e−

2gn−2iDz+γ

T

+ |β|2
∞
∑

n=0

(n+ 1)D1D
∗
1e

−
2gn−2iDz+γ

T

)

(53)

III. ENTANGLEMENT DYNAMICS

For the reduce density matrix given in equation (49)
the concurrence quantifies the degree of the pair-wise en-
tanglement between the two central qubits and is defined
as [28]:

C12 = max{λ1 − λ2 − λ3 − λ4, 0} (54)

Where λ1, λ2 , λ3 , λ4 are the squaroots of the Eigen
values in order of decreasing magnitude of the operator:

R12 = ρs(σ
y ⊗ σy)ρ∗s(σ

y ⊗ σy) (55)

As a measure of the degree of entanglement the concur-
rence varies from 0 to a maximum value 1. If the concur-
rence is equal to zero then the two states are said to be
completely disentangled or separable while a concurrence
C12 = 1 means the two states are maximally entangled.
The Eigen values of R12 in order of reducing magnitude
are found to be:

λ1 =
√
ρ11ρ44 + |ρ14|

λ2 =
√
ρ11ρ44 − |ρ14|

λ3 = 2ρ22

λ4 = 0

(56)

We shall present our results here for Jz ≥ 0 and Ω ≥ 0
which corresponds to the antiferromagnetic XXZ chain.
The generation of entanglement, is a competition be-
tween the effects of the environment and the coupling be-
tween the two qubits. On the one hand we have the case
in which there exist no couplings between the two qubits.
Here the entanglement is generated via the interaction of
the two qubits with a common environment. Such en-
vironment induced entanglement has been reported in
[29]. Hence the environment which is known to cause

decoherence can never the less generate some entangle-
ment between the two qubits. A similar conclusion has
been made by the authors of [28]. Such environment
induced entanglement is very fragile and increases with
increasing coupling strength between the system and the
bath. On the other hand we also have the case of entan-
glement generated through the coupling between the two
qubits. The coupling generated entanglement is stronger
and dominates the preceding case. For coupling induced
entanglement, increasing the coupling strength between
the two qubit systems and the environment will rather
cause faster decay of entanglement. To study the effects
of the DM interaction on the entanglement dynamics, we
consider an initially disentangled state . For this case
of two initially separable qubits which become entangled
in time through the effects of the environment, their en-
tanglement is destroyed by increasing the strength of the
DM interactions as seen in figure 1. Thus the DM inter-
actions destroy environment induced entanglement but
enhance coupling induced entanglement.
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FIG. 1: Concurrence VS time for an initially disentangled
qubit (i.e, |ψ〉 = |00〉 ),for different values of dz, with the
corresponding values of the parameters Ω = 0, Jz = 0, g =
g0 = 2, µ0 = 2g et T = 2g .

The behavior of an initially entangled spin chain is
very different from that of a spin chain with no ini-
tial entanglement. We study the behavior of the con-
currence for a maximally entangled initial qubit state
|ψ〉 = 1

2 (|00〉 + |11〉). We find that the effects of the
DM interaction depend largely on the temperature, and
on the Heisenberg couplings Jz and Ω . In the absence
of the couplings i.e. Jz = Ω = 0 as seen in figure.2 the
DM interactions preserve the entanglement and also to
greatly enhance the revival of entanglement. However
when the Heisenberg couplings set in this enhancement
effect is reduced and the concurrence shows a sinusoidal
oscillation in space as presented in figure.3. This can be
seen as being due to competing effects between the anti-
symmetric DM interaction and the symmetric Heisenberg
interactions. This because in contrast to the Heisenberg
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interactions which tend to render neighbor spins paral-
lel, the DM interaction has the effect of turning them
perpendicular to one another.
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FIG. 2: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉), for different values of

dz, with the corresponding values of the parameters Ω = 0,
Jz = 0, g = g0 = 2, µ0 = 2g et T = 3g .
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FIG. 3: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉),for different values of dz,

with the corresponding values of the parameters Ω = 1,
Jz = 0.5, g = g0 = 2, µ0 = 2g et T = 2g .

