
HAL Id: hal-00996876
https://hal.science/hal-00996876v1

Submitted on 27 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DISCUS: A massively distributed IDS architecture using
a DSL-based configuration

Damien Riquet, Gilles Grimaud, Michaël Hauspie

To cite this version:
Damien Riquet, Gilles Grimaud, Michaël Hauspie. DISCUS: A massively distributed IDS architecture
using a DSL-based configuration. International Conference on Information Science, Electronics and
Electrical Engineering, Apr 2014, Sapporo, Japan. 5 p. �hal-00996876�

https://hal.science/hal-00996876v1
https://hal.archives-ouvertes.fr

1

DISCUS: A massively distributed IDS architecture

using a DSL-based configuration
Damien Riquet, Gilles Grimaud, Michaël Hauspie

Laboratoire d’Informatique Fondamentale de Lille

Université Lille 1

59650 Villeneuve d’Ascq

Email: firstname.lastname@lifl.fr

Abstract—Nowadays, cloud computing becomes quite popular
and a lot of research is done on services it provides. Most of
security challenges induced by this new architecture are not yet
tackled. In this work, we propose a new security architecture,
based on a massively distributed network of security solutions, to
address these challenges. Current solutions, like IDS or firewalls,
were not formerly designed to detect attacks that draw profit from
the cloud structure. Our solution DISCUS is based on a distributed
architecture using both physical and virtual probes, along with
former security solutions (IDS and firewalls). This paper describes
DISCUS SCRIPT, a dedicated language that provides an easy way
to configure the components of our solution.

I. INTRODUCTION

Cloud computing is a popular model that provides large
resources. A commonly admitted definition by the NIST [15]
describes cloud computing as “a model enabling ubiquitous,
convenient, on-demand network access to a shared pool of con-
figurable computing resources”. With the increasing popularity
of cloud computing, its security importance is rising and could
delay cloud computing adoption for hesitant companies.

In 2010, a study [24] reported that 62 % of small and
medium businesses had no plan to move to cloud computing
due to security concerns. Academia researchers [2], industry
actors [22], and government organizations [11] share the same
perspective. That is why cloud providers need to propose a
turnkey solution that deals with security concerns like intrusion
detection or large-scale coordinated attacks.

Even though the “cloud computing” designation is quite
recent, a lot of security concerns have already been studied.
In [7], Chen et al. list what are the new challenges of cloud
computing. One of these challenges is facing black hats who
maintain the appearance of regular users but in fact perpetrate
cybercrime or cyber attacks [5, 6]. Also, they mention that
shared resource environment could introduce unexpected side or
covert channels. Eventually, they point out that cloud providers
need to isolate their structure at different granularities (virtual
or physical machines, LANs, clouds or datacenters).

Isolation of the cloud components prevents some attacks that
draw profit from its structure such as internal attacks (attacks
led from the inside of the cloud targeting internal hosts).

Figure 1 pictures a cloud structure with several entry points,
several levels of network devices and physical hosts. This basic
structure could be either targeted from outside (horizontally
dashed) or used to target external hosts (vertically dashed).
Our work focuses on detecting these attacks as well as internal
attacks (plain), even inside the same cluster or physical machine.
The later attacks are yet seldom studied in the literature and,

Figure 1: Attacks on the cloud

to the best of our knowledge, no solution has been proposed
to deal with them.

Current network security solutions in the cloud are Intrusion
Detection Systems (IDS), Intrusion Prevention Systems (IPS)
and firewalls. For example, Amazon Web Services (AWS)
cloud [1] uses instance isolation and firewalls. This type of
device is designed to detect intrusion or attacks from outside
to inside of the structure. This is why traditional security
solutions are not able to detect internal intrusions, because they
are located at the border of the network or simply not aware
of the global security state.

In [19], we showed that distributed attacks could easily evade
these security solutions, especially in structure with several
entry points, like cloud computing.

Though cloud computing relies on datacenter structures, a
new challenge arising is to protect the cloud network as well as
the end users. Cloud computing security must be adaptable to
dynamic architecture (end users may change during an attack).
Moreover, cloud users may be malicious or an attacker could
have the control of one or several internal hosts. Cloud security
must ensure applications availability and data integrity. Finally,
it must prevent distributed denial of service (DDoS), worms
spreading and such large-scale coordinated attacks (even inside
the cloud infrastructure).

