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Bianchi I meets the Hubble diagram

Thomas Schücker1, André Tilquin2, Galliano Valent3

Abstract

We improve existing fits of the Bianchi I metric to the Hubble diagram of supernovae and
find an intriguing yet non-significant signal for anisotropy that should be verified or falsified
in the near future by the Large Synoptic Survey Telescope.

Since the literature contains two different formulas for the apparent luminosity as a func-
tion of time of flight in Bianchi I metrics, we present an independent derivation confirming
the result by Saunders (1969). The present fit differs from earlier ones by Koivisto & Mota
and by Campanelli et al. in that we use Saunders’ formula, a larger sample of supernovae,
Union 2 and JLA, and we use the general Bianchi I metric with three distinct eigenvalues.
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1 Introduction

We would like to explain our motivation for the present analysis by comparing cosmology
with the description of the earth’s surface. In good approximation, this surface is maximally
symmetric, i.e. a sphere. We observe a breaking of this symmetry of the order of one per
mill by the geography, for example by Mount Everest, 8.8 km · 2π/( 40 000 km) ≈ 1.4 · 10−3.
Of course we would not try to describe these geographic deviations in terms of a simple
geometric model. But there is a second breaking of the maximal symmetry, of the order of 3
per mill, that we call geometric. Indeed this breaking admits a simple geometric description,
in terms of an oblate ellipsoid. Our polar radius is about 21.3 km shorter than the equatorial
ones, 21.3 km · 2π/( 40 000 km) ≈ 3.3 · 10−3.

The Robertson-Walker metric of the cosmological standard model has maximal spatial
symmetry. The Bianchi I metric, that we consider in the following for its calculational sim-
plicity, is obtained from the flat Robertson-Walker metric by giving up the three isotropies.
It is true that we observe anisotropies of the order of 10−5 in the cosmic micro-wave back-
ground. But we take these to be geographic deviations and do not try to model them by a
simple geometry. Our motivation for using the Bianchi I metric is that it might describe a
new breaking of maximal symmetry, of geometric type.

Attempts at deciphering an anisotropy in the Hubble diagram are not new. They come
in at least three classes.

The first splits the Hubble diagram in two hemispheres, fits both independently and
tries to find a splitting direction in which the two fits differ significantly (Kolatt & Lahav
2001; Schwarz & Weinhorst 2007; Antoniou & Perivolaropoulos 2010; Kalus et al. 2013;
Yang, Wang & Chu 2013; Jimenez, Salzano & Lazkoz 2014). However there is no solution of
Einstein’s equations compatible with the split.

A second class is similar, but does the fitting with a modified theory of gravity, e.g. based
on Finsler geometry, Chang et al. (2014a,b).

The third class is the most conservative. Start with a (pseudo-) Riemannian geometry
admitting less symmetries than the Robertson-Walker metric, mostly Bianchi I, compute
redshift and apparent luminosity, solve Einstein’s equation and then confront this model
with the Hubble diagram of supernovae.

We are aware of two analyses of this type, by Koivisto & Mota (2008a) and by Campanelli
et al. (2010). Neither finds a preferred direction in the Hubble diagram.

These analyses rest on four main ingredients: two kinematic formulae, the redshift and
the apparent luminosity as functions of the three scale factors, and two dynamical formulae,
the Einstein equation and its solutions with cosmological constant and dust. Both analyses
(Koivisto & Mota 2007a; Campanelli et al. 2010) take the first three ingredients from Koivisto
& Mota (2008b) and presumably solve the Einstein equation numerically with a Runge-Kutta
algorithm.

All mentioned authors seem to be unaware of a work by Saunders (1969) giving all four
ingredients. His apparent luminosity and his Einstein equation disagree with the formulae
by Koivisto & Mota (2008b). The disagreement on the apparent luminosity is particularly
bothersome: Saunders derives it using a result from an earlier paper by himself which in turn
relies on a theorem by Ehlers and Sachs. Koivisto & Mota (2008b) on the other hand derive
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the apparent luminosity in eight lines.
In the present paper we give ab initio derivations of the four ingredients. Our luminosity

agrees with Saunders’ and our Einstein equation agrees with Koivisto & Mota’s. Therefore
we redo the fit to the supernovae. We also include recent data and extend the fit to the
general Bianchi I metric with three distinct eigenvalues.

2 Geodesics

The Bianchi I metric reads

dτ 2 = dt2 − a(t)2 dx2 − b(t)2 dy2 − c(t)2 dz2, a(t), b(t), c(t) > 0. (1)

It is homogeneous but not isotropic. Its non-vanishing Christoffel symbols are:

Γt
xx = aa′, Γt

yy = bb′, Γt
zz = cc′,

Γx
tx = a′/a, Γy

ty = b′/b, Γz
tz = c′/c,

(2)

where we use ′ := d/dt. Thanks to the isometries under translations, the geodesic equations
can be integrated once to read,

ẋ = A/a2, ẏ = B/b2, ż = C/c2, ṫ2 = K + A2/a2 +B2/b2 + C2/c2, (3)

where we use ˙ := d/dp with an affine parameter p. A, B, C and K are integration constants.
We have the time-like solutions t = p = τ, x = x0, y = y0, z = z0 for comoving galaxies,
A = B = C = 0, K = 1. To describe photons going between them we need light-like
geodesics, K = 0. Let us take the initial conditions at p = p−1:

t = t−1, x = x−1, y = y−1, z = z−1,

ṫ = 1/W−1, ẋ = A/a2
−1, ẏ = B/b2

−1, ż = C/c2
−1,

(4)

with the abbreviations a−1 := a(t−1), ... and

W (t) :=

(

A2

a(t)2
+

B2

b(t)2
+

C2

c(t)2

)

−1/2

, (5)

To simplify notations we put ~x−1 = 0. Let us say that the photon arrives today t = t0 at
comoving position ~x0. Then we have:

x0 =

∫ t0

t−1

A

a2
W dt, y0 =

∫ t0

t−1

B

b2
W dt, z0 =

∫ t0

t−1

C

c2
W dt. (6)

In our conventions the speed of light is unity; proper time τ , the coordinate time t and the
affine parameter p have units of seconds, the comoving coordinates x, y, z are dimensionless
and the scale factors a, b, c and the integration constants A, B, C carry seconds. Then W is
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dimensionless. Through a rescaling of the affine parameter p we may achieve A2+B2+C2 =
1 s2. Through a rescaling of the coordinates x, y, z we may achieve a0 = b0 = c0 = 1 s.

We also learnt from equation (3) that in the Bianchi I metric, the position in the sky of
luminous sources changes with time (unless they lie in a principle direction, e.g. B = C = 0).
Since no such drift or ‘cosmic parallax’ (Quercellini, Quartin & Amendola 2009) has been
observed today, any deviation of Bianchi type I from maximal symmetry must be small
(Fontanini, West & Trodden 2009; Campanelli et al. 2011).

