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Dynamics and termination cost of spatially coupled mean-field models
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2 Laboratoire de Physique Théorique et Modéles Statistiques,
Université Paris-Sud 11 and CNRS UMRS8626, Bt. 100, 91405 Orsay, France

This work is motivated by recent progress in information theory and signal processing where the
so-called ‘spatially coupled’ design of systems leads to considerably better performance. We address
relevant open questions about spatially coupled systems through the study of a simple Ising model.
In particular, we consider a chain of Curie-Weiss models that are coupled by interactions up to a
certain range. Indeed, it is well known that the pure (uncoupled) Curie-Weiss model undergoes a
first order phase transition driven by the magnetic field, and furthermore, in the spinodal region
such systems are unable to reach equilibrium in sub-exponential time if initialized in the metastable
state. By contrast, the spatially coupled system is, instead, able to reach the equilibrium even when
initialized to the metastable state. The equilibrium phase propagates along the chain in the form of
a travelling wave. Here we study the speed of the wave-front and the so-called ‘termination cost’—
i.e., the conditions necessary for the propagation to occur. We reach several interesting conclusions

about optimization of the speed and the cost.

PACS numbers: 05.70.Fh, 89.20.Ff, 02.50.Tt

I. INTRODUCTION

Many questions of interest in modern science can be
formulated as inference problems— where there is a set
of variables (the signal) on which we are only able to
perform some kind of partial, aggregate, or incomplete
observations; the goal being to infer the values of the
variables based on the indirect information contained in
the measurements. In most cases, this amounts to devis-
ing both a measurement protocol and a corresponding al-
gorithm for reconstructing the underlying variables. Two
examples of problems that fall into this category are the
following:

Compressed sensing: It is well known that most sig-
nals of interest are compressible, however, the compres-
sion process is typically only carried out once the signal is
known, or has been measured. This must be contrasted
with the fact that, in many applications, (e.g., medical
imaging using MRI or tomography) it is desirable to re-
duce the measurement time as much as possible (to re-
duce costs, radiation exposure etc.). This apparent con-
flict leads to the idea of compressed sensing [1]: a signal
processing method where data is sampled in compressed
form and then the underlying signal is reconstructed al-
gorithmically.

Error correcting codes: In telephone or satellite com-
munication, a signal is typically sent over a noisy chan-
nel. One may ask: is there a way to encode the signal in
a redundant way such that it can still be reconstructed
without errors, even after the noisy transmission? The
goal of an error correcting code is to optimize this re-
dundancy rate and still to be able to perform exact error
correction, for a review see e.g. [2].

Inference problems can be formulated as problems of
statistical mechanics at finite temperature, see [3, 4]. The
variables play the role of spins, the constraints result-
ing from measurements correspond to interactions be-

tween spins that are summarized in the Hamiltonian of
the corresponding statistical mechanical model. The log-
likelihood in the inference problem is therefore the neg-
ative free energy in statistical mechanics. A lot of mea-
surements, or a high signal-to-noise ratio, lead to inter-
actions favoring one specific spin configuration, which
corresponds to the original and correct signal. A de-
crease of the signal-to-noise ratio or of the number of
measurements modify the free-energy landscape by giv-
ing more weight to spurious configurations correspond-
ing to metastable states that start to compete with the
low free-energy favored state and, hence, make the in-
ference of the original signal difficult. An optimal al-
gorithmic way to reconstruct (infer) the signal requires
the computation of marginal probabilities of the corre-
sponding posterior probability, in the statistical physics
language this means computing local magnetizations of
the corresponding Boltzmann distribution. This is com-
putationally very difficult task and both in inference and
in physics the most basic and popular approximations
involve the mean-field approach (known as variational
Bayes method in inference) or a Monte Carlo simulation
(known as Gibbs sampling in inference).

In the two above examples of compressed sensing and
error correcting codes (and many other practically im-
portant cases) the Hamiltonian of the problem can be
designed by the engineer in order to achieve best pos-
sible performance. For example, in the error correcting
codes the aim is to construct codes that contain only as
much redundant information as is absolutely necessary
(as specified famously by Shannon [5]) in order to be able
to perform the error correction. In compressed sensing,
this corresponds to using only as many measurements
as the number of elements in the compressed signal. It
turns out that the encoding/measurement protocols able
to achieve this optimality often correspond to random
Hamiltonians, for which mean field solutions are exact



[3, 4]. This is to be contrasted with statistical physics,
where mean-field theory is typically a first tool used in
order to eventually understand the behavior of more com-
plicated systems. In inference, the models of primary
interest often are the mean field ones— with Hamilto-
nian being defined on a random graph (corresponding to
the Bethe approximation) or on a fully connected lattice
(corresponding to the Curie-Weiss approximation).

