Keywords: ByteString class»findFirstInString, inSet, startingAt, ByteString class»stringHash, initialHash, ByteString»at, put, ByteString»at, ByteString»isByteString ByteTextConverter class»unicodeToByteTable ByteTextConverter startingAt, Standard FileStream»nextPut, Standard Array class»new, Array»isSelfEvaluating Array»printOn, Array»replaceFrom, to, with, startingAt, Array»shouldBePrintedAsLiteral ArrayedCollection class»new, withAll, ArrayedCollection class»new ArrayedCollection class» CompiledMethod»primitive CompoundTextConverter class»encodingNames ContextPart class»contextEnsure, ContextPart class»contextOn, do, ContextPart class»newForMethod, ContextPart class»theReturnMethod ContextPart»activateMethod, withArgs, receiver, class, ContextPart»activateReturn, value, ContextPart»at, put, ContextPart»at, ContextPart»bottomContext

Producing a small deployment version of an application is a challenge because static abstractions such as packages cannot anticipate the use of their parts. As such, an application often occupies more memory than actually needed. To solve this problem we propose Tornado, a technique to dynamically tailor applications to only embed code (classes and methods) they use. Tornado uses a run-fail-grow approach to prepare an application for deployment. It launches minimal version of an application and installs a minimal set of statements that will start the user's application. This application is run and these statements are executed. When the application fails because there are classes or methods missing, the necessary code is installed. The application is executed until it reaches a stable point, allowing possibly human interaction for applications with UIs. Thus, Tornado creates minimal memory footprint versions of applications by tailoring the whole application's code, including run-time and third party libraries.

In this report, we present the results we obtained from using Tornado to tailor two different applications. We succeeded to tailor a hello world application to occupy 1% of its original size. We also experimented with a Seaside web application tailoring in one case only the application's and framework's code and the whole application's code in the other case. In this latter example, we reached memory savings of about 97%. In this report we present an overview on Tornado, and we give details of the results we obtained.

Used Methodology

We tested our Tornado implementation by tailoring two different Pharo applications: a hello world application and a simple but yet interactive web application based on the Seaside framework [START_REF] Bergel | Seaside -advanced composition and control flow for dynamic web applications[END_REF]. Our methodology consisted in: setting up a seed for the application, preparing the application entry points and executing the application. In the case of the interactive web application, we interacted with it through a web browser. Once we finished the process, we extracted the resulting application by making a snapshot of it in a Pharo image file. We tested the generated snapshots to verify they work properly (under the assumption that only the previously used features of the application should work).

Finally, to present our results we measured the size of the generated snapshots files and compared them with the snapshots of the full applications under Pharo's production option 1 . The results prove the soundness of our solution.

Hello World Application

We used Tornado to tailor a hello world application writing 10 times the 'hello world' string to the standard output (stdout). In this case study we used an empty seed to grow both base libraries and the application's code. Figure 1 shows the installed entry point to tailor this application. Table 1 shows our results for this case. We succeed to reduce the application's size to 1% of its original counterpart.

Seaside Web Application

We also used Tornado to tailor a simple web application consisting in a webpage with a counter containing two buttons. These two buttons perform requests to the web server to increase and decrease the counter. The Seaside application framework was configured with its default values, without making any customizations.

In this case, we used two different seeds for tailoring: a seed containing all Pharo base libraries and an empty seed. Appendix B presents the entry points for these both seeds. The tailoring was done by starting the application and exercising it by generating requests through a web browser, clicking on its decrease and increase buttons. Table 2: Results of second case study. Results of tailoring a web application with two different seeds. On the left, the total sizes of the original application deployment components (base libraries, application framework and counter application). On the right, our results when applying after tailoring. The first two results rows are compared against the total of the reference application. The third row presents the comparison without including base libraries, already inside the seed.

Table 2 shows the results obtained when tailoring this application with each of these two seeds. Figure 2 presents a tailoring map illustrating how Tornado selects the code units from a reference application given a seeds. This figure also presents the notation we use in Table 2: P is the Pharo base libraries, S is the Seaside Framework and C is the Counter application code units present in the reference application. P', S' and C' are their counterparts selected by Tornado when using an empty seed. P", S" and C" are their counterparts, as selected by Tornado when using a seed with all base libraries. In the latter, we can note that P=P". Entry points as used to tailor the Seaside web application with a full Pharo seed and an empty seed. The first one (Figure 3) only consists in starting the web server as the base libraries are initialized and available in the seed. The latter one (Figure 4) includes the initialization of the minimal runtime needed to do networking.