3 Redshift

To compute the redshift of the galaxy at ~x−1 = 0, let it send out a second go-between an
atomic period T later, t = t−1+T . The atomic period is very small with respect to the time of
flight: T ≪ t0− t−1. We want the second go-between to arrive at the same comoving location
~x0 where our detector sits. This means that we must slightly change the initial direction of
the light-like geodesics coded in the integration constants. Let us call them Ã, B̃, C̃. They
are close to the former integrations constants:

Ã = A(1 + α), B̃ = B(1 + β), C̃ = C(1 + γ), α, β, γ ≈ T/(t0 − t−1). (7)

We call the arrival time of the second go-between t0 + TD. In order to compute the Doppler-
shifted atomic period TD at ~x0 we have to solve the geodesic equation (3) for the second
go-between with integration constants K̃ = 0, Ã, B̃, C̃ and initial conditions

ṫ(p
−1̃) =

√

Ã2

a2
−1̃

+
B̃2

b2
−1̃

+
C̃2

c2
−1̃

, ẋ =
Ã

a
−1̃

, ẏ =
B̃

b
−1̃

, ż =
C̃

c
−1̃

, (8)

with a
−1̃ := a(t−1 + T ), ... As before the unique solution is:

x0 =

∫ t0+TD

t−1+T

Ã

a2
W̃ dt, y0 =

∫ t0+TD

t−1+T

B̃

b2
W̃ dt, z0 =

∫ t0+TD

t−1+T

C̃

c2
W̃ dt, (9)

with

W̃ (t) :=

(

Ã2

a(t)2
+

B̃2

b(t)2
+

C̃2

c(t)2

)

−1/2

, (10)

To first order in T/(t0 − t−1) we get:

x0 ≈
∫ t0

t−1

A

a2
W dt + α

∫ t0

t−1

A

a2

(

B2

b2
+

C2

c2

)

W 3 dt − β

∫ t0

t−1

A

a2
B2

b2
W 3 dt

− γ

∫ t0

t−1

A

a2
C2

c2
W 3 dt − A

a2
−1

W−1T +
A

a20
W0TD . (11)
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Together with the first of equations (6) we have:

0 ≈ α

∫ t0

t−1

W 3

a2

(

B2

b2
+

C2

c2

)

dt − β

∫ t0

t−1

W 3

a2
B2

b2
dt

− γ

∫ t0

t−1

W 3

a2
C2

c2
dt − W−1

a2
−1

T +
W0

a20
TD

= B2 Z + C2 Y − W−1

a2
−1

T +
W0

a20
TD , (12)

with

X := (β − γ)

∫ t0

t−1

W 3

b2c2
dt, Y := (α− γ)

∫ t0

t−1

W 3

c2a2
dt, Z := (α− β)

∫ t0

t−1

W 3

a2b2
dt. (13)

Similarly for y0,

0 ≈ −A2 Z + C2X − W−1

b2
−1

T +
W0

b20
TD , (14)

and for z0,

0 ≈ −A2 Y −B2X − W−1

c2
−1

T +
W0

c20
TD . (15)

Solving the three linear equations (12, 14, 15) in X, Y, Z we remain with

T

W−1

=
TD

W0

. (16)

Therefore the redshift is:

z :=
TD − T

T
≈ W0

W−1

− 1 =

√

A2

a2
−1

+ B2

b2
−1

+ C2

c2
−1

√

A2

a2
0

+ B2

b2
0

+ C2

c2
0

− 1 . (17)

This formula agrees with the redshift derived in Saunders (1969), Koivisto & Mota (2008b)
and Fontanini et al. (2009).

4 Apparent luminosity

To compute the apparent luminosity of a supernova at ~x−1, let it send out a rectangular
beam of photons. One corner of this sequence of infinitesimal rectangles is given by the
initial direction ẋ(p−1) = A/a2

−1, ẏ(p−1) = B/b2
−1, ż(p−1) = C/c2

−1. As before this pho-
ton leaves the supernova at t−1. Formally this initial direction defines a space-like vector
(0, A/a2

−1, B/b2
−1, C/c

2
−1) =: (0, ~v−1) in the tangent space at (t−1, ~x−1).
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The two adjacent corners are defined by light-like geodesics with initial directions ~v−1+~ǫ−1

and ~v−1 + ~δ−1 where

~ǫ−1 := ǫ

(

B

a−1b−1
,

−A

a−1b−1
, 0

)

(18)

~δ−1 := δ

(

AC

a2
−1c−1

,
BC

b2
−1c−1

, −
(

A2

a2
−1c−1

+
B2

b2
−1c−1

))

. (19)

We assume that A and B are not both zero. The three vectors ~v−1, ~ǫ−1 and ~δ−1 are mutually
orthogonal with respect to the metric (1). We take ǫ and δ dimensionless. Then ~v−1, ~ǫ−1

and ~δ−1 have units s
−1. Their norms |~v−1|, |~ǫ−1|, |~δ−1| with respect to the metric are however

dimensionless. The solid angle in the rest frame of the supernova at ~x−1 cut out by the
rectangular beam is given by

Ω−1 =
|~ǫ−1| · |~δ−1|
4π |~v−1|2

=
ǫδ

4π
W−1

(

A2

a2
−1

+
B2

b2
−1

)

. (20)

On its way to the detector at ~x0 the rectangular beam gets deformed into a sequence of
infinitesimal parallelograms. The final parallelogram is defined by two infinitesimal vectors
~ǫ0 := ~xǫ

0 − ~x0 and ~δ0 := ~xδ
0 − ~x0, where ~xǫ is the space part of the light-like geodesic with

initial direction ~v−1 + ~ǫ−1 and likewise for δ. This final parallelogram is the effective surface
of the detector and our task is to compute its area. We have

xǫ
0 =

∫ t0

t−1

A+ ǫB a−1

b−1

a2







(

A + ǫB a−1

b−1

)2

a2
+

(

B − ǫA b−1

a−1

)2

b2
+

C2

c2







−1/2

dt (21)

≈ x0 + ǫB

∫ t0

t−1

W

a2

{

a−1

b−1
− A2W 2

[

a−1

b−1

1

a2
− b−1

a−1

1

b2

]}

dt +O(ǫ2) , (22)

yǫ0 =

∫ t0

t−1

B − ǫA b−1

a−1

b2







(

A+ ǫB a−1

b−1

)2

a2
+

(

B − ǫA b−1

a−1

)2

b2
+

C2

c2







−1/2

dt (23)

≈ y0 + ǫA

∫ t0

t−1

W

b2

{ −b−1

a−1

− B2W 2

[

a−1

b−1

1

a2
− b−1

a−1

1

b2

]}

dt +O(ǫ2) (24)

zǫ0 =

∫ t0

t−1

C

c2







(

A+ ǫB a−1

b−1

)2

a2
+

(

B − ǫA b−1

a−1

)2

b2
+

C2

c2







−1/2

dt (25)

≈ z0 − ǫABC

∫ t0

t−1

W 3

c2

[

a−1

b−1

1

a2
− b−1

a−1

1

b2

]

dt +O(ǫ2) . (26)
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Similarly, one computes the components in δ and obtains to first order in ǫ and δ:

~ǫ0 ≈ ǫ













B
∫ t0
t−1

W
a2

{

a−1

b−1

− A2W 2
[

a−1

b−1

1
a2

− b−1

a−1

1
b2

]}

dt

A
∫ t0
t−1

W
b2

{

−b−1

a−1

− B2W 2
[

a−1

b−1

1
a2

− b−1

a−1

1
b2

]}

dt

−ABC
∫ t0
t−1

W 3

c2

[

a−1

b−1

1
a2

− b−1

a−1

1
b2

]

dt













, (27)

~δ0 ≈ δ













AC
c−1

∫ t0
t−1

W
a2

{

1 − W 2
[

A2

a2
+ B2

b2
− c2

−1

c2

(

A2

a2
−1

+ B2

b2
−1

)]}

dt

BC
c−1

∫ t0
t−1

W
b2

{

1 − W 2
[

A2

a2
+ B2

b2
− c2

−1

c2

(

A2

a2
−1

+ B2

b2
−1

)]}

dt

−
∫ t0
t−1

W
c2

{

c−1

(

A2

a2
−1

+ B2

b2
−1

)

+ C2

c−1

W 2
[

A2

a2
+ B2

b2
− c2

−1

c2

(

A2

a2
−1

+ B2

b2
−1

)]}

dt













.