In the limit of large system sizes, and for a given de-
sign of the Hamiltonian, the best achievable performance
is characterized by a phase transition that separates a re-
gion where inference is possible from a region where it is
not. Just as in physics, depending on the Hamiltonian,
this phase transition can be of first (discontinuous) or of
second (continuous) order. Problems where the transi-
tion is of first order (e.g., the two problems above) are
much more algorithmically challenging for the following
reason: in mean field systems, a first order phase transi-
tion is associated with a well defined spinodal region of
exponentially-long living metastability. This metastabil-
ity is due to existence of a local optimum in the poste-
rior likelihood that is iteratively extremized by the infer-
ence algorithm, whereas optimal inference corresponds
to finding the global optimum. In physics the global
optimum corresponds to the equilibrium state and the
local optimum to a metastable state. In the context of
inference problems the presence of a first order phase
transition implies that the region where inference is pos-
sible divides into two parts— the spinodal part and the
rest. In the spinodal region there exists a metastable
phase corresponding to unsuccessful inference from which
it would take an exponentially long (in the size of the
system) time to reach the equilibrium (i.e., successful
inference). Hence in inference problems where a first or-
der phase transition appears, the corresponding spinodal
line poses a barrier for algorithmic solution in polynomial
time. Such an algorithmic barrier has now been identi-
fied in many different inference problems including the
compressed sensing and error correcting codes.

It is well known in statistical physics that the
exponentially-long-living metastable states only exist in
mean-field systems. In any finite dimensional system
where the surface of a compact droplet is always smaller
than its volume if the droplet is sufficiently large, the sys-
tem escapes from the metastable state in a time that is
polynomially proportional (often linearly) to the system
size. This is the concept of nucleation that is well studied
in physical sciences.

A natural question is therefore: is there a way to in-
duce nucleation in the above inference problems? Re-
call that the corresponding Hamiltonian needs to be lo-
cally mean field-like in order to achieve the best possi-
ble performance. Hence the question is how to combine
the required mean-field nature (achieving optimal perfor-
mance) and finite dimensional nature in order to induce
nucleation and escape from the undesirable metastable
state. This can be achieved by a concept called ‘spatial
coupling’ in which one designs the Hamiltonian by taking

independent copies of the mean field system and coupling
them to close-neighbors along a one-dimensional chain.
The idea then is that for a small part of the system called
the seed (placed usually at the beginning of the chain) the
parameters are such that successful inference is achieved
in that part. When the seed is sufficiently large and
strong, the interactions along the chain ensure that suc-
cessful inference is also achieved for its neighbors, and so
on. The physical principle is the same as for a supercriti-
cal nucleus to start to grow during nucleation. Typically,
successful inference is characterized by a travelling wave-
like phenomenon, as the accurate reconstruction starts in
the seed and travels ‘along’ the chain.

The idea of using spatial coupling in order to im-
prove performance in inference problems goes back to the
so called ‘convolutional low density parity check codes’
[6, 7]. The proof of so-called ‘threshold saturation’, i.e.,
that the optimal inference is achievable, is due to [8-
10]. In past couple of years the successful use of spa-
tial coupling spread from error correcting codes to other
areas, such as the compressed sensing [4, 11], multiple
access communication [12, 13], group testing [14], and
others. The range of applicability is very large which
also very recently motivated more conceptual studies of
spatial coupling [15-17] and the present work belongs to
that group.

Apart of searching for new applications where spatial
coupling can lead to improvements, there is a large num-
ber of conceptual questions that have not yet been an-
swered in a satisfactory manner. For instance what are
the conditions— e.g., the size and strength of the seed
and the range of coupling— under which a wave propa-
gates and successful inference is reached? What are the
parameters that control the speed of propagation [18]?
What are the parameters that lead to smallest possible
loss with respect to optimality for chains of finite length
[19]7 What is the effect of finite systems size [20-22]7
The present paper contributes to answering these ques-
tions and hence towards better understanding of the con-
cept of spatial coupling. Above all, such considerations
are instrumental in practical implementations of the con-
cept in real-world applications.

Our approach is to study spatial coupling for the sim-
plest mean field model with a first order phase transition,
that is the Curie-Weiss (C-W) model in external mag-
netic field. This model contains the most important fea-
tures of more general inference problems whilst remaining
analytically simple to treat. Indeed, a spatially coupled
C-W model was recently introduced by Hassani, Macris
and Urbanke in [15]. Their article contains an excellent
review of related works and models in the physics liter-
ature. Their discussion focuses on the equilibrium solu-
tions of the model and showing that with spatial coupling
one can indeed achieve optimal inference in a tractable
way. Here, we study the speed of the convergence towards
equilibrium— in other words, the speed of the nucleation
wave— and the conditions under which the termination
conditions leads to a growing nucleus of the equilibrium



phase. We fully expect that our results will generalize to
more complicated and practical spatially-coupled prob-
lems, such as those described earlier.

Our paper is organized as follows. In Section II, we
describe the standard C-W model, showing how it cor-
responds to a general setting of inference. For the most
part, this serves as an opportunity to explain and intro-
duce some of the terms used in computer science and
information theory, that are not familiar to the majority
of the physics community. In Section III, we consider a
chain of such systems that are coupled together follow-
ing [15]. At this stage, Section IV gives an overview of
the two main categories of inference algorithms: Varia-
tional Bayes method and Monte-Carlo. In Section V we
derive a continuous differential equation that describes
the travelling wave and compute its speed. In Section
VI we then evaluate the speed as a function of various
parameters. Finally in Section VII we study the role of
the termination condition, the range of parameters un-
der which the wave propagates and their optimization.
Section VIII concludes by summarizing our results.