Our proposal introduces a new architecture designed for
large scale infrastructure, located at multiple places and subject
to attacks (either internals or not). This solution, named
DISCUS, is based on a massively distributed structure using
heterogeneous probes. Physical and virtual probes are scattered

2

across the network and collaboratively detect intrusions and
attacks. Physical probes could be a cheap and reconfigurable
device (typically a FPGA) placed behind an host or directly
integrated into the switches. Virtual probes are integrated into
physical hosts and could be based on existing security solutions
like Snort [20] or Bro [17].

The main feature of our solution is to provide a common
framework for distributed security based on heterogeneous
security devices. Any security solution could be integrated into
DISCUS, providing that a back-end exists for this device. One
of the supported back-end is Snort and we intend to develop
back-ends for firewalls (for example pfSense) or operating
systems (through a kernel module).

One of the challenge induced by this architecture is the
administration of all the probes. The administrator uses DISCUS

SCRIPT to write global security rules once, then the compiler
is responsible for instantiating every device with relevant rules.

Our solution tackles new challenges arising with cloud com-
puting. Also, in such structures, customers change constantly
and a security solution must be aware of it. Goals of DISCUS

are to provide a reconfigurable security solution that is fitted to
large-scale infrastructures and also identify or isolate precisely
an host among thousands.

The paper is structured as follows. First, Section II introduces
related work. Section III describes the architecture of DISCUS,
its components and its deployment process. Section IV presents
the dedicated language used to configure devices of our solution
and Section V proposes an analysis of several security rules
written with this language. Finally, Section VI concludes this
paper.

II. RELATED WORK

There are three main areas of prior work that are related to
this research: (a) security devices used in large scale networks,
(b) techniques to distribute these devices and (c) higher-level
domain-specific language for security rules description.

Rimal et al. present cloud computing in [18] as the
concept that addresses the next evolutionary step of distributed
computing. They add that there is a growing concern about
its security. Users store confidential information in these
architectures, and in wrong hands, it could create civil liability.

Main components of network security structures are firewalls
and intrusion detection systems. Bellovin et al. describe
firewalls in [3] as components placed between two networks.
All the traffic between these networks must pass through the
firewall. Also, firewalls filter authorized traffic, defined by local
security policies. Debar et al. outline in [9] that the main task
of an Intrusion Detection System (IDS) is to monitor the usage
of systems and to detect insecure states. IDS detect attempts
and active misuses by legitimate users or external parties to
abuse their privileges or exploit security vulnerabilities. Popular
IDS, like Bro [17] or Snort [20], are based on signatures rules
that can match undesired behavior or network traffic.

Early motivation to distribute security systems was to tackle
modern network topologies. In [23], Snapp et al. introduce
DIDS, a distributed IDS monitoring an heterogeneous network
of computers. In the late 90s, Bellovin et al. also proposed
in [4] to distribute firewalls because conventional firewalls
rely on the notions of restricted topology and controlled
entry points. While first solutions were centralized (several
probes on the network and a central correlation unit), recent
solutions are distributed (each component detects attacks and

tries to collaborate with the other components) [26]. The latter
are based on agents that analyze network traffic in order to
collaboratively detect intrusions using alert correlation.

What we propose through DISCUS is not an agent-based
infrastructure that correlates alerts coming from every probes.
We want these agents to be able to share data so that all
components can be aware at anytime of the state of the
network. Our solution uses a content-based Peer-to-Peer system
where each agent collaborates and disseminates local analysis.
Previous works, like [13, 14, 25], use Distributed Hash Tables
to distribute IDS or to detect large-scale attacks as DDoS, worm
spreading or distributed portscan.

Dedicated languages, also known as Domain-Specific Lan-
guages, are tailored for a specific application domain. A
network security DSL can describe an exploited vulnerability,
how an attack is performed, what are the consequences of such
attack, or how to react.