Note that in contrast to our definitions at t−1, the vectors ~ǫ0 and ~δ0 are dimensionless and
their norms |~ǫ0|, |~δ0| with respect to the metric carry seconds.

To first order in ǫ and δ these two vectors are orthogonal to ~v0 with respect to the metric
(1):

~ǫ0 · ~v0 ≈ ~δ0 · ~v0 ≈ 0. (28)

Therefore the effective area is

S0 ≈ |~ǫ0 ∧ ~δ0|, (29)

where the vector product is computed with the metric (1). Finally the apparent luminosity
is:

ℓ = L
Ω−1

S0

(

W−1

W0

)2

, (30)

where L denotes the absolute luminosity of the standard candle, that we suppose to be
radiating isotropically in its rest frame. Note that in the apparent luminosity ǫ and δ cancel.

Our formula disagrees with the one derived in eight lines by Koivisto & Mota (2008b):

ℓ =
L

4π

[
∫ t0

t−1

(

A2a2 +B2b2 + C2c2
)

−1/2
dt

]−2(
W−1

W0

)2

(31)

(in our notations and using their normalisations: a0 = b0 = c0 = 1 = (A2 + B2 + C2)1/2).
If the photon moves in a principle direction, say B = C = 0, then Koivisto and Mota’s
apparent luminosity does not distinguish the Minkowskian metric, a = b = c = 1 s, from
the one expanding in the x and y directions, say a = b = exp(Ht) s, c = 1 s. This is not
compatible with the drift of luminous sources.

Our formula agrees with the one derived by Saunders (1969):

ℓ =
L

4π

W 5
−1

a−1b−1c−1∆W 4
0

, (32)
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with:

Ix := −
∫ t0

t−1

W 3

b2c2
dt, Iy := −

∫ t0

t−1

W 3

c2a2
dt, Ix := −

∫ t0

t−1

W 3

a2b2
dt, (33)

(compare with equations (13)) and ∆ := A2IyIz +B2IzIx + C2IxIy.

5 Einstein’s equations

To keep things simple, we solve Einstein’s equations with a positive cosmological constant Λ
and dust whose mass density is denoted as usual by ρ(t):

Ricµν − 1
2
Rgµν = Λ gµν + 8πGρ δ0µ δ

0
ν . (34)

Defining the Hubble parameters

Hx :=
a′

a
, Hy :=

b′

b
, Hz :=

c′

c
, with ′ :=

d

dt
, (35)

we have the following differential system:

(a) H ′

x +H ′

y +H2
x +H2

y +HxHy = Λ,

(b) H ′

y +H ′

z +H2
y +H2

z +Hy Hz = Λ,

(c) H ′

z +H ′

x +H2
z +H2

x +Hz Hx = Λ,

(d) HxHy +Hy Hz +Hz Hx = Λ + 8πGρ.

(36)

to which we may add the covariant energy-momentum conservation which integrates to

ρ(t) =
r∗

V (t)
with V (t) := a(t)b(t)c(t). (37)

Here r∗ =: ρ0a0b0c0 is an integration constant.

5.1 The isotropic case

Let us observe that if we take a = b = c we do recover Friedman’s equations in the form

2H ′ + 3H2 = Λ, 3H2 = Λ + 8πGρ , H :=
a′

a
. (38)

For positive Λ we integrate the first equation in H and obtain a bifurcation:

Λ/(3H2) < 1 : H =

√

Λ

3
coth(u/2),

Λ/(3H2) > 1 : H =

√

Λ

3
tanh(u/2),

(39)
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where u :=
√
3Λ (t−t∗) and t∗ is an integration constant. Writing the scale factor a = a∗ V

1/3

we have

Λ/(3H2) < 1 :
V

V0

= +
4πGρ0

Λ
(cosh u− 1),

Λ/(3H2) > 1 :
V

V0
= −4πGρ0

Λ
(cosh u+ 1).

(40)

The bifurcation point yields the singular solution H =
√

Λ/3, for which the matter density
vanishes, ρ = 0, by the second Friedman equation (38). The second branch, Λ/(3H2) > 1,
has negative matter density and no conventional physical interpretation.

For negative cosmological constant, Λ < 0, there is no bifurcation and we get

H = −
√

|Λ|
3

tan(u/2),
V

V0
=

4πGρ0
|Λ| (1 + cosu). (41)

5.2 Integration of the Einstein equations

Let us begin with the first three equations: taking the difference between equations (a) and
(b) we have

(Hy −Hx)
′

(Hy −Hx)
= −Hx −Hy −Hz = −V ′

V
=⇒ Hy = Hx +

L

V
. (42)

The same treatment applied to the equations (a) and (c) gives

(Hz −Hx)
′

(Hz −Hx)
= −Hx −Hy −Hz = −V ′

V
=⇒ Hz = Hx +

M

V
. (43)

In this step we got two new integrations constants L and M . Combining equations (b) and
(c) gives no new relation.

Inserting the previous relations into equations (a), (b) and (c) we get three first order
differential equations mixing Hx and V :

(a′) 2H ′

x + 3H2
x +

3L

V
Hx +

L2 − LV ′

V 2
= Λ,

(b′) 2H ′

x + 3H2
x +

3(L+M)

V
Hx +

L2 +M2 + LM − (L+M) V ′

V 2
= Λ,

(c′) 2H ′

x + 3H2
x +

3M

V
Hx +

M2 −M V ′

V 2
= Λ.

(44)

Subtracting (a′) from (b′) or (a′) from (c′) yields a single relation for Hx,

Hx =
V ′

3V
− L+M

3V
(45)

which, upon use of (42) and (43), implies

Hy =
V ′

3V
+

2L−M

3V
, Hz =

V ′

3V
+

−L+ 2M

3V
. (46)

9



We are left with (a′) involving only the function V (t). It reads

2V V ′′ − (V ′)2 − 3Λ V 2 + σ2 = 0, σ2 := L2 − LM +M2 ≥ 0, (47)

and is readily integrated once:

(V ′)2 = σ2 + 2E V + 3Λ V 2 (48)

where E is a new integration constant.
It remains just to check the last equation (36) (d): the computation gives the very simple

relation
E = 12πG r∗. (49)

The solution for the scale factors a(t), b(t), c(t) is then obtained in the following steps:

1. First, compute the volume V (t) by solving

(V ′)2 = σ2 + 24πG r∗ V + 3Λ V 2, σ2 := L2 − LM +M2 ≥ 0, Λ > 0. (50)

2. Deduce the Hubble parameters Hx, Hy, Hz from equations (45) and (46).

3. Finally integrate the Hubble parameters (35) and obtain the scale factors a, b, c.

Let us begin by integrating equation (50),

dV
√

σ2/3Λ + 2r V + V 2
= ±

√
3Λ dt , r :=

4πGr∗
Λ

(51)

taking, without loss of generality, the positive sign. It is convenient to define