Acknowledgements.

ZnZincServerAdaptor startOn: 8888. C Appendix: Method List of Seaside Counter Application with Full Pharo Seed

List of methods extracted from the nurtured Web application when using a seed containing all base libraries from Pharo. This list includes all methods installed from Seaside framework and the counter application. The list of methods part of the base library are excluded as it is the same list of the methods found in Pharo base library.

D Appendix: Method List of Seaside Counter Application with Empty Seed

List of methods extracted from the nurtured Web application when using an empty seed. This list includes all methods installed from Seaside framework, the Counter application and the base library of Pharo.

1

 FileStream startUp: true. 2 1 to: 10 do: [:i | FileStream stdout nextPutAll: 'hello'; crlf].

Figure 1 :

 1 Figure 1: Entry point of the Hello World application with an empty seed.

Figure 2 :

 2 Figure 2: Tailoring Map. Tailoring map describing the Seaside application generated with the empty seed (left) and the full Pharo seed (right).

Figure 3 :

 3 Figure 3: Entry point of the Seaside application with a full Pharo seed.

Figure 4 :

 4 Figure 4: Entry point of the Seaside application with an empty seed.

Table 1 :

 1 Results of the tailored Hello World application.

 This work was supported by Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council, FEDER via the 'Contrat de Projets Etat Region A Appendix: Method List of a Nurtured Hello World ApplicationList of methods extracted from the nurtured Hello World application. This list includes all methods installed from the Pharo base libraries and the simple Hello World application.

	LookupKey»key: B Appendix: Entry Points to Tailor the Seaside Web Semaphore»critical:
	LookupKey»key Magnitude»max: Application	SequenceableCollection»copyFrom:to: SequenceableCollection»copyUpTo:
	MultiByteFileStream»basicNext:putAll:startingAt:	SequenceableCollection»do:
	MultiByteFileStream»basicNextPut:	SequenceableCollection»first:
	MultiByteFileStream»converter:	SequenceableCollection»first
	MultiByteFileStream»converter	SequenceableCollection»identityIndexOf:ifAbsent:
	MultiByteFileStream»installLineEndConventionInConverter SequenceableCollection»identityIndexOf:
	MultiByteFileStream»nextPut:	SequenceableCollection»indexOf:ifAbsent:
	MultiByteFileStream»nextPutAll:	SequenceableCollection»second
	Number»negative	SequenceableCollection»writeStream
	OSPlatform class»isWin32	SimplifiedChineseEnvironment class»supportedLanguages
	OSPlatform class»platformName	SmallInteger»bitXor:
	Object»=	SmallInteger»hash
	Object»at:put:Object»isCharacter	Stream»basicNextPut:
	Object»at:	String class»new:
	Object»class	String class»with:
	Object»hash	String»=
	Object»isInteger	String»compare:with:collated:
	Object»species	String»findDelimiters:startingAt:
	Object»~Õ	String»findTokens:
	rderedCollection class»arrayType	String»hash
	OrderedCollection class»new:	String»indexOf:startingAt:ifAbsent:
	OrderedCollection class»new	String»isString
	OrderedCollection»add:	String»skipDelimiters:startingAt:
	OrderedCollection»addLast:	TextConverter class»defaultSystemConverter
	OrderedCollection»at:	TextConverter class»initializeLatin1MapAndEncodings
	OrderedCollection»ensureBoundsFrom:to:	TextConverter class»latin1Encodings
	OrderedCollection»resetTo:	TextConverter class»latin1Map
	OrderedCollection»reset	TextConverter»initialize
	OrderedCollection»setCollection:	TextConverter»installLineEndConvention:
	OrderedCollection»size	TextConverter»nextPutAll:toStream:
	PositionableStream class»on:	TextConverter»nextPutByteString:toStream:
	PositionableStream»isBinary	VirtualMachine class»getSystemAttribute:
	PositionableStream»on:	WriteStream»contentsStandard
	ProtoObject»basicIdentityHash	WriteStream»crlf
	ProtoObject»flag:	WriteStream»nextPut:
	ProtoObject»identityHash	WriteStream»on:
	ProtoObject»initialize	WriteStream»reset
	RussianEnvironment class»supportedLanguages	

Pharo allows to prepare a snapshot for production. This option cleans some caches and removes some well known objects from the system, thus, freeing space.