Exploit languages [21, 10] are used to describe how an
attack is performed and the stages of the attack. Knowledge
languages [16, 8] have a global expertise of described attacks
and know the implications of a single event. They use pre
and post conditions to trigger security rules. Detection lan-
guages [17, 20] describe the detection of an attack according to
a number of occurrences of events. Response languages [21, 12]
describe how to react when an attack is detected.

Our solution consists in describing security rules as events,
structures and functions. Following languages use the same
concepts. One of the first network security language proposed
was the Bro language [17] that describes security rules using
variables, structures, functions and statements. STATL [10] is a
state-based language that use security rule to describe transition
from an automaton.

III. DISCUS

The main goal of DISCUS is to detect and stop attacks
targeting or using large network architecture, like cloud com-
puting. Also, we want this solution to be easily (re)configurable
because new exploits are discovered every day. People who
are responsible for the security of a network should be able
to load the new security rule easily, that is why we provide a
simple and expressive dedicated language.

This section introduces DISCUS. First, it describes the
proposed solution, then the security devices integrated into the
solution, and eventually how to configure the whole structure.

A. Architecture overview

Commonly used network security solutions are firewalls and
Intrusion Detection Systems. These solutions usually consider
that attacks are led from an external network targeting the
protected network (or vice versa). That is not true anymore
for large networks like in cloud computing. Because these
devices are not adequate for this type of network, we propose
another security structure based on common security solutions,
combined with a massively distributed structure composed of
security probes.

Figure 2 represents the proposed structure. In this basic
structure, firewalls remain the entry points from the outside
of the network and filter undesired traffic. New elements are
security probes, either physical or virtual. We want these
security probes to be as close to the hosts as possible. Thus,
we can finely analyze network traffic that goes through these

3

Figure 2: DISCUS architecture

security probes and stop attempts of intrusions and attacks,
directly at their source. This can also let security administrator
isolate one or several hosts which have been detected as
malicious. Physical probes are placed behind physical hosts
or plugged to the switch or directly integrated into it. Virtual
probes are necessary when virtual machines are running on a
physical machine (typical scenario in cloud computing). In this
case, we need to analyze traffic that comes from every virtual
machine, in order to prevent attacks inside a physical host.
These probes are configured by an administrator responsible
for the security of the structure. He describes security rules
thanks to DISCUS SCRIPT, a dedicated language, and uses
the provided compiler to generate a unique binary for every
security probe. After being configured, security components
cooperate to detect intrusion occurring on the network. If
a decision has to be made (for example, how to react when
an intrusion has been detected), decision can be delegated to
powerful components of the structure like firewalls.

B. Security probes

In our solution proposal, we introduce new security probes.
The goal of these security probes is to be placed in cut-
through configuration between hosts and network elements.
Physical probes are physically plugged directly on the host or
the closest switch. Virtual probes are integrated into physical
hosts running virtual machines. The latter could be existing
security solutions such as Snort or Bro, customized in order to
be able to collaborate into DISCUS. They process network data
from these virtual hosts in order to prevent attacks occuring
inside a same physical host. Also, they can isolate a virtual
machine which has been detected as being a malicious host.

C. Configuration of the structure

Configuration of security devices of our solution is done
in few steps. Figure 3 depicts these steps. At first, (1) the
security administrator write security rules using the dedicated
language. Then, thanks to a configuration file describing the
network structure, (2) he compiles these rules using DISCUS

SCRIPT’s compiler. Eventually, (3) the compiler generates a
binary program for every probe and components of the security
structure. Each binary is produced by selecting and adapting
a subset of the rules matching the context of the target. For
example, a rule specifying that network traffic from a specific
internal host is forbidden will only be consistent for the security
probes monitoring this specific host.

Figure 3: DISCUS deployment

IV. DISCUS SCRIPT

In this section, we introduce the dedicated language proposed
along with our solution DISCUS. In our case, we wanted to
configure easily probes and security elements of the structure.
We use a static typing and declarative language. Besides,
security rules expressed in this language are described as events,
because it is natural to describe a sequence of network packets
as a sequence of events. Following subsections introduce main
syntax elements of the language. We will not discuss in this
paper some syntax elements (like structures or enumerations)
because they are very similar to C instructions, as well as types
(because of the length of the paper). The only types used in
this paper are enums, netaddr and intX, where X is the number
of bits of the integer.