ξ :=

√

Λ

3

σ

4πGr∗
> 0, (52)

in order to write
σ2/3Λ + 2r V + V 2 = (V + r)2 − r2(1− ξ2). (53)

The integration of (51) is then obvious for ξ = 1 and in the other cases the changes of
variables

ξ < 1 : V + r = r
√

1− ξ2 cosh u, ξ > 1 : V + r = r
√

ξ2 − 1 sinh u, (54)

give easily the function V, which exhibits a bifurcation parametrized by ξ:

ξ < 1 : V =
4πGr∗

Λ

(

√

1− ξ2 cosh u− 1
)

,

ξ = 1 : V =
4πGr∗

Λ
(eu − 1),

ξ > 1 : V =
4πGr∗

Λ

(

√

ξ2 − 1 sinh u− 1
)

,

(55)
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with u =
√
3Λ (t − t∗) as before. The very simple structure of these functions may be

understood by differentiating equation (50) which gives the linear equation

V ′′ − 3Λ V = 12πGr∗. (56)

For the third step, we show the computation only for a(t) with ξ < 1. We start from
equation (45),

Hx =
a′

a
=

V ′

3V
− (L+M)

3V
, (57)

and integrate:

a(t) = a∗ V
1/3 exp

(

−(L+M)

3

∫

dt

V

)

. (58)

We need to fix the sign of V , which is positive. Therefore u > Artanh ξ. We have

∫

dt

V
=

ξ

σ
√

1− ξ2

∫

du

cosh u− 1/
√

1− ξ2
=

2

σ
ξ
√

1− ξ2
∫

eu du
(

√

1− ξ2 eu − 1
)2

− ξ2
, (59)

and the change of variables

v =
1

ξ

(

√

1− ξ2 eu − 1
)

> 1, (60)

yields

∫

dt

V
=

2

σ

∫

dv

v2 − 1
=

1

σ
ln

eu − w

eu − 1/w
, with w := expArtanh ξ =

√

1 + ξ

|1− ξ| . (61)

The computations are similar for the other scale factors. With the definitions

s1 := −L+M

3σ
, s2 :=

2L−M

3σ
, (62)

we obtain

a(t) = a∗ V (t)1/3 R(t)s1, b(t) = b∗ V (t)1/3 R(t)s2, c(t) =
V (t)

a(t) b(t)
, (63)

where a∗ and b∗ are integration constants and R is the strictly positive function of time
defined by























ξ < 1 : R(t) :=
eu − w

eu − 1/w
, u > Artanh ξ,

ξ = 1 : R(t) := 1− e−u, u > 0,

ξ > 1 : R(t) :=
eu − w

eu + 1/w
, u > Artanh (1/ξ).

(64)

A few remarks are in order:
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• As time grows, the anisotropy of the Universe fades away since R → 1. This is a well-
known property of Bianchi I cosmologies. In particular, equations (42) and (43) show
that this fading is driven by increasing volume V .

• If we choose t∗ = −(Artanh ξ)/
√
3Λ in the first case, ξ < 1, then the big bang occurs

at t = 0.

• The discussed solution is usually attributed to Saunders (1969). His field equations are

H ′

x +
1
3
Hx(Hx +Hy +Hz) = Λ + 4πGρ,

H ′

y +
1
3
Hy(Hx +Hy +Hz) = Λ + 4πGρ,

H ′

z +
1
3
Hz(Hx +Hy +Hz) = Λ + 4πGρ,

HxHy +Hy Hz +Hz Hx = Λ + 8πGρ.

(65)

In the isotropic limit where Hx = Hy = Hz =: H we obtain

H ′ +H2 = Λ + 4πGρ 3H2 = Λ + 8πGρ. (66)

Eliminating ρ in the first equation by using the second equation they read

2H ′ −H2 = Λ 3H2 = Λ + 8πGρ (67)

and are at variance with Friedman’s equations (38).

• Note that in the isotropic limit, σ goes to zero and some intermediate results, e.g. equa-
tion (59), in our derivation of the solutions to Einstein’s equations are singular. One
way to avoid these singularities is to take the limit in two steps with the intermediate
step being the ellipsoid of revolution. In any case, our final solutions, the scale factors
(63), have a well defined limit.

• For completeness we also indicate the case of negative cosmological constant. Defining
this time

r :=
4πGr∗
|Λ| ξ :=

√

|Λ|
3

σ

4πGr∗
, (68)

we can write the differential equation (50) for V in the form

dV
√

−(V + r)2 + r2(1− ξ2)
=
√

3|Λ|dt (69)

showing that there is no bifurcation since now ξ must be smaller than one for V to
remain real. The change of variables

V + r = r
√

1− ξ2 sin u (70)
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gives easily

V

V0
= −4πGρ0

|Λ|
(

1−
√

1− ξ2 sin u
)

< 0 u =
√

3|Λ| (t− t∗), (71)

and if one defines

s1 = 2
L+M

3σ
, s2 = −2

2L−M

3σ
, (72)

the scale factors are

a(t) = a∗ V (t)1/3 exp[s1 arctanR(t)], (73)

b(t) = b∗ V (t)1/3 exp[s2 arctanR(t)], c(t) =
V (t)

a(t) b(t)
, (74)

with

R(t) =
arctan(u/2)−

√

1− ξ2

ξ
. (75)

6 Small eccentricities

No drift in the positions of quasars or galaxies has been observed today. We therefore assume
that the three scale factors a, b and c differ only by small amounts:

b(t) =: a(t) [1 + β(t)] , c(t) =: a(t) [1 + η(t)] , β, η ≪ 1. (76)

As explained after equation (6), we may set β(t0) = η(t0) = 0 without loss of generality.

6.1 Kinematics

In the following we keep only leading terms in ǫ, δ and β, η, and continue using ≈ to indicate
this approximation.

Let us introduce the abbreviations N2 := A2 + B2 + C2 = 1 s2, χ :=
∫ t0
t−1

dt/a, β̄ :=

χ−1
∫ t0
t−1

β dt/a and η̄ := χ−1
∫ t0
t−1

η dt/a. Note that χ is the dimensionless comoving geodesic
“distance” between the supernova emitting the photon and the Earth. In these notations the
kinematics reads:

W ≈ a

N

[

1 +
B2

N2
β +

C2

N2
η

]

, (77)

z + 1 =
W0

W−1

≈ a0
a−1

[

1− B2

N2
β−1 −

C2

N2
η−1

]

, (78)

13



ǫ0x ≈ ǫ
B

N
χ

[

1−
(

1− 2
A2

N2

)

β−1 +

(

−2 + 3
B2

N2
+ 2

C2

N2

)

β̄ +
C2

N2
η̄

]

, (79)

ǫ0y ≈ − ǫ
A

N
χ

[

1 +

(

1− 2
β2

N2

)

β−1 +

(

−2 + 3
B2

N2

)

β̄ +
C2

N2
η̄

]

, (80)

ǫ0z ≈ − ǫ
ABC

N3
χ
[

−2 β−1 + 2 β̄
]

, (81)

δ0x ≈ δ
AC

Na−1

χ

[

1− 2
B2

N2
β−1 + 3

B2

N2
β̄ +

(

1− 2
C2

N2

)

η−1 +

(

−2 + 3
C2

N2

)

η̄

]

, (82)

δ0y ≈ δ
BC

Na−1

χ

[

1− 2
B2

N2
β−1 +

(

−2 + 3
B2

N2

)