II. THE CURIE-WEISS MODEL AS AN
INFERENCE PROBLEM

The C-W model in external magnetic field is a text-
book example of a mean-field model that presents a first
order phase transition. The main purpose of this section
is to briefly introduce the model to non-physics readers
and set up the analogy with a generic inference problem.
An excellent introduction to the C-W model suitable for
the present context can also be found in [15].

The C-W model is a system of N Ising spins s; €
{-1,41},i=1,..., N, that are interacting according to
the Hamiltonian of a fully connected Ising model

N
HN(S):_%ZSiSj_hZS% (1)
(i,4) =1
where the notation (-, -) is used to denote all unique pairs,
s={s;Vie{l,...,N}}, J >0 is the ferromagnetic in-
teraction strength and h € R is the external magnetic
field. The Boltzmann probability distribution on spin
configurations that corresponds to the posterior proba-
bility distribution reads

L e Hn(s) (2)

PN(S“Lh):Z(Jh) B}

where Z(J,h) is the normalization constant, called the
partition function in physics and the posterior likelihood
in inference. The expected value of spin ¢ under the
measure Py (s, J, h) is the local magnetization m;(J, h).
Moreover for this system, all the local magnetizations are
the same, and the value m;(J, h) = m(J, h) is then called
the equilibrium magnetization.

For positive magnetic field h > 0 the equilibrium
magnetization m(J,h) > 0 is also positive, and vice

versa. There exists a critical value of the interac-
tion strength J. = 1 such that: for J < J. the
limy, g+ m(J, h) = limy,_,g- m(J, h) = 0, and for J > J,
we have lim;,_,o+ m(J,h) > 0 > limy_,o- m(J,h). The
latter is called a first order phase transition, in the ‘low
temperature’ regime J > J. the system keeps non-zero
magnetization even at zero magnetic field h. In mean-
field systems, such as the C-W model, the first order
phase transition is associated with the so-called spinodal
regime. There exists a value of the magnetic field

J—-1

with the following properties: if the magnetizations are
initialized to negative values and the magnetic field is of
strength 0 < h < hgp(J), then both local physical dy-
namics and local inference algorithms, such as the Gibbs
sampling or the variational Bayes inference, will stay at
negative magnetization m~(J, h) < 0 forever (or for time
exponentially large in the size of the system). Hence the
spinodal value of the magnetic field he,(J) acts as an al-
gorithmic barrier to equilibration and hence to successful
inference. For h > hg,(J) it is, on the other hand, easy
to reach the equilibrium magnetization m*(J, h). In the
context of error correcting codes the phase transition at
hsp(J) corresponds to the belief propagation threshold
[2], in the same context the phase transition value h =0
corresponds to the MAP threshold [2].

The first order phase transition and the spinodal re-
gion is often explained in terms of the free energy, i.e.,
f(J h,m) = —limy_ o0 log Zn (J, h,m) where Z(J, h,m)
is the partition function restricted to configurations hav-
ing magnetization m = ), s;/N. If the external mag-
netic field A is in the spinodal region 0 < h < hg,(J), then
there are two minima in the free energy, corresponding
to magnetizations m* and m~, where the former is the
global minimum and the latter is only a local minimum.
Furthermore, if h > hg,(J), then only one minimum ex-
ists which, for consistency, we will still denote m™.

For the purpose of this paper we will always con-
sider ourselves in the ‘low temperature’ regime, J > J..
The initial condition for every spin will be si=°% = —1
(unless stated otherwise). The magnetic field h > 0
will always be positive, such that the equilibrium state
corresponding to successful inference has positive mag-
netization m*(J,h) > 0. For magnetic fields larger
than the spinodal value h > hg,(J), local algorithms,
such as Monte Carlo sampling or variational Bayes infer-
ence (as reviewed in Sec. V), can reach the equilibrium
configuration in a number of updates linearly (or log-
linearly for random updates) proportional to the number
of spins. For magnetic fields inside the spinodal region
0 < h < hgp(J) however, such local algorithms will keep
negative values of magnetization m~ < 0 for an exponen-
tially long time. In terms of an analogy with inference
problems, one can imagine that the magnetic field h is
proportional to the distance from optimality. We would

hep(J) = +/J(J — 1) — atanh (



therefore like to achieve the equilibrium state of positive
magnetization in tractable time also for 0 < h < hgp(J).
As we will see, and as was shown in [15], this is possible
with the use of spatial coupling.