A. Table declaration

A security device usually keeps contextual data in order to
run analysis. It includes hosts on the network, state of the
connections, number of connections, and so on. Tables are
aggregate types that store contextual data. For example, it can
be used to store the number of failed TCP connections in order
to detect portscan. Such tables are local or shared between
components of the security solution.

Listing 1: Example of a local table declaration

t a b l e attack_attempts {

i n t 3 2 attacker;

i n t attempt_counter;

t ime last_attempt;

};

Listing 1 declares a table storing the number of attack
attempts for a specific IPv4 source. When this number reaches
a fixed threshold, the security device reacts or raises an alert.

One of the goal of DISCUS is to provide a distributed system
able to detect large-scale attacks. This type of detection is
possible through tables which can be global or local. A local
table could be assimilated to a database stored directly on the
security device (like common security solutions). Shared tables
are spread over the network and each device is able to get or
update entries of an table. When the compiler is processing
the security rules, it has the full knowledge of which security
devices can store data (thanks to the topology configuration),
which security devices insert or update entries in which table
and so on. It is the role of the compiler whether or not to
distribute a table and where to distribute it.

Such distributed architecture could be based on existing
systems like Distributed Hash Table. A network overlay such
as Peer-to-Peer systems deals with joining and leaving device
and provides fault-tolerance and scalability.

4

B. Purge and deletion of tables

Our solution is based on a multitude of security probes storing
tables. Unfortunately these devices have limited resources and
cannot store unlimited data. That is why table entries need to
be deleted. There are two scenarios for deletion of entries: no
more resources on the device (need to purge the system) or
obsolete entries (deletion of obsolete entries).

Listing 2: Example of a deletion statement

remove attack_attempts

when (now - last_transmission) > 3600;

In Listing 2, we specify that we do not want to keep entries
that are too old (in this case, last attempt has been made at
least one hour ago). Purge statements are declared in a similar
manner, that is why we won’t discuss it here.

C. Event-based security rules

Major statements of this dedicated language are security
rules. We chose to adopt an event-based approach because
network attacks could be naturally separated into events spread
over the time. Moreover, event based systems can be easily
and very efficiently implemented on FPGA. Listing 3 presents
the syntax used to define a new event. A rule is triggered when
an event (on A) occurs and conditions are satisfied. An event
is defined using a name and a list of parameters. When a rule
is triggered, it can execute several statements and/or raise one
or several events (raise D), immediately or after a delay. There
are several statements: create or delete a table entry, update a
field in a table or run a command.

Listing 3: Security rule syntax

on A(args)

where ... /∗ C o n d i t i o n s ∗ /
i n s e r t ... /∗ T a b l e s ∗ /
update ... /∗ T a b l e s f i e l d s ∗ /
run ... /∗ S c r i p t or a c t i o n from t h e l i b r a r y ∗ /
r a i s e D [in ...];

Conditions are optional and a rule must have at least a
statement. More examples of security rules are given in
Section V.

D. Characteristics of the language

In this subsection, we point out several characteristics of
the dedicated language. First, we want the compiler to be
minimalist, in other words, we want that almost all elements
are defined using the language (for example, ip or tcp structure
will be defined using the language and not hard-coded in it).
Also, the compiler is able to detect inconsistent or conflicting
rules and alert the security administrator so that he could correct
corresponding rules. Finally, the compiler decide where the
data is stored across the network of security devices.

Our language has several properties as well. It is a statically
typed language, mainly because we want to avoid programming
mistakes or semantic misinterpretations. Also, the language
detects cycles, thus it can guarantee the detection process will
terminate. Finally, the compiler deletes inconsistent or unused
rules : orphan event, sequences of events that lead to a dead
leaf (an terminal rule that does nothing for example).

V. SECURITY RULES EXAMPLES

In this section, we describe several security rules using
DISCUS SCRIPT. In the following example, we want to prevent
a SYN flood attack, a simple but effective denial of service.
A basic idea to detect this type of attack is to pay attention
to the number of opened connections between two hosts that
are not fully established. When this number exceeds a fixed
threshold, the security solution can react (for example, blacklist
the establishing host, close all connections and so on).