β̄

+

(

1− 2
C2

N2

)

η−1 +

(

−2 + 3
C2

N2

)

η̄

]

, (83)

δ0z ≈ − δ
A2 +B2

Na−1
χ

[

1− 2
B2

N2
β−1 +

B2

N2

(

1− 2
C2

A2 +B2

)

β̄

+

(

1− 2
C2

N2

)

η−1 +

(

−2 + 3
C2

N2

)

η̄

]

, (84)

S0 ≈ ǫδ
A2 +B2

N

a20
a−1

χ2

·
[

1 +

(

A2

N2
− 3

B2

N2
+

A2 −B2

A2 +B2

C2

N2

)

β−1 − 2

(

1− 2
B2

N2

)

β̄

+

(

1− 2
C2

N2

)

η−1 − 2

(

1− 2
C2

N2

)

η̄

]

, (85)

Ω−1 ≈ ǫδ

4π

A2 +B2

Na−1

[

1 +

(

B2

N2
− 2

B2

A2 +B2

)

β−1 +
C2

N2
η−1

]

, (86)

ℓ ≈ L

4πχ2a20

a2
−1

a20

[

1−
(

1− 5
B2

N2

)

β−1 + 2

(

1− 2
B2

N2

)

β̄

−
(

1− 5
C2

N2

)

η−1 + 2

(

1− 2
C2

N2

)

η̄

]

. (87)

In linear approximation, the formula by Koivisto & Mota (2008b) reads:

ℓ ≈ L
4πχ2a2

0

a2
−1

a2
0

[

1 + 2 B2

N2 β−1 + 2 B2

N2 β̄ + 2 C2

N2 η−1 + 2 C2

N2 η̄
]

.

6.2 Dynamics

For the dynamics we will not only suppose β(t) and η(t) small, but also β ′(t)/
√
3Λ and

η′(t)/
√
3Λ small and indicate by ≈ the leading approximation in all small quantities.
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From equations (42) and (43) we get:

L = V (Hy −Hx) = V

(

b′

b
− a′

a

)

= V
β ′

1 + β
≈ V β ′ = V0 β

′

0, (88)

M = V (Hz −Hx) = V

(

c′

c
− a′

a

)

= V
η′

1 + η
≈ V η′ = V0 η

′

0. (89)

By its definition (52), the bifurcation parameter becomes

ξ =
2

g

√

β
′2
0 − β ′

0η
′

0 + η
′2
0

3Λ
≪ 1, with g :=

8πGρ0
Λ

, (90)

showing that we are in the first case of the bifurcation. Linearising the scale factors in this
case we get:

a

a0
≈

( g

2

)1/3

(cosh u− 1)1/3
[

1 + 4
3

β ′

0 + η′0
g
√
3Λ

{

1

eu − 1
− 1

2

(

√

g + 1 − 1
)

}]

, (91)

b

b0
≈

( g

2

)1/3

(cosh u− 1)1/3
[

1 + 4
3

−2β ′

0 + η′0
g
√
3Λ

{

1

eu − 1
− 1

2

(

√

g + 1 − 1
)

}]

, (92)

c

c0
≈

( g

2

)1/3

(cosh u− 1)1/3
[

1 + 4
3

β ′

0 − 2η′0
g
√
3Λ

{

1

eu − 1
− 1

2

(

√

g + 1 − 1
)

}]

, (93)

and for the eccentricities:

β ≈ −4
β ′

0

g
√
3Λ

{

1

eu − 1
− 1

2

(

√

g + 1 − 1
)

}

, (94)

η ≈ −4
η′0

g
√
3Λ

{

1

eu − 1
− 1

2

(

√

g + 1 − 1
)

}

. (95)

The consistency of these relations can be checked by computing its derivative with respect
to time t and by using equation (55) with ξ = 0 and t = t0:

g (cosh u0 − 1) = 2. (96)

Next we solve the redshift, equation (78),

z + 1 ≈ a0
a(t)

[

1− B2

N2
β(t)− C2

N2
η(t)

]

, (97)

for the departure time of the photon at the supernova. To alleviate notations, this departure
time t−1 is now simply written t or will be omitted. In linear approximation we have:

u =
√
3Λ (t− t∗) ≈ uF +

2

g
√
3Λ

[(

3
B2

N2
− 1

)

β ′

0 +

(

3
C2

N2
− 1

)

η′0

]

D
√

g (z + 1)3 + 1
, (98)
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with uF := Arcosh

[

2

g (z + 1)3
+ 1

]

and D :=
√

g (z + 1)3 + 1−
√

g + 1 (99)

For the apparent luminosity,

ℓ ≈ L

4πχ2a20

a2
−1

a20

[

1−
(

1− 5
B2

N2

)

β−1 + 2

(

1− 2
B2

N2

)

β̄

−
(

1− 5
C2

N2

)

η−1 + 2

(

1− 2
C2

N2

)

η̄

]

, (100)

we need the geodesic distance χ, the scale factor a, and the eccentricities β and η, all four
at the time of departure of the photon from the supernova and we need the eccentricities
averaged over the time of flight of the photon between the supernova and the Earth β̄ and
η̄, all six as functions of redshift in linear approximation. Let us denote isotropic quantities,
β = η = 0, with a subscript ·F for Friedman:

χF =
I

a0

√

3

Λ
, aF =

a0
z + 1

, ℓF =
L

4π

Λ

3I2(z + 1)2
, HF (z) =

√

Λ

3

√

g (z + 1)3 + 1, (101)

with the elliptic integral, cf appendix 1:

I(z) :=

∫ z

0

dz̃
√

g (z̃ + 1)3 + 1
=

√

Λ

3

∫ z

0

dz̃

HF (z̃)
. (102)

With these notations we can write:

χ ≈ χF

[

1 + 2
3

β ′

0

g
√
3Λ

{

√

g + 1− z

I
+

(

1− 3
B2

N2

)

z + 1

I

D
√

g (z + 1)3 + 1

}

(103)

2
3

η′0
g
√
3Λ

{

√

g + 1− z

I
+

(

1− 3
C2

N2

)

z + 1

I

D
√

g (z + 1)3 + 1

}]

,(104)

a ≈ aF

[

1 +
2

g
√
3Λ

(

B2

N2
β ′

0 +
C2

N2
η′0

)

D

]

, (105)

β ≈ −2
β ′

0

g
√
3Λ

D, β̄ ≈ −2
β ′

0

g
√
3Λ

{ z

I
−
√

g + 1
}

, (106)

η ≈ −2
η′0

g
√
3Λ

D, η̄ ≈ −2
η′0

g
√
3Λ

{ z

I
−
√

g + 1
}

. (107)

Finally, the apparent luminosity as a function of redshift is in linear approximation:

ℓ ≈ ℓF

[

1− 2√
3Λ

{(

1− 3
B2

N2

)

β ′

0 +

(

1− 3
C2

N2

)

η′0

}

Q

]

, (108)

Q :=
1

3g

{

4
( z

I
−
√

g + 1
)

+

(

2
z + 1

I
√

g (z + 1)3 + 1
− 3

)

D

}

. (109)
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Note that for small redshift, we have

Q ≈ 1√
g + 1

, (110)

lim
z→0

(

z2ℓ
)

≈ L

4π
H2

F0

[

1− 2
3

(

1− 3
B2

N2

)

β ′

0

HF0
− 2

3

(

1− 3
C2

N2

)

η′0
HF0

]