It is observed in figure4 that, the entanglement decays
more rapidly as the temperature increases. Increasing
the temperature introduces thermal fluctuations which
destroys quantum correlations. At low temperatures the
entanglement exhibits periodic oscillations. At high tem-
peratures we also observe the interesting phenomenon of
entanglement sudden death (ESD) i.e. when the entan-
glement of the system is observed to suddenly disappear
without any exponential decay. In [30] Yu and Eberly
have shown that noisy environments may cause entan-
glement to vanish completely in finite time and they call

the phenomenon entanglement sudden death. The sud-
den death of entanglement is a very undesirable effect
since major quantum protocols for quantum computing;
depend on the preservation of entanglement in the sys-
tem. Here the non-Markovian environment is seen to
cause the revival or rebirth of entanglement after ESD.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gt

co
nc

ur
re

nc
e

 

 

T=0.1g
T=2g
T=5g
T=10g

FIG. 4: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉), for different tempera-

tures with the corresponding values of the parameters Ω = 0,
Jz = 0, g = g0 = 2, µ0 = 2g and dz = 0.2g .

The oscillatory collapse and revival behavior of the en-
tanglement due to the influence of the non-Markovian en-
vironment can be understood by analogy to the collapse
and revival of atomic population inversion of a two-level
atom interacting with a single mode field in quantum
optics. It is known that for a two level system coupled
to an oscillating driving field the probability of being in
the ground or excited states, exhibit oscillatory behavior
(Rabi oscillations). Similarly our qubits are coupled to
a single mode bath thus the quantum fluctuations of the
system due to the bath may become uncorrelated in time
leading to the collapse of entanglement. As time goes on
these quantum fluctuations may again become correlated
leading to the revival of entanglement. The DM interac-
tion increases the frequency of the quantum fluctuations
[31] thus enhancing the entanglement. Furthermore this
sudden death of entanglement can be avoided by increas-
ing the strength of DM interaction as observed in figure
5.
When coupling between the two qubits is switched on,

the entanglement is observed to be preserved for a longer
time. The dependence of the concurrence on the cou-
pling strengths Jz and Ω is closely linked. For example,
we note that if Jz > 0 then increasing Ω will cause the
concurrence to reduce while if Jz < 0 then increasing Ω
will improve the concurrence. The same holds for the
variation of Jz with a fixed value of Ω. In our numerical
analysis, we note that the effective Heisenberg coupling
between the two qubits can be written as χ = |Jz − Ω|.
The entanglement is enhanced by increasing the factor χ



7

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

gt

co
nc

ur
re

nc
e

 

 

d
z
=0.2g

d
z
=4g

d
z
=6g

FIG. 5: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉) at high temperature (i.e,

T = 10g) for different values of dz, with the corresponding
values of the parameters Ω = 0, Jz = 0, g = g0 = 2, µ0 = 2g .

as seen in figure 6. The entanglement does not depend
on how large Jz and Ω are but rather depends on their
difference. We find that for Jz = Ω , i.e. χ = 0 the
concurrence is low and it increases as the value of χ in-
creases. From this we can conclude that the anisotropic
XXZ chain will be better than the Isotropic XXX chain
for preserving entanglement and hence for various quan-
tum information processing tasks. We also find that the
entanglement decays very slowly when the system bath
coupling is small and faster for a strong coupling between
the system and the bath (see figure 7). This is so because
in the case where the system, is strongly coupled to the
bath, decoherence from the bath is more prominent and
leads to faster decay of the quantum correlations. When
the coupling amongst the bath spins is strong we ob-
serve that the entanglement decays more slowly (such
presented in figure 8).This is an indication that strong
coupling amongst the bath spins effectively decouples the
bath from the system thus preserving entanglement . As
expected strong coupling between the two qubits also al-
lows them to keep their entanglement for longer times.