III. SPATIALLY COUPLED CURIE-WEISS
MODEL

We follow the model definition as set out in [15]. We
consider a one-dimensional chain of 2L+ 1 C-W systems,
where each of the C-W system has n spins (referred to as
a ‘block’) and is labelled by the index z € {—L,...,L}.
The result is that a configuration s of the full system is
now given by the values of N = n(2L + 1) spins, each
labelled by a compound index:

s={si, €{+1,-1}: ie{l,...,n},z€{-L,...,L}}.

(4)
In a similar way, the uniform external magnetic field h
for a single system is replaced by an external field profile
h,. As far as the coupling is concerned, every spin not
only connects to all spins in the same ‘location’ z but
also all spins within w blocks from z. The corresponding
Hamiltonian is then

L n
1
H",L (8):_5 E Jzz’Sizsjz'— g hzg Siz- (5)
(iz,52") z=—L  i=1

The couplings between spins are

J [(lz—7|
Jzz’ - Eg () ) (6)

w
where the function g satisfies the following condition
g(lz)) =0, ¥ |z| > 1, (7)

and we choose its normalization to be

1 <
” > g(wzl) =1 (8)

In the analogy with general inference problems that we
discussed in previous sections, the average magnetic field
have = >, h-/(2L + 1) plays the role of the cost that we
want to minimize while having the low-complexity algo-
rithms still able to find the equilibrium state of the sys-
tem, instead of being stuck in the metastable state. (We
remind the reader that in general we want to consider the
initial condition where for every ¢ and z we have s;, = —1
and h > 0). However, in order to ensure that the system
‘nucleates’, we must increase the field h, at some point on
the chain and therefore increase the average values hayg.
In this work we choose the magnetic field profile in such
a way that h, = hgeed > hgp in some small region given
by z € {0,..., Wseed }— i.€. Wgeea = meas{z : h, > hgp}
corresponds to the number of blocks covered by the seed.

Chain of
C-W
systems
(w=2)

Single C-W
system
(n=8)

FIG. 1: (Color online) A schematic graphical representation
of the model. A chain of C-W models interacting within
a certain range w (w = 2 in the figure). In the zoomed
part the fully-connected structure of the single C-W model is
shown. (Note that a connection between C-W models along
the chain indicates connections between all spins contained in
both models).

Everywhere else, h, = h < hgp, such that the average
field strength

Wseed
hav = hscc —h ha

is still small.

In most of the theoretical works about spatial coupling,
including [15], the issue of the seed is circumvented by
imposing appropriate boundary conditions. In practical
cases of inference problems, however, the boundary con-
ditions cannot be imposed (see e.g., [4]) and hence the
study of necessary properties of the seed is essential and
so far missing in the literature.

IV. VARIATIONAL BAYES VS.
MONTE-CARLO

To solve the above inference problem we need to sam-
ple the posterior (Boltzmann) probability distribution (2)
in order to compute its marginal probabilities (local mag-
netizations). The most commonly used methods for sam-
pling fall into two classes: variational Bayes and Monte-
Carlo (M-C). In this paper, we will mostly be concerned
with the variational Bayes approach, as it is typically
faster than M-C. However, since physicists are familiar
with M-C, we will fist explain how the two approaches
relate.

In physics, M-C is the ‘go-to’ method for minimiz-
ing the free energy in a spin system. Most gener-



— h<h,
wm= h=0
h hsp I~ 0 1 7 O mz
m
Right—axis:
Left—axis : : === om(ty) |
I N m(ty >t) |
' -1
—L 0 L
z

FIG. 2: (Color online) A chain of coupled C-W systems. The
external field is a function of position z: in the ‘seed’ region
h. > hgp, whilst in the bulk of the chain h, < hgp. Start-
ing every C-W system in the neighborhood of m™, the com-
posite system magnetizes according to a travelling wave that
starts at the seed. Inset: the free energy of a C-W system
in a uniform external field. In the so-called spinodal region,
0 < h < hsp, there are two minima m~ and m™, such that
" W(m™) > @°"W(m"*). For h > hsp, m* is the only
minimum of =W,

ally, this involves constructing an algorithm that ex-
plores the parameter space and iteratively moves to-
wards the state that minimizes the energy, subject to
entropic constraints. The process is usually designed to
be stochastic and Markovian. Some examples of famous
Monte-Carlo Markov-Chain (MCMC) methods include
the Metropolis-Hastings algorithm or the heat-bath al-
gorithm. The upside of these approaches is that, in the
limit of a large number of time steps, they are exact.
However, the downside is that achieving such accuracy
can be computationally expensive.

In terms of the limiting behavior of MCMC algorithms,
we can persuade ourselves that if we define local magne-
tization averaged over realizations of the M-C dynamics
as mt, = (st ) ealization, then for the heat-bath algorithm
with parallel update, the system evolves according to

mift =tanh | Y T ijz, + 12y mb +he
2'#z JFi

(10)
Where this expression can also be obtained by analyzing
the M-C heat-bath dynamics in the limit n = 1 and w —
oo (instead of w finite and n — o) [23]. If one uses
random sequential update in the M-C simulation, the
behavior of the system in the large N = n(2L + 1) limit
corresponds to the analogous differential equation

d
mLZ = tanh Z It ijz/ + JZZZmJZ + h,
2%z j i
(11)
in terms of a rescaled time 7 = t/N.