. (111)

Note also that Einstein’s equations imply:

Hx ≈ HF − 1
3
β ′ − 1

3
η′ , Hy ≈ HF + 2

3
β ′ − 1

3
η′ , Hz ≈ HF − 1

3
β ′ + 2

3
η′ , (112)

and

Ωm + ΩΛ = 1 +O(β, η)2, with Ωm :=
8πGρ0
3H2

F0

, ΩΛ :=
Λ

3H2
F0

. (113)

We have two privileged perpendicular directions, the x- and z-axes. The y-axis is then
determined up to a sign, which is irrelevant because of reflection invariance of the Bianchi I
metric (1). We denote by θ ∈ [0, π] the angle of the incoming photon with the z-axis and by
ϕ ∈ [0, 2π) the angle between the projection of the incoming photon into the xy-plane and
the x-axis:

A = N cosϕ sin θ, (114)

B = N sinϕ sin θ, (115)

C = N cos θ. (116)

In these notations the apparent luminosity as a function of redshift reads:

ℓ ≈ ℓF

[

1 +
2√
3Λ

{

β ′

0

(

3 sin2 ϕ sin2 θ − 1
)

+ η′0
(

3 cos2 θ − 1
)}

Q

]

, (117)

with the isotropic apparent luminosity

ℓF =
L

4π

Λ

3I2(z + 1)2
, (118)

the elliptic integral

I(z) :=

∫ z

0

dz̃
√

g (z̃ + 1)3 + 1
, g :=

8πGρ0
Λ

, (119)

and the auxiliary function

Q :=
1

3g

{

4
(z

I
−
√

g + 1
)

+

(

2
z + 1

I
√

g (z + 1)3 + 1
− 3

)

(

√

g (z + 1)3 + 1−
√

g + 1
)

}

.

(120)
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7 Data analysis

To confront the Bianchi I metric with data we use the type 1a supernovae Hubble diagram
from the Union 2 sample (Amanullah et al. 2010) with 557 supernovae up to a redshift of
1.4 and the Joint Light curve Analysis (JLA) (Betoule et al. 2014) with 740 supernovae
up to a redshift of 1.3. Note that 258 supernovae belong simultaneously to both samples.
Supernovae celestial coordinates are obtained from the SIMBAD astronomical database.

For the Union 2 sample, published data are the supernovae magnitudes at maximum of
luminosity corrected by time stretching of the light curve and color at maximum brightness.
The associated statistical and systematical errors are provided by the full covariance matrix
of supernovae magnitudes including correlations.

The JLA published data provide the observed uncorrected peak magnitudes (mpeak),
time stretching (X1) and color (C) with the full statistical and systematic covariance matrix
between all measurements including correlations between supernovae. The total likelihood
or χ2 is computed following the JLA paper prescription and a rewriting of the likelihood
computation program provided by the COSMOMC package (Lewis & Bridle 2002). We
choose to use the frequentist statistic (Amsler et al. 2008) based on χ2 minimization. The
MINUIT package is used to find the minimum and to compute errors with the second χ2

derivative. All presented results are obtained after marginalization over nuisance parameters.
The χ2 expression reads:

χ2 = ∆MTV −1∆M, (121)

where ∆M is the vector of differences between reconstructed (mr) and expected (me) mag-
nitudes at maximum and V is the full covariance matrix including systematic errors. The
reconstructed magnitude for JLA reads:

mr = mpeak + αsX1− βcC, (122)

where αs and βc are fitted simultaneously with the additional free parameters. The expected
magnitude is written as me(z) = ms − 2.5 log ℓ(z) where ms is a normalization parameter
fitted to the data.

Let us define the three dimensionless Hubble stretch parameters today as

hi := Hi0/HF0 − 1 for i = x, y, x. (123)

Using formula (112) they read:

hx ≈ −1
3
(β ′

0 + η′0)/HF0 , hy ≈ 1
3
(2β ′

0 − η′0)/HF0 , hz ≈ 1
3
(−β ′

0 + 2η′0)/HF0 , (124)

and verify hx + hy + hz = 0.
The apparent luminosity ℓ(z) is computed with equation (117) rewritten in terms of the

two Hubble stretch parameters hz, hx.

ℓ ≈ ℓF

[

1 +
2√
ΩΛ

{

hz

(

cos2 θ − sin2 ϕ sin2 θ
)

+ hx cos 2ϕ sin2 θ
}

Q

]

, (125)
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We search for preferred directions by scanning the celestial sphere in steps of 1 degree in
right ascension and declination. For each direction (rz, dz) assumed to be the z direction, we
minimize the χ2 over all other free parameters including Ωm and assuming a flat Universe.
The minimum χ2 in the (rz,dz) plane defines the privileged direction as well as the confidence
level contours.

Because of the huge number of χ2 to minimize and because the JLA sample requires
many large matrix inversions, the following analysis represents more than 100 000 hours of
computing time on a single CPU. To speed up the processing, we use the EGEE (Enabling
Grids for E-sciencE) datagrid facility with the DIRAC web interface (Tsaregorodtsev et al.
2008).

7.1 Bianchi I with axial symmetry

We first look for a unique preferred direction along ~uz. For the case of axial symmetry, we
take the Hubble stretch parameters in the x- and y-directions to be equal: hx = hy = −hz/2.
Then equation (125) simplifies to:

ℓ ≈ ℓF

[

1 +
1√
ΩΛ

{

hz

(

3 cos2 θ − 1
)}

Q

]

, (126)

For each celestial direction ~uz, we define θ to be the angle between ~uz and the direction of
the incoming photons from the supernovae. The isotropic apparent luminosity is computed
by rewriting formula (118) as:

ℓF =
LH2

F0

4π

1− Ωm

I(z)2(z + 1)2
(127)

The unknown constant term LH2
F0/4π is absorbed into the fitted normalization parameter

ms. The elliptic integral I(z) is computed numerically.
Figure 1 shows the confidence level contours with arbitrary color codes around the eigendi-

rections on the celestial sphere for the Union 2 and JLA samples. The black points show the
supernovae positions. Notice that the Bianchi I metric is symmetric under space reflections.
We therefore expect two back-to-back eigendirections with the same eigenvalues, which is
indeed the case. Figure 1 has two distinct eigendirections, a main one indicated by a gray
speck and a secondary one in green. The full blue line is the galactic plane and the purple one
corresponds to the plane orthogonal to the main eigendirection (gray speck). The statistical
significance of the main eigendirection for the Union 2 sample is about 41% while it increases
to 58% for JLA. The main eigendirections in the two samples are statistically compatible
(Table 1). They are close to the galactic plane and almost orthogonal to the direction from
the sun to the galactic center. For both samples, the Hubble stretch hz is negative and at
most 1.2 σ away from zero.