We consider that the table attack_attempts from Listing 1
is defined for the remainder of this example. We also consider
that an event tcp_packet, triggered when a TCP packet is
received, is implemented into the library of the solution.

At first, we need to create a contextual structure that stores
the state of TCP connection.

enum tcp_state {...};

t a b l e tcp_table {

netaddr src, dst;

i n t 1 6 p_src, p_dst;

enum tcp_state state;

t ime last_trans;

};

When a new TCP connection is being established, we create
an entry and store it locally. Because of the length of the paper,
we will omit parameters not used in this example.

on tcp_packet(..., netaddr src, netaddr dst,

i n t 1 6 p_src, i n t 1 6 p_dst, i n t 9 flags, ...)

where flags == SYN

i n s e r t i n t o tcp_table {

src = src; dst = dst;

p_src = p_src; p_dst = p_dst;

tcp_state = TCP_HANDSHAKE_SYN;

last_transmission = now;

};

When such entry table is created and the remote host answers
back a TCP SYN-ACK, we try to detect SYN flood. This attack
consists in partially opening a lot of TCP connections in order
to exhaust the target’s resources. So, a basic detection method
is to look for TCP connections not fully opened after a short
delay (here 250 ms). We consider for the following listings
that the arguments are the same.

on tcp_packet(...)

where flags == SYN | ACK

and e x i s t s t in tcp_table

with t.src == src, t.dst == dst,

t.p_src == p_src, t.p_dst == p_dst,

t.state == TCP_HANDSHAKE_SYN

r a i s e syn_flood_attempt(src, dst, p_src, p_dst)

in 250 ms;

If the TCP connection is still not fully established after that
short delay, we use a local table entry that store the number of
attempted attacks. When the structure exists, we only need to
update attempt_counter and the time of the last attempt.

on syn_flood_attempt(...)

where e x i s t s t in tcp_table

with t.src == src, t.dst == dst,

t.p_src == p_src, t.p_dst == p_dst,

t.state == TCP_HANDSHAKE_SYN

and not e x i s t s a in attack_attempt

with a.attacker == dst

i n s e r t i n t o attack_attempt {

5

attacker = dst;

attempt_counter = 1;

};

on syn_flood_attempt(...)

where e x i s t s t in tcp_table

with t.src == src, t.dst == dst,

t.p_src == p_src, t.p_dst == p_dst,

t.state == TCP_HANDSHAKE_SYN

and e x i s t s a in attack_attempt

with a.attacker == dst

update a.attempt_counter += 1

update a.last_attempt = now

r a i s e syn_flood_check(src)

When the number of attempted attacks reaches a fixed
threshold, the security solution reacts. In this case, we decide
to blacklist the attacker for one hour.

on syn_flood_check(netaddr src)

where e x i s t s a in attack_attempts

with a.src == src,

a.attempt_counter >= THRESHOLD

run blacklist(src, 3600);

VI. CONCLUSION

Cloud computing is a powerful architecture. It can provide
several layers of services according to the needs of end users.
Currently, only security concerns delay its massive adoption.

In this paper, we propose DISCUS, a new architecture that
could solve security issues arising with cloud computing. Our
proposal is based on a massively distributed structure that
relies on commonly used security solutions but also probes
scattered across the cloud structure. These probes could be
physical or virtual and are located close to rented hosts. They
collaboratively detect intrusions and attacks that target or use
the cloud structure. To configure all these probes, we propose
in this article DISCUS SCRIPT, a dedicated language, that
describes security rules.

At the moment, the compiler is implemented, as well as the
Snort backend. We are currently experimenting this backend
and working on the configuration and deployment of security
rules. Future work includes distribution of data across the
probes and probes reconfiguration on the fly.

REFERENCES

[1] Amazon. Amazon web services: Overview of security
processes. Technical report, 2011. URL http://aws.
amazon.com/security.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
and M. Zaharia. Above the clouds: A berkeley view of
cloud computing. Technical report, 2009.

[3] S. Bellovin and W. Cheswick. Network firewalls.
Communications Magazine, IEEE, sept. 1994.

[4] S. M. Bellovin. Distributed firewalls. Journal of Login,
24(5):37–39, 1999.