—Miz,

In contrast to the above, the variational Bayes al-
gorithm to compute the local marginals (magnetiza-
tions) uses the assumption that the posterior probability
(Boltzmann) distribution can be written in a factorized
form

14+ m; 1—-—my
PMFT (g h. J) = - s Ry .
N (s, B, J) H SR e e M
(12)
When this form is then substituted to the Kullback-
Leibler divergence from PXFT (s, h, J) to Py(s,h,J) we
obtain the free energy

Z Jzz’mzzm]z’ _Zh Zmz

(iz,52')

1+m,~z 1+mi2 l—miz 1—m1'z
1 |
Z{ “(2>+z ()

—log Z + Dxr(PMT||P).

(13)

By imposing a stationarity condition on F' with respect
to m;,, we obtain the following fixed-point equation

= tanh Z J oo Z Mz + Joz Z mj, + h,
z'#z VED)

(14)
Solutions to this equation can be found, for instance,
by iterating (10). So we see that for the C-W model,
the evolution of the heat-bath MCMC is closely related
to the variational Bayes inference. Indeed, it is also
worth noting that, for the C-W model, the variational
Bayes approach provides asymptotically exact values of
the marginals (local magnetizations). For general infer-
ence problems no such algorithm exists, whilst for the two
main motivational examples of this paper— LDPC codes
and compressed sensing— the Bethe approximation (and
a related belief propagation algorithm) is asymptotically
exact.

As anticipated, iterating (10) (with appropriate pa-
rameter choices) results in a travelling wave of magne-
tization emanating from the seeded region, and eventu-
ally saturating the whole chain to the global optimum,
m™T. As an example, in Fig. 3 we show the propagating
wave for the following parameter values: J =14, h =
0.05, w =5, n = 40, L = 400, where for this value of
J, the field is below the spinodal point hg, ~ 0.1518.
We initialize the whole system with local negative mag-
netization and on the first wgeeq = 10 blocks we impose
a seeding field hgeeq = 0.3, which is above hg,. As can
be seen in the figure, we observe the propagation of a
magnetization wave.

So far, we have only discussed equations in terms of
local magnetizations of a single spin variable. However,
it is straightforward to see that, since we have no dis-
order, the local magnetization does not fluctuate from
site-to-site within one block. We can therefore derive
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FIG. 3: (Color online) The propagating wave obtained by
iteration of Eq. (10) for the following parameters: J = 1.4,
L =400,n =40, h = 0.05, w = 5, Wseed = 10 and hseea = 0.3.
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FIG. 4: (Color online) The propagating wave obtained by
Monte-Carlo heat-bath simulation for the following param-
eters: J = 1.4, L = 400, n = 100, h = 0.05, w = 5,
Wseed = 10 and hgeea = 0.3. Simulations were performed

using random sequential update and therefore time must be
rescaled by 7 =t/N.

the equivalent of the ‘state’ or ’density’ evolution for the
above algorithm by simply summing over ¢ on both sides

of the equation, dividing by n, and then letting n — oco.
In this way we obtain

m!t! = tanh (Z D.mt, + Jm! + hz> , (15)
Zl

where

D, =doy — 0,0 (16)
Here, it is helpful to make a few remarks: firstly, in the

C-W model, the finite size fluctuations— neglected in

(15)— are just a small (deterministic) correction to the
fixed point values of the local magnetizations. This is
different in more realistic problems like LDPC or com-
pressed sensing where the disorder (either in the factor
graph or in the measurement matrix) induces finite size
effects that are not captured by the C-W model. Sec-
ondly, the free energy (13) can be minimized by iterative
schemes other than (10), and also other MCMC algo-
rithms lead to different evolution equations (10) with the
same fixed point. For example, the Metropolis-Hastings
MCMC with random sequential update is equivalent to
dm, = 2¢ "+ cosh (izz) [tanh (izz) — mz} ,

dr

(17)

with

he = D.omu +Jm. + h, (18)

in the large system-size limit. Whilst taking the steepest
descent of the free energy (13) leads to

mzt;_l = ZDzzlmtz/+Jmi+hz_atanh(mfz)+mfz (19)

2!

In this paper, we pay specific attention to the most com-
mon update (10), but we stress that the same kind of
analysis can be carried out for (17-19) and others.

V. CONTINUOUS LIMIT

Useful information about the behavior of the spatially
coupled system can be understood if, following [15], we
take the double limit L > w > 1, such that L, w — 400
whilst w/L — 0. In addition to this, introduce a space

variable x = z/w such that the limiting magnetization
profile

lim

wx = y e |—1,+1],
L,w—+o0: w/L—)Om (T) m(x T) [ + ]

(20)
is now a function of the continuous variables z,7 €

[—00,+00]. In this limit, the sum over the kernel D,/
becomes

L “+o0
1' , , — / / s
o Z D, .om(T) [m dz'D (z") m(z—2', 1),
w/L—0 #=—L

(21)
where D (z) = J[g (|x]) — ¢ (z)], and the right-hand side
has been re-written using change of variable 2’ — z —a’.