In Figure 1 the green specks represent a secondary direction with a weaker statistical
significance (30% and 35% confidence level for Union 2 and JLA respectively). They are in
the plane orthogonal to the main direction (purple line). The Hubble stretch in this secondary
direction has an opposite sign. Even though it is a weak statistical effect, data seem to call for
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Sample Union 2 JLA
Direction main secondary main secondary

right ascension(◦) 103± 58 169± 36 158± 29 160± 97
declination (◦) −56± 36 24± 35 −60± 11 −70± 50

galactic longitude (◦) 88± 45 36± 87 106± 16 23± 41
galactic latitude (◦) 22± 26 −68± 30 1± 10 19± 31
Hubble stretch in % −1.1 ± 1.1 0.7± 0.9 −1.7 ± 1.3 0.5± 0.9

χ2 Bianchi I 529.64 529.98 699.35 700.43
Ωm 0.27± 0.04 0.29± 0.03

χ2 isotropic 530.71 701.3

Table 1: Fit results (1σ errors) for Bianchi I with axial symmetry. We have used the invari-
ance of the Bianchi I metric under space reflection to constrain the eigendirections to the
hemispheres with right ascension or galactic longitude between 0◦ and 180◦.

a second eigendirection. This feature is clearly observed in Figure 3 presenting our simulation
program. As a possible consequence, the minimum χ2 is not as good as one would expect
from three additional degrees of freedom compared to the isotropic case. We conclude that
there is some stress in the data when confronted to the Bianchi I with axial symmetry.

7.2 Tri-axial Bianchi I

The last remarks motivate us to extend the fit to the general Bianchi I metric with three
distinct eigenvalues and three orthogonal eigenvectors.

As in the previous subsection we start with a first eigendirection ~uz defined by its celestial
coordinates (rz, dz):

~uz := (cos rz cos dz, sin rz cos dz, sin dz) (128)

We then construct an orthonormal basis ( ~vx, ~vy, ~vz = ~uz) as follows: We choose the second
unit vector ~vx := (sin rz,− cos rz, 0) orthogonal to ~vz. The third unit vector is then defined
by: ~vy := ~vz ∧ ~vx.

The second eigendirection ~ux is obtained by rotating the vector ~vx by an angle γ around ~uz.
The third eigendirection is completely fixed as well as the corresponding stretch parameters.
The angle θ is the angle between ~uz and the direction of the incoming photons from the
supernovae and ϕ is the angle between ~ux and the projection of the incoming photon into
the (~vx,~vy) plane.

For each direction defined by its celestial coordinates we compute the χ2 with formula
(125) and minimize it with respect to the following set of free parameters: ms, αs, βc, Ωm,
hz, hx and γ.

Figure 2 shows the confidence level contours with arbitrary color codes around the eigendi-
rections on the celestial sphere. The gray specks mark the three eigendirections in each
hemisphere. They materialize the unit vectors ~ux, ~uy and ~uz. The main eigendirection has
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by definition the largest Hubble stretch in absolute value and is given by ~uz. As in the axial
case, this direction is close to the galactic plane (blue line). The two remaining eigendirec-
tions are contained in the plane orthogonal to the main eigendirection ~uz (purple curve).
Blue specks within blue contours are regions where χ2 is maximum. They correspond to the
underprivileged regions that we expect on a sphere with several minima of χ2.

Table 2 summarizes the eigendirections and eigenvalues for the Union 2 and JLA super-
novae samples. The main eigendirections ~uz of both samples are close to each other. And
they are statistically compatible with the main eigendirection of the axially symmetric case.
The main Hubble stretch hz is negative with a maximum significance of 1.3σ. In the JLA
sample, both secondary Hubble stretch parameters are very similar, which is compatible with
the axial symmetry. The improvement in the minimum χ2 compared to the isotropic case is
of the order of 2 units which is still too low for four added degrees of freedom.

Sample Union 2 JLA
Direction ~ux ~uy ~uz ~ux ~uy ~uz

ascension(◦) 142± 67 48± 59 126± 52 160± 30 34± 64 177± 56
declination(◦) 33± 21 8± 32 −58± 21 28± 14 −20± 20 −65± 14
longitude(◦) 12± 35 172± 51 91± 30 28± 28 18± 36 116± 25
latitude(◦) −47± 52 −41± 53 10± 20 −21± 60 69± 57 3± 11
stretch(%) 1.2± 1.1 0.3± 0.7 −1.5± 1.3 0.7± 1.0 1.1± 1.1 −1.8± 1.4
χ2 Bianchi I 529.08 699.1

Ωm 0.27± 0.04 0.28± 0.04

χ2 isotropic 530.71 701.3

Table 2: Fit results (1σ errors) for tri-axial Bianchi I. We have used the invariance of the
Bianchi I metric under space reflection to constrain the eigendirections to the hemispheres
with right ascension or galactic longitude between 0◦ and 180◦.

7.3 Preliminary discussion

The largest Hubble stretch we find in absolute value is equal to hz = −1.8% with a statistical
significance of about 1.3σ. In the following sense, this corresponds to a pumpkin-like Universe
in the future:

Consider a small, 2-dimensional, comoving sphere today, t = t0, in a Bianchi I Universe
with axial symmetry around the z-axis, a(t) = b(t), and with negative Hubble stretch hz.
Recall that in our conventions a(t0) = b(t0) = c(t0). Then this sphere evolves with Einstein’s
equations in the future, t > t0, into an oblate ellipsoid of revolution (pumpkin), a(t) = b(t) >
c(t). However, it comes from a prolate ellipsoid of revolution (rugby ball), a(t) = b(t) < c(t)
in the past, t < t0. Indeed Einstein’s equations imply that the Hubble stretches cannot
change sign.

The main privileged direction is in all cases contained in the galactic plane and almost
orthogonal to the direction between the sun and the galactic center. One is tempted to think
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that we are just measuring our proper velocity around the galactic center. In principle, the
observer’s proper velocity is already corrected for in the calibration of the data. Nevertheless,
we will test the hypothesis of a forward-backward asymmetry. To this end, we split the
supernovae of both samples into two hemispheres with respect to the main eigendirection ~uz,
backward (~u+

z ) and forward (~u−

z ) corresponding respectively to the regions above and below
the purple line in Figure 2. The number of supernovae per hemisphere is 338 (respectively
219) in the backward (respectively forward) hemisphere for Union 2 and 100 (respectively
640) for JLA.

Using the axially symmetric fitting procedure and fixing ~uz to the main direction as in
Table 2, we find h+

z = (1.3± 2.1)% , h−

z = −(2.3 ± 1.5)% for Union 2 and
h+
z = (2.8± 2.9)% , h−

z = −(1.8± 1.5)% for JLA.
This small forward-backward asymmetry is no more than a 1.6σ statistical effect and does

not allow us to draw any relevant conclusion.

8 Outlook

8.1 Comparison with other observations

The Bianchi I metric is also used to decipher anisotropy in CMB data (Cea 2014) and in
apparent proper motion measurements of extragalactic sources (Darling 2014).

Cea (2014) uses the axially symmetric Bianchi I metric to fit the Planck and WMAP data
and finds an eccentricity at redshift z = 1090 of e = (0.86±0.14) ·10−2 and an eigendirection
with galactic latitude of ±17◦. In our notations we have,

β =
√
1− e2 − 1, η = 0. (129)

We use the first of equations (106) to compute β ′

0 and the second of equations (124) to get
the main Hubble stretch. Table 3 compares Cea’s results to ours. Although Cea’s Hubble
stretch has the opposite sign and is smaller than ours by 8 orders of magnitude, the results
are still compatible with each other.

Sample CMB Union 2 JLA
galactic longitude (◦) 88± 45 106± 16
galactic latitude (◦) ±17 22± 26 1± 10
Hubble stretch in % (5.7± 1.8) · 10−8 −1.1± 1.1 −1.7± 1.3

Table 3: Cea’s fit (Cea 2014) (1σ errors) of Bianchi I with axial symmetry to CMB data
compared with the two present fits.