IV. DISCUSSION AND CONCLUDING

REMARKS

The entanglement dynamics for a system of two qubits
XXZ spin chian coupled to antiferromagnetic spin bath
with DM interactions have been studied under the in-
flunce of an external magnetic field, by employing the
simple mathematical technique based on a unitary linear
transformation. Exact results on the entanglement dy-
namics have been obtained and shows consequently the
strong dependence on the nature of the bath. Numeri-
cal analysis of the behavior of the concurence vis-a-viz
the various system parameters revealed the effects of the
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FIG. 6: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉) for different values of χ

considering Ω = 0,with the corresponding values of the pa-
rameters dz = 0, g = g0 = 2, µ0 = 2g, T = 3g .
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FIG. 7: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉 + |11〉) for different values of

g0, with the corresponding values of the parameters Ω = 2,
dz = 1, Jz = 1,g = 2, µ0 = 2g, T = 2g .

DM interaction depend on the initial state of the sytem
and on how the entanglement is generated. For an ini-
tially disentangled qubit pair, and in the absence of any
coupling between the two qubits, the common bath can
generate some effective entanglement between the two
qubits. DM interaction destroy such environment gener-
ated entanglement; This is contrary to the case of an ini-
tially entangled qubit where the DM interactions rather
enhance the entanglement. For the long time behaviour
of the entanglement of an initially entangled state it was
also observed to initially decay exponentially with time
and then to undergo continous cycles of collapse and re-
vival. This collapse and revival behaviour is attributed to
the non-Markovian nature of the bath in which memory
effects of the bath can reconstuct the entanglement of the
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FIG. 8: Concurrence VS time for an initially maximally en-
tangled state |ψ〉 = 1

2
(|00〉+|11〉) for different values of g, with

the corresponding values of the parameters Ω = 2, dz = 0.2,
Jz = 2,g0 = 2, µ0 = 2g, T = 3g0 .

system, with time. It is seen that the DM interactions
play an important role in the weak inter-qubit coupling
limit, and for high temperatures where they delay the
decay of entanglement and enhance revival oscillations
in the entanglement. Increasing the temperature can
lead to appearance of the Entanglement sudden death ef-
fect. However this sudden death of entanglement can be

avoided by increasing the strength of the DM interaction.
The effects of Jz and Ω on the entanglement are closely
linked and we find that the effective Heisenberg coupling
in the XXZ chain is given by χ = |Jz − Ω|. Increasing
χ enhances and preserves the entanglement while we see
that the entanglement decays faster for small χ even if Jz
and Ω are both large. This suggests that the anisotropic
XXZ chain is better than the isotropic XXX (where χ = 0
) chain for QIP tasks. Further more strong intrabath
coupling is seen to effectively decouple the bath from
the system thus delaying the loss of entanglement in the
system. Our result reveals that entanglement can bet-
ter preserved for large finite temperatures and for longer
times, by tunning the strenght of the external magnetic
field, the DM interaction and the system parameters Jz ,
Ω , g0, g.We expect that our analysis will shed some light
on the study of the dynamics of a multipartite entangled
state under local noise. An interesting feature of this
model is that it can be used as better quantum channel
when entanglement transfer is considered. Therefore, in
principle, it can be exploited as a quantum channel for
teleportation with nonclassical fidelity at finite temper-
ature, both very low and moderately low. Considering
future research along these lines of investigation, it will
be interesting to consider practical schemes for the real-
ization of this kind of spin chains in highly controllable
situations.

[1] R Horodecki, P Horodecki, M Horodecki and K
Horodecki: Quantum entanglement arXiv:quant-
ph/0702225v2 20 Apr 2007

[2] Special issue on quantum information, Phys. World, 11,
33-57 (1998)

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa,
A.Peres and W. K. Wootters, Phys. Rev. Lett. 70,
1895(1993)

[4] C. H. Bennett and S.J. Wiesner, Phys. Rev. Lett. 69,2881
(1992)

[5] Nielsen M A, Chuand I L. Quantum Computation and
Quantum Information.

[6] G. Vidal, J. I. Latorre,E. Rico,and A. Kitaev, Entan-
glement in quantum critical phenomena. arXiv:quant-
ph/0211074v1 13 Nov (2002)

[7] L. Vandersypen, M. Ste?en, G. Breyta, C. Yannoni, M.
Sherwood, and I. Chuang, Nature 414, 883 (2001).

[8] J. Jones, M. Mosca, and R. Hansen, Nature 393, 344
(1998).