The state evolution equation (15) can then be written in
the continuous limit as

d

d—m:tanh([D*m}—}—Jm—i—h)—m7 (22)
-

where the shorthand [- % -] represents convolution and

the explicit dependencies of m(z,7) and h(z) have been



dropped. Notice that when |z| > 1, D(z) = 0 and there-
fore in the convolution we can perform a gradient expan-
sion. Due to symmetry, the lowest order term in the ex-
pansion with a non-zero contribution is quadratic. That
is, the right-hand side of (21) is approximated by

J [t 02
~ (2 /m dz’g(|x’|):1:’2) S 06N (29)
Substituting into (22) and inverting the hyperbolic tan-
gent then gives the result
*m
w
Ox?

= —Jm — h + atanh <m+ 6m) (24)
or

where the pre-factor from (23) has been absorbed in the
definition

J oo !/ !/ 12
w= g da'g (|2']) «". (25)

—00

Working in this limit, it is now possible to look for
traveling-wave solutions— that is, those of the form
m(x,7) = m(x — vr). This leads to an ordinary dif-
ferential equation in terms of variable y = z — v7:

2
w% = —Jm — h + atanh (m—v(i;;j) . (26)

If the bulk field h is very small, the potential barrier
between m™ and m™ is large and therefore v is expected
to be small too. The resulting expansion for |v| < 1 gives

d2 0PpC—W d
Wi (m) v an (27)
dy? om 1 —m?2 dy
where ®¢~W is the free energy associated to the sin-

gle C-W model, i.e., Eq. (13) for L = 0. Multiply-
ing both sides of this equation by dm(y)/dy, integrat-
ing over y € R, and applying the boundary conditions
m(—o0) = m*, m(+00) = m~, and dm(y)/dyly——o =
dm(y)/dy|y=+00 = 0 implies that

v~ APV /1y, (28)
where the numerator A®C~W is just the difference be-
tween the two minima of the C-W potential

AW = W (mT) — oW (m™T), (29)

and the denominator ~y is given by

th /f =) [d’Ziy)} Lm

An approximation for 7 that is consistent with a small v
assumption can be found by setting v = 0 in (27). Once
again multiplying both sides by dm(y)/dy, and this time
integrating y from 0 to Y, the result is that

2
2 | s 80 ) - 05, (a1)

where the aforementioned boundary conditions have been
applied and Y has been relabeled y. Substituting back
into (30) gives

1/2

mdm [ 2[@9 W (m) — W (m )]
= T
m- 1—m w

(32)
From (32) and (28) we can easily obtain an analytic for-
mula for v as a linear expansion in small h

(mg —mg)

[ m { o[BSV (m) W (mih)] }1/ ’

ho(33)

~ 1-m?2 w

where the suffix ‘0’ refers to quantities at zero bulk field.

Note that this last Eq. (33) and the whole derivation
of this Section is closely related to the description of flat
moving interface in statistical physics of nucleation, see
e.g., [24]. We also mention here that the steepest de-
scent update (19) would lead to a different continuous
equation, namely

0? 0
wa—;;l = —Jm — h + atanh (m) + a—T,
that has the form of a bistable reaction-diffusion equa-
tion.

(34)

VI. FRONT VELOCITY AS A FUNCTION OF
THE BULK FIELD

We have already seen that one can calculate an ap-
proximation to the velocity of propagation of the wave—
a proxy for the rate of convergence in inference— by tak-
ing an appropriate continuous limit and assuming A to be
small. However, it is helpful to know how good this ap-
proximation is, and indeed if there are any other factors
that affect the relationship between v and the bulk field h.
(Recall that, in the analogy between the C-W model and
generic inference problems, the value of h represents a
distance from the optimal setup).

A. Large w, flat interaction.

In Fig. 5, for the simplest case in which the function g
is a constant, we compare three different curves:

1. The velocity in the limit n > L > w > 1 as given
by the ordinary differential equation (26). In order
to obtain a (numerical) value for the propagation
speed v we integrate (26) between —T" and T with
T > 1, with an initialization m(—T) = m™* and
m/(=T) =~ 0.

2. The velocity in the limit n > L > w > 1 as calcu-
lated from the analytic linearized formula given in
Eq. (33).
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FIG. 5: (Color online) The normalized velocity v = Z/w as
a function of the bulk field A for J = 1.4 computed in three
different ways. The solid line is the ‘experimental’ speed mea-
sured in the iteration of Eq. (15) (L = 1000, w = 30), the
dotted curved line is the speed determined through integra-
tion of Eq. (26) and the dotted straight line is given by the
linearized analytic formula (33).

3. The velocity computed from numerical iteration
of the asymptotic update (15) at finite length
L = 1000, and finite interaction range w =
30. In this case, we only use parameter values
that lead to wave propagation (propagation/non-
propagation conditions will be discussed in the next
Section). Note that, given that the wave propa-
gates, its speed (in the bulk) is independent (within
the numerical precision) of the seed.