Darling (2014) uses a tri-axial Bianchi I metric to fit the apparent motion, ‘drift’ for
shortness, of 429 extragalactic radio sources measured by Titov & Lambert (2013) using
Very Long Baseline Interferometry. Table 4 compares Darling’s results to ours. His main
Hubble stretch has the same sign as ours but is ten time larger. Although the results are
again compatible statistically, their head-on comparison raises a conceptual difficulty. Unlike
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the Hubble diagram, drift measurements do depend on the peculiar velocity (and accelera-
tion) of the observer and the separation of anisotropy induced by this peculiar velocity from
anisotropic expansion at cosmological scale is delicate (Fontanini 2009). This is also true for
measuring redshift distributions of quasars (Singal 2014).

Sample drift

ascension(◦) 102± 24 13± 15 11± 33
declination(◦) 1± 14 −47± 26 43± 26
stretch(%) −19± 7 17± 7 2± 7

Sample Union 2

ascension(◦) 126± 52 322± 67 48± 59
declination(◦) −58± 21 −33± 21 8± 32
stretch(%) −1.5± 1.3 1.2± 1.1 0.3± 0.7

Sample JLA

ascension(◦) 177± 56 34± 64 160± 30
declination(◦) −65± 14 −20± 20 28± 14
stretch(%) −1.8± 1.4 1.1± 1.1 0.7± 1.0

Table 4: Darling’s fit (Darling 2014) (1σ errors) of tri-axial Bianchi I to the apparent proper
motion (drift) of 429 extragalactic radio sources compared with the two present fits. For ease
of comparison we have changed the sign of the second eigendirection in Union 2.

8.2 Future prospects

It is fair to say that all three observations, CMB, drift and Hubble diagram, pick up an
intriguing signal of anisotropy when analysed in terms of a Bianchi I cosmology. All three
signals fail to be significant. All three signals have some tension with each other. However
two signals can look forward to exciting new data in the near future.

After a successful launch in December 2013, the satellite Gaia has started its five-year pe-
riod of data taking. These data should reduce the error bars on the Hubble stretch measured
through the drift of quasars from the present seven percent to one percent (Darling 2014).

We count on the Large Synoptic Survey Telescope (LSST) (Abell et al. 2009) to reduce
the error bars in the Hubble diagram. LSST is a 6.7 meter telescope being built in Chile
and that should start taking data in seven years. It will carry out a survey of 20 000 square
degrees of the sky, essentially the southern hemisphere, in six photometric bands with a
main cadence for observation of 3 to 4 days allowing discovery and sampling of light curve
supernovae up to a redshift of about 0.8. The total number of SNe Ia in the main survey
with a photometry sufficient for light curve fitting and photometric redshift measurement is
of the order of 50 000 per year.

Let us see to what extent LSST can improve the present analysis. To this end, we simulate
randomly 50 000 supernovae in 20 000 square degrees with a redshift distribution centered
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around z ≈ 0.45 and going up to z ≈ 0.8. The magnitude error including intrinsic dispersion
and photometric light curve fitting error is taken to be 0.12. The redshift error is set to
σz = 0.01 (1 + z) and is propagated to magnitude error.

Table 5 shows expected errors for 1 year and 10 years of LSST modelled by the tri-axial
Bianchi I metric. Fiducial values for the main Hubble stretch parameter are taken to be 5σ
away from zero for 1 year of LSST survey, and 3σ respectively 1σ in the two other principLE
directions. The main result is that after 10 years of LSST survey, stretch parameters can be
estimated with an accuracy of about 3 · 10−4 and the main eigendirection with an accuracy
of a few degrees for a stretch parameter of the order of 3 · 10−3.

Figure 3 shows the confidence level contours for axial and tri-axial Bianchi I metric fits
with arbitrary color codes around the eigendirections on the celestial sphere for 1 year of
LSST. All features observed in these figures are similar to those observed on real data. Bold
black contours mark 68% confidence level and show the same kind of degeneracy as in figures
2. This is due to the very close values of the Hubble stretch parameters in the secondary
eigendirections (~ux, ~uy).

Sample LSST 1 year LSST 10 years
Fitting method Axial Tri-axial Axial Tri-axial

Direction ~uz ~ux ~uy ~uz ~uz ~ux ~uy ~uz

ascension(◦) ±12 ±67 ±37 ±20 ±4 ±20 ±12 ±6
declination(◦) ±7 ±21 8± 8 ±9 ±2 ±7 ±3 ±3
stretch(%) ±0.06 ±0.1 ±0.1 ±0.09 ±0.02 ±0.03 ±0.03 ±0.03

Table 5: 1σ errors for the two fits using axial and tri-axial Bianchi I metrics for 1 and 10
years LSST simulations with a tri-axial supernova distribution.

9 Conclusions

Today the Hubble diagram remains one of the cleanest windows on the Universe and still
holds a lot of potential, both for data and theory. Indeed the underlying theory is simply
general relativity together with a possibly weakened cosmological principle and allows for
precise calculations. In view of the expected LSST data the Hubble diagram seems particu-
larly well suited to separate geography from geometry in the sense of the Introduction.
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Appendix: Elliptic integral

Consider the integral

I(z) =

∫ z

0

dz̃
√

g(1 + z̃)3 + 1
z ≥ 0. (130)

Its computation follows from Mészáros & Řı́pa (2013). The change of variables,

v =
1

1 + z̃
, (131)

gives

I(z) =

∫ 1

(1+z)−1

dv
√
v
√

g + v3
, (132)

followed by

v = g1/3 y, I(z) = g−1/3

∫ g−1/3

g−1/3(1+z)−1

dy
√
y
√

1 + y3
. (133)
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Following Mészáros & Řı́pa (2013) let us define

cos
(

θ(z)
)

:=
1 + z − (

√
3− 1)g−1/3

1 + z + (
√
3 + 1)g−1/3

, (134)

which finally yields

I(z) = 3−1/4 g−1/3
(

F (θ(0), k)− F (θ(z), k)
)

, k2 :=
2 +

√
3

4
< 1. (135)

The elliptic integral (of first kind) is defined by

F (φ, k) :=

∫ φ

0

du
√

1− k2 sin2 u
. 0 < k2 < 1. (136)
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Figure 1: Confidence level contours of privileged directions in arbitrary color codes for Bianchi
I spacetimes with axial symmetry. Black points represent supernova positions. Note the
accumulation of supernovae in the equatorial plane. The blue line is the galactic plane and
the purple line is the plane transverse to the main privileged direction ~uz (gray speck). The
green specks show the secondary directions. The red star is the direction towards our galactic
center.
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Figure 2: Confidence level contours of privileged directions in arbitrary color codes for the
tri-axial Bianchi I metric. Black points represent supernova positions. Note the accumulation
of supernovae in the equatorial plane. The blue line is the galactic plane and the purple line is
the plane transverse to the main privileged direction ~uz (gray speck). Blue specks correspond
to regions where χ2 is maximum. The red star is the direction towards our galactic center.
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Figure 3: Confidence level contours of privileged directions in arbitrary color codes for the
two fits using the axial and tri-axial Bianchi I metric for one year of LSST. 68% confidence
level contours are drawn in bold. The blue line is the galactic plane and the purple line is
the plane transverse to the main privileged direction ~uz (gray speck). The red star is the
direction towards our galactic center. The green specks in the upper plot show the secondary
directions in the axial fit while the blue specks in the lower plot show regions where χ2 is
maximum.
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