[9] J. e. a. Chiaverini, Science 308, 997 (2005).
[10] D. Vion, A. Aassime, A. Cottet, H. Joyez, P.and Pothier,

C. Urbina, D. Esteve, and M. H. Devoret, Science 296,
886 (2002).

[11] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C.
Gossard, Nature 435, 925 (2005).

[12] F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Han-
son, L. H. Willems van Beveren,I. T. Vink, H. P. Tranitz,

W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Van-
dersypen,Science 309, 1346 (2005).

[13] D. A. Lidar, D. Bacon, and K. B. Whaley, Phys.
Rev.Lett. 82, 4556 (1999)

[14] D. Loss and D. P. Divincenzo, Phys. Rev. A 57, 120
(1998).

[15] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev.
B 59, 2070 (1999).

[16] Jan Fischer, Daniel Loss: Dealing with Decoherence, Sci-
ence , 324: 1277(2009).

[17] I Dzialoshinski A thermodynamic theory of weak ferro-
magnetics, J. Phys. Chem. Solids 4 (1958), pp.241.

[18] T. Moriya,Anistropic superexchange interaction and
weak ferromagnetism, Phys. Rev. Lett. 120 (1960), pp.91.

[19] M Tursun, A. Abliz, R. Mamtimin, A Abliz, and Q.
Pan-Pan; Various Correlations in Anisotropic Heisen-
berg XYZModel with Dzyaloshinskii-Moriya Interaction,
arXiv:1207.0277v4 [quant-ph] (2013)

[20] Yi-Ying Yan , Li-Guo Qin and Li-Jun Tian; Dynam-
ics of quantum correlations for two-qubit coupled to
a spin chain with Dzyaloshinskii-Moriya interaction.
arXiv:1109.5458v1 [quant-ph] (2011)

[21] Ming-Liang Hu; Disentanglement dynamics of interact-
ing two qubits and two qutrits in an XYspin Chain envi-
ronment with the Dzyaloshinsky-Moriya interaction; Phy
Lett A Vol 374, Issue 34, ( July 2010), Pages 3520-3528

[22] Z.N. Gurkan and O.K. Pashaev ;Two Qubit Entan-
glement in Magnetic Chains with DM Antisymmet-



9

ric Anisotropic Exchange Interaction; arXiv:0804.0710v2
[quant-ph] (2008).

[23] Xiao-Zhong Yuan, Hsi-Sheng Goan, and Ka-Di Zhu;
Non-Markovian reduced dynamics and entanglement evo-
lution of two coupled spins in a quantum spin environ-
ment, Phy. Rev, B75, 045331(2007)

[24] H. P. Breuer, D.lBurgarth ,and F Petruione :NonMarko-
vian dynamics in a spin star system ;Exact solution and
approximation techniques; arXiv:quant-ph/0401051v2 10
Jan 2004

[25] Martin Tchoffo1, Georges Collince Fouokeng, et al,
World Journal of Condensed Matter Physics, 2012, 2,
246-256

[26] Martin Tchoffo, Georges Collince Fouokeng, Lukong Cor-
nelius Fai, Mathurin Esouague Ateuafack, Journal of
Quantum Information Science, 2013, 3, 10-15.

[27] Physics Letters A Volume 374, Issue 34, 26 July 2010,
Pages 3520-3528

[28] William K. Wootters : Entanglement of Formation
of an Arbitrary State of Two Qubits; arXiv:quant-
ph/9709029v2 (1997)

[29] X. X. Yi, H. T. Cui, and L. C. Wang, Entanglement
induced in spin-1/2 particles by a spin chain near its
critical points Phys. Rev. A 74, 054102 (2006)

[30] T .Yu and J. H. Eberly ; Sudden Death of Entanglement
: Classical Noise Effects; Optics communications Volume
264, Issue 2, (200), pp 393-397

[31] Wen-Long You and Yu-Li Dong ;The entanglement dy-
namics of interacting qubits embedded in a spin envi-
ronment with Dzyaloshinsky-Moriya term; Eur Phys J D
(2010), vol 57, Issue 3, pp 439-44