The main result here is that, as expected, the asymptotic
update equation in the continuous limit gives a good es-
timate for values of the field not too close to the spinodal
point. Indeed, both results are bounded from below by
the analytical form (33), valid for sufficiently small h.

B. Large w, different shapes of the interaction.

So far, our analysis has only considered one type of
interaction, that gives equal weights to all neighbors in
a certain range— i.e., g is a ‘tophat’ function. In fact,
the velocity of the front can be increased by changing
the ‘shape’ of this interaction such that the coupling is
strongest between blocks that are furthest away (but still
bounded by the limits of the interaction range w). In
order to show this, consider the generalized form

0 B if |[x] >1
9(e) = { £@) [, Fla)da] (%)

if |z <17
where now f can be any symmetric function. To demon-
strate the effect of f, Fig. 6 shows the velocity com-
puted by integrating (26) for three different forms: f ~

constant (tophat), f ~ 1+ 22 (parabolic) and f ~ 1+ z*
(quartic). In the inset of Fig. 6, we also show the full de-
pendence of the speed on the constant w— Eq. (25)— for
a given value of the bulk field. Indeed, from Eq. (33), we
see explicitly that, in the regime in which the lineariza-
tion is a consistent approximation, v ~ \/w.
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FIG. 6: (Color online) [Main frame] The normalized velocity
v = Z/w as a function of the bulk field h with J = 1.4 for the
three model variants described in the main text. From bottom
to top: tophat interaction, quadratic interaction and quartic
interaction. [Inset] The speed computed by integration of
Eq. (24) for fixed bulk field h = 0.07 and varying w.

It is important to stress at this point that changing w
is the only tool that we have to truly maximize the speed
(in terms of ‘physical time’). To see this, suppose that
we are at fixed chain length L, block spins n, bulk field h,
and our unit of time is the single iteration over the whole
system. We have already stated that, once propagation is
achieved, the speed is proportional to w and independent
of the shape and extent of the seed. On the other hand,
the single iteration takes a time which is linear in n, L
and w, therefore changing the interaction range has no
effect on the speed in terms of real time and the only
effect on the physical speed is given by the shape of the
interaction, which in turn determines the value of w.

C. Finite w effects.

Until this point we have only considered parameter
values that are close to the continuous limit— i.e., L >
w > 1. However, as will become clear in the following
Section, the case of small w is very relevant for practical
implementations of spatial coupling. Indeed, in previous
work [15], it has been shown that small oscillations in the
Van der Waals curve mean that propagation can only
be formally proved for w > 1. However, simulations
indicate that the reality of the situation is much more
positive, and small values of w might be practical in many
situations.



The authors of [15] consider the global average mag-
netization along the chain, namely

L
1

Z=—

and show that the propagation of the wave (regardless
of the seeding scheme) is subject to the constraint that
the free energy has non-positive derivative with respect
to m between the two uniform states m, and m(')" — the
negative and positive equilibrium states respectively of
the uncoupled C-W model at h = 0. With uniform inter-
action, J > 1, and small magnetic field, the derivative of
the free-energy reads [15]

C(w,J)e 7™ sin <2W$L) —h (37)
0

where C'(w, J) is a pre-factor that can be computed. This
means that we need (regardless of the seeding conditions)

2y

0

h>A,=Cw,J)e "™ (38)

for the derivative to be negative everywhere and propaga-
tion to be possible. In fact, the authors of [15] evaluated
the amplitude A,, of the oscillation for J = 1.4 in their
Table 2, and for w = 1 they find A; = 2.2 x 107%. In
Fig. 7 we show the speed of the wave for J = 1.4 at very
weak bulk field with ideal seeding conditions (i.e., we fix
half of the chain to positive magnetization). We see that
at small bulk field h < A,, the velocity is zero, is agree-
ment with the theory of [15]. However, more broadly, it
is clear that this effect is observable only at extremely
small magnetic fields, even for w = 1. Furthermore, the
effect decreases exponentially with the value of w. We
therefore conclude that these oscillations are not likely
to cause problems in practical implementations of spa-
tial coupling.

VII. THE ROLE OF THE TERMINATION
CONDITION

As discussed in the Introduction, the majority of ex-
isting studies regarding wave propagation in spatially
coupled systems consider initial conditions analogous to
m(—o0) = m™*, m(+o00) = m~, and dm(y)/dyly=—cc =
dm(y)/dyly=+oc = 0. In real inference problems how-
ever, there is no way of fixing such an initial condition
and instead the propagation of the wave has to be en-
forced by a proper termination condition— i.e., a ‘seed’,
as introduced in Sec. III. In this Section we analyze the
properties of the seed under which a travelling wave starts
to propagate in the system, and we discuss how to opti-
mize its cost (corresponding to the rate loss in coding).
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FIG. 7: (Color online) The normalized velocity as a function
of the bulk field h for spatially coupled system with interac-
tion range w = 1. For bulk fields smaller than the critical
value h < A; the wave does not propagate.
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FIG. 8: (Color online) The threshold between propagation
and non-propagation for J = 1.4, w = 60 and h = 0.05 given
by the state evolution, Eq. (15). Cyan (light grey) represents
region of parameters where the wave does not propagate and
white represents a region where it does propagate. The dotted
lines superimposed to the shading are cost-density isolines,
defined by Eq. (39), for different values of c.