SmalltalkImage»logStartUpErrorDuring:into:tryDebugger: SmalltalkImage»lowSpaceThreshold SmalltalkImage»lowSpaceWatcher SmalltalkImage»newSessionObject SmalltalkImage»primImagePath SmalltalkImage»primSignalAtBytesLeft: SmalltalkImage»primitiveGetSpecialObjectsArray SmalltalkImage»processShutDownList: SmalltalkImage»processStartUpList: SmalltalkImage»recordStartupStamp SmalltalkImage»registerExternalObject: SmalltalkImage»send:toClassesNamedIn:with: SmalltalkImage»shutDownImage: SmalltalkImage»specialObjectsArray SmalltalkImage»startupImage:snapshotWorked: SmalltalkImage»unregisterExternalObject: SmalltalkImage»vm SmalltalkImage»wordSize Socket class»acceptFrom: Socket class»initializeNetwork Socket class»initialize Socket class»newTCP Socket class»register: Socket class»registry Socket class»standardTimeout Socket class»unregister: Socket»acceptFrom: Socket»accept Socket»closeAndDestroy: Socket»closeAndDestroy Socket»close Socket»dataAvailable Socket»destroy Socket»initialize: Socket»isConnected Socket»isOtherEndClosed Socket»isValid Socket»listenOn:backlogSize: Socket»primAcceptFrom:receiveBufferSize:sendBufSize:semaIndex:readSemaIndex:write Socket»primSocket:receiveDataInto:startingAt:count: Socket»primSocket:sendData:startIndex:count: Socket»primSocket:setOption:value: Socket»primSocketConnectionStatus: Socket»primSocketDestroy: Socket»primSocketReceiveDataAvailable: Socket»primSocketRemoteAddress: Socket»primSocketSendDone: Socket»readSemaphore Socket»register Socket»remoteAddress

String»isString String»isWideString String»match: String»putOn: String»renderOn: String»sameAs: String»seasideMimeType String»startingAt:match:startingAt: String»subStrings: String»translateFrom:to:table: String»translateToLowercase String»translateToUppercase String»translateWith: String»trimBoth: String»trimBoth String»trimLeft:right: Symbol class»initializeForTornadoWATagCanvas»space Symbol class»intern: Symbol class»internCharacter: Symbol class»lookup: Symbol class»shutDown: Symbol»= Symbol»asString

(CPER) 2007-2013', the Cutter ANR project, ANR-10-BLAN-0219. Heap»do: Heap»downHeapSingle: Heap»growHeap»reSort Heap»growSize Heap»growTo: Heap»isEmpty Heap»privateRemoveAt: Heap»remove:ifAbsent: Heap»removeFirst Heap»setCollection:tally: Heap»size Heap»sortBlock: Heap»sorts:before: Heap»upHeap: Heap»updateObjectIndex: ISO885915TextConverter class»encodingNames ISO88592TextConverter class»encodingNames IdentitySet»scanFor: InstructionStream»interpretExtension:in:for: InstructionStream»interpretNextInstructionFor: Integer class»readFrom:base: Integer class»readFrom: Integer»* Integer»+ Integer»< Integer»= Integer»» Integer»asCharacter Integer»asInteger Integer»copyto: Integer»denominator Integer»digitCompare: Integer»digitDiv:neg: Integer»digitMultiply:neg: Integer»digitSubtract: Month class»indexOfMonth: Month class»nameOfMonth: Mutex»critical: Mutex»initialize NetNameResolver class»initializeNetwork NetNameResolver class»initialize NetNameResolver class»primNameResolverStatus NetNameResolver class»resolverStatus Number class»one Number class»readFrom: Number»// Number»% Number»\\ Number»abs Number»asDuration Number»floor Number»fractionPart Number»integerPart Number»isNumber Number»isZero Number»negated Number»negative Number»quo: Number»raisedToInteger: Number»rem: Number»strictlyPositive Number»to: NumberParser class»on: NumberParser»nextElementaryLargeIntegerBase: NumberParser»nextIntegerBase: NumberParser»nextUnsignedIntegerBase: NumberParser»nextUnsignedIntegerOrNilBase: NumberParser»on: NumberParser»peekSignIsMinus NumberParser»readExponent

FileStream class»stdioHandles FileStream