[5] Bitweasil. Cryptohaze cloud cracking. Defcon 20, 2012.
[6] D. Bryan and M. Anderson. Cloud computing : A weapon

of mass destruction? Defcon 18, 2010.
[7] Y. Chen, V. Paxson, and R. H. Katz. What’s new about

cloud computing security? Technical report, University
of California, Berkeley, Jan 2010.

[8] F. Cuppens and R. Ortalo. Lambda: A language to model
a database for detection of attacks. In Recent advances
in intrusion detection. Springer, 2000.

[9] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy
of intrusion-detection systems. Computer Networks, 1999.

[10] S. Eckmann, G. Vigna, and R. Kemmerer. Statl: An attack
language for state-based intrusion detection. Journal of
Computer Security, 10(1/2):71–104, 2002.

[11] European Network and Information Security Agency.
Cloud computing risk assessment. Technical report, 2009.

[12] W. Kanoun, S. Dubus, S. Papillon, N. Cuppens-Boulahia,
and F. Cuppens. Towards dynamic risk management:
Success likelihood of ongoing attacks. Bell Labs Technical
Journal, 2012.

[13] Z. Li, Y. Chen, and A. Beach. Towards scalable and robust
distributed intrusion alert fusion with good load balancing.
In Proceedings of the 2006 SIGCOMM workshop on
Large-scale attack defense, LSAD ’06. ACM, 2006.

[14] M. Marchetti, M. Messori, and M. Colajanni. Peer-to-
peer architecture for collaborative intrusion and malware
detection on a large scale. In Information Security, volume
5735 of Lecture Notes in Computer Science, pages 475–
490. Springer Berlin Heidelberg, 2009.

[15] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical report, July 2009.

[16] C. Michel and L. Mé. Adele: an attack description
language for knowledge-based intrusion detection. In
Proceedings of the 16th International Conference on
Information Security (IFIP/SEC 2001), 2001.

[17] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks, 1999.

[18] B. Rimal, E. Choi, and I. Lumb. A taxonomy and survey
of cloud computing systems. In NCM ’09, aug. 2009.

[19] D. Riquet, G. Grimaud, and M. Hauspie. Large-scale
coordinated attacks : Impact on the cloud security. The
Second International Workshop on Mobile Commerce,
Cloud Computing, Network and Communication Security
2012, page 558, July 2012.

[20] M. Roesch et al. Snort-lightweight intrusion detection
for networks. In Proceedings of the 13th USENIX
conference on System administration, pages 229–238.
Seattle, Washington, 1999.

[21] P. Salgueiro, D. Diaz, I. Brito, and S. Abreu. Using
constraints for intrusion detection: the NeMODe system.
Practical Aspects of Declarative Languages, 2011.

[22] S. Shankland. Hp’s hurd dings cloud computing,
ibm, 2009. URL http://news.cnet.com/8301-30685_
3-10378781-264.html.

[23] S. R. Snapp, , J. Brentano, and G. V. Dias. Dids
(distributed intrusion detection system) - motivation,
architecture, and an early prototype. in proceedings of
the 14th National Computer Security Conference, 1991.

[24] Spiceworks. New study sees rise in cloud services
adoption among small and medium businesses in first
half of 2010, 2010. URL http://www.spiceworks.com/
news/press-release/2010/07-28.php.

[25] V. Yegneswaran and P. Barford. Global intrusion detection
in the domino overlay system. In Proceedings of Network
and Distributed System Security Symposium, 2004.

[26] C. V. Zhou, C. Leckie, and S. Karunasekera. A survey of
coordinated attacks and collaborative intrusion detection.
Computers and Security, 2010.

http://aws.amazon.com/security
http://aws.amazon.com/security
http://news.cnet.com/8301-30685_3-10378781-264.html
http://news.cnet.com/8301-30685_3-10378781-264.html
http://www.spiceworks.com/news/press-release/2010/07-28.php
http://www.spiceworks.com/news/press-release/2010/07-28.php

	Introduction
	Related work
	DISCUS
	Architecture overview
	Security probes
	Configuration of the structure

	Discus Script
	Table declaration
	Purge and deletion of tables
	Event-based security rules
	Characteristics of the language

	Security rules examples
	Conclusion