A. Conditions for propagation

The travelling wave will start to propagate in the
spatially coupled system only if the size of the seed
(wseea) and the strength of the seed (hgeeq) are both
large enough. Indeed, the propagation/non-propagation
boundary can be plotted as a function of (normalized)
variables geed/hsp and wWseed/w (see Fig. 8).

When designing the spatially coupled system, our main
objective is to obtain propagation of the magnetization
wave while keeping the average magnetic field on the
chain as close as possible to the bulk field h— i.e., the
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FIG. 9: [Main Frame] (Color online) The cost-density along
the threshold line in Fig. 8 as a function of the ratio wseed /w,
for w = 30 and w = 60. [Inset] (Color online) The cost-
density along the threshold line in Fig. 8 as a function of the
seeding field, for w = 30 and w = 60. In both cases, the plots
tend to smooth curve, independent of w, for w > 1.

goal is to minimize the cost

b= hsccd*hi
= Wseed 2L—|—1 -

_ w c (wseed hseed)

2L +1 w  ohey )
which is analogous to the rate loss in error-correcting
codes, for example. Here, ¢ is a ‘cost density’, and is
a function of rescaled variables. This means that for a
given choice of the chain-length and interaction range,
the cost-density isolines can be superimposed in rescaled
variables. As can be seen in Fig. 8, all but one of the
isolines cross the threshold line twice. Given w and L
fixed then, the best choice of parameters is defined as
the point where the unique cost isoline and the threshold
line meet tangentially. In Fig. 9 we show how c¢ varies
on the threshold line as parametrized by hseed/hsp and
Wseed /w. From this it is clear that there is indeed a choice
that corresponds to minimal cost.

Fig. 9 shows explicitly that the cost density curve along
the threshold line tends towards being independent of w
at large values w. In other words, for w > 1, the cost of
achieving propagation depends only on the ratio wseed/w
and not on w itself. This kind of analysis gives more
insight in the choice of parameters that achieve propaga-
tion minimizing the ‘field loss’ (or rate loss in the case of
coding theory), and can function as a guide in practical
code implementations when w is large.

C= hav -
(39)

B. Termination cost at small w

Analysis of the previous section is not valid for small w,
when the effect of the intrinsic discreteness of the system
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FIG. 10: (Color online) The minimal cost as a function of the
bulk field for L = 500, J = 1.4 and different values of the
interaction range. In particular, from bottom to top, w = 1,
w =25 and w = 10.

is strong. At the same time the total cost, eq. (39), is
linearly dependent on the range w, consequently it seems
important to evaluate the cost at small values of w. In
this Section we hence consider the typical case of a chain
of length L = 500 with J = 1.4 and small values of the
interaction range w. Making use of the state evolution
(15) we study what is the minimal cost for propagation
as a function of the bulk field for different values of w.

As can be seen from Fig. 10 the minimal total cost is
reached for w = 1 and an appropriate choices of the seed-
ing parameters (see Fig. 11). These two figures leads us
to a perhaps unexpected conclusion that the optimized
seeding condition uses range of interactions w = 1 with
seed size wWseeq = 1 and sufficiently large hgeeq (as speci-
fied in Fig. 11).

VIII. CONCLUSIONS

In this paper we have evaluated several properties of
the spatially coupled C-W model. We reached the fol-
lowing interesting conclusions:

e The speed of propagation of the travelling wave can
be increased by choosing interaction profile that has
a large variance.

e The interaction range w does not really need to
be large, since the negative effects associated with
finite w are only visible at extremely small val-
ues of the magnetic field (even for w = 1). In-
deed, in practical situations, both the measurement
noise and finite size effects will play an important
role, which makes such small values of the exter-
nal field— i.e., such that the effects of finite w are
felt— unfeasible.
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FIG. 11: (Color online) With the same parameters as Fig. 10,
the three curves represent the seeding field that minimizes the
cost as a function of the bulk field. The superimposed num-
bers are the values of the seeding range wseeq corresponding
to the minimum (shown only for w =1 and w = 5).

e In order to minimize the termination cost (or in
coding language, the rate loss) the optimal param-
eters are: an interaction range w = 1, seed size
Wseed = 1, and values of the seeding field hgeeq SUM-
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marized in Fig. 11.

In future work we need to clarify whether the above
conclusions are particular to a chain of C-W models, or
whether they apply universally to other spatially coupled
systems.

One important aspect that the coupled C-W model is
missing are non-trivial finite size effects. Indeed, the C-
W model does not have any disorder and hence there is
a very little difference between the state evolution and
the real evolution in a system of finite size. This will be
different in interesting applications of spatially coupled
systems and needs to be evaluated.